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High-field magnetization of Ho2Fe17
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The magnetization of a Ho2Fe17 single crystal has been measured along the principal crystallographic directions
in pulsed magnetic fields up to 60 T. Stepwise discontinuities in the magnetization occur at 45 and 55 T along
the [120] and [100] directions, respectively. The data allowed us to deduce the molecular field at the Ho site. As
a cross check, the molecular field was determined as well from a magnetization measurement when the Ho2Fe17

single crystal was let rotate freely. Both values are in good agreement with each other.
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I. INTRODUCTION

Rare-earth-iron intermetallic compounds are important
magnetic materials, valued for their high magnetic anisotropy.1

It originates from the crystal field acting on the rare earth
and is mediated by an exchange interaction coupling the rare
earth and the iron sublattices with each other. The strength of
this coupling, thus, appears to be an important characteristic
of a hard magnetic material, perhaps even more important
than the leading crystal-field parameter A20.2 Unambiguous
experimental determination of the intersublattice exchange in
strongly anisotropic magnets is difficult because it cannot be
easily disentangled from the strong, a priori unknown crystal
field. Ferrimagnetic compounds with heavy rare earths—less
suitable for applications than their ferromagnetic light rare-
earth counterparts, but then amenable to high-field experi-
ments — present additional possibilities for circumventing
the above difficulties. Ho2Fe17 is supposed to be a well-studied
ferrimagnet. Starting from 1980, several single crystals were
produced and measurements of magnon dispersion3,4 and
high-field magnetization5,6 curves were carried out. Relevant
model parameters were deduced independently from both
data sets. Rather unexpectedly, one finds no consensus in
the published results. For instance, the molecular field at the
holmium site, Hmol, determined from the neutron data equals
58.5 T,4 whereas the high-field magnetization data yield a 1.5
times higher value,5,6 88 T (both values refer to T = 4.2 K).
This discrepancy remained unexplained.

Strictly speaking, there are two nonequivalent Ho sites
in the hexagonal Th2Ni17-type structure of Ho2Fe17 and,
correspondingly, two different values of Hmol. However, the
difference appears insignificant, as can be judged by the 161Dy
Mössbauer spectra of the isomorphous Dy2Fe17; these were
successfully described by a single set of hyperfine parameters
even at room temperature.7 Therefore, the Ho atoms in
Ho2Fe17 are usually regarded as equivalent.3–6,8–10 Such an
approximation will be adopted in this work, too.

For other model parameters of Ho2Fe17, one finds disparate
reports. As an example, Table I presents a compilation of pub-
lished values of the crystal-field parameter A6

6〈r6〉 (converted
to the same notation11) as well as of the basal-plane anisotropy
constant of the Ho sublattice KHo

4 at T = 0. The latter is
connected with the former through a simple proportionality

relation,12

KHo
4 = − 50

429A6
6〈r6〉. (1)

Here, KHo
4 is normalized per Ho atom. Note that the propor-

tionality factor used by Clausen3 was 2.9 times too high;13

Table I presents the corrected result. Here, we refer solely
to anisotropy constants for a two-sublattice model, where the
Ho and Fe sublattices are not rigidly antiparallel. The neglect
of such noncollinearity led to contradictory results in earlier
works,3,14 until the puzzle was finally explained by Sarkis and
Callen.15

In total, there have been two independent treatments3,4 of
the same neutron data set (Table I, upper part) and as many
as four attempts5,8–10 to determine model parameters from the
magnetization data of Refs. 5 and 6 (Table I, lower part). No
consistent values were deduced from either data set.

In a previous work,16 we proposed a method of determining
Hmol from high-field magnetization data. The method pro-
duced consistent results for Er2Fe17.16 Since Ho2Fe17 is an
easy-plane ferrimagnet, the same technique suits it ideally.
So we decided to carry out a high-field magnetization study
of Ho2Fe17 in order to determine Hmol more accurately and
to find out why the previous experiments on Ho2Fe17 single
crystals failed to determine even the order of magnitude
of KHo

4 . This work is organized as follows. In the next
section, a brief description of the experimental procedure
and of the equipment used is given, most notably of the
high-field magnetometer. Section III presents the results of the
measurements. The theoretical model is stated in Sec. IV, some
of the details being relegated to the Appendices. Section V
contains a discussion, a determination of Hmol, an estimation
of KHo

4 , and a conclusion.

II. EXPERIMENTAL DETAILS

The samples were prepared by induction melting of
mixtures of 99.9%-pure Ho and 99.99%-pure Fe in alundum
crucibles under an Ar atmosphere. The mixture of the nominal
molar ratio 2:17 was rapidly melted, then cooled down to room
temperature at a rate of 100 ◦C/min. The obtained ingot was
annealed in a resistive furnace under a vacuum as follows.
It was heated up to 1300 ◦C during 1 h and kept at this
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TABLE I. Published values of the crystal field parameter A6
6〈r6〉

and of the anisotropy constant KHo
4 of Ho2Fe17.

A6
6〈r6〉 (K) KHo

4 (J/kg)

−68a 100
−9b 14

– 200c

−190d 290
−104e 170
−22f 33

aRef. 3
bRef. 4
cRefs. 5 and 6
dRef. 8
eRef. 9
fRef. 10

temperature for 10 min in order to melt. Then, it was cooled
down to 1150 ◦C during 1 h and kept there for 8 h. This mode
is favorable for growth of large crystalline grains. The phase
composition of the ingot was checked by means of optical
metallography, x-ray phase analysis, and energy-dispersive
x-ray spectroscopy. The ingot was then broken down by
ultrasound, and large grains were picked out. The so-obtained
specimens were subject to mechanical shaping by rough
and coarse grinding. Besides forming the sample spherically,
which is a preferred shape for magnetization measurements,
this procedure helps to reject twinned crystals as they would
not stand high mechanical stress. The stressed surface was
relaxed by electropolishing in a CrO3 solution. The final
single-crystallinity test and orientation of the samples were
performed by means of x-ray back Laue diffraction.

Magnetization measurements were performed at the Dres-
den High Magnetic Field Laboratory.17 The pulsed coil used
in this work has been described elsewhere.18 A single 1.44 MJ
capacitor module was used. The capacitor module was charged
to 22 kV and delivered a peak current of about 30 kA. This
produced a maximum magnetic field of 60 T with a rise time
of about 7 ms and a total pulse duration of 25 ms. (The coil
design provided for nondestructive operation at fields up to
65 T.)

The magnetic field was measured by two coils connected
in series and located above and below the sample pickup coils
(Fig. 1). In order to avoid a possible influence of the sample
on the field measurement, the coils were placed reasonably
far from the sample position. The signal from the coils,
proportional to Ḣ ≡ (dH/dt), was recorded by a digitizer
and later integrated numerically. The pickup-coil signal was
calibrated by measuring the well-known magnetization curve
of MnF2, where a temperature-independent spin-flop transition
takes place at 9.27 T.19

The magnetization was measured by a pickup coil surround-
ing the sample. Since the coil is situated in a varying magnetic
field, it should be connected to a compensation coil canceling
the Ḣ contribution. Several arrangements of the compensated
pickup-coil system are possible. We have chosen a coaxial
geometry as it is less sensitive to gradients and vibrations. The
pickup coil consists of 1200 turns wound around a 3.2 mm
diameter sample space and is 5 mm long. The compensating

Magnetization
pick-up coil

Compensation
coil

Fine compensation circuit

Field pick-up coil

8mm

FIG. 1. Pickup-coil system used in the pulsed-field magnetometer
with (Left) the principal sketch, (Middle) the electrical scheme, and
(Right) a picture of the original set up.

coil was wound around a 6.8 mm diameter support. It was
realized with a somewhat larger effective area then the pickup
coil, the final compensation was performed by taking windings
off the compensation coil to null the overall signal. This
procedure resulted in a compensation of about 2 × 10−3. The
remaining temperature-dependent part was further reduced
at each temperature by a fine-compensation circuit using an
additional coil (Fig. 1). The housing of the magnetometer was
made out of plastic (PEEK) with a very low thermal expansion.
The sample was placed in the coil system without taking the
magnetometer out of the cryostat (top-loading system). Each
measurement of the sample was complemented by recording
the background in identical conditions and its subsequent
subtraction. The absolute value of the magnetization was
calibrated by a low-field measurement using a commercial
superconducting quantum interference device (SQUID) mag-
netometer.

The measurement of an unclamped sample was performed
at the Dresden Leibniz Institute for Materials Science (IFW).
In that case, two identical 3-mm-long pickup coils were placed
side by side, one of them containing the sample. The inner bore
diameter of the coils was 1 mm. The sample was approximately
a sphere, about 0.7 mm in diameter. Two plastic pistons
restricted the translational motion of the sample, while leaving
it free to rotate. For more details on the free-rotation technique,
see Ref. 16.

III. RESULTS

Figure 2 displays the magnetization of Ho2Fe17 measured
at 4.3 K for three crystallographic directions (solid lines). The
data measured along [001] clearly identifies this as a hard mag-
netization direction. There is no component of spontaneous
magnetization along [001], which confirms good crystal qual-
ity and orientation. A small spontaneous moment along [001]
was reported for one sample in Ref. 6 but was not observed on
another crystal.10 Comparing the [100] and [120] directions,
one observes an in-plane magnetic anisotropy, with [120] being
the easy direction. According to our data, the spontaneous
magnetization of Ho2Fe17 is 18.2 μB/f.u. at T = 4.3 K.
The literature data scatter significantly: Clausen and Nielsen
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FIG. 2. (Color online) Magnetization curves of Ho2Fe17 mea-
sured along the main crystallographic directions at 4.3 K. Solid and
dashed lines are experimental and calculated data, respectively.

reported 16.36 μB/f.u.,14 Sinnema found 18.6 μB/f.u.,5,6 and
Tereshina et al. derived 18.8 μB/f.u.20 First-order transitions
are evident in the magnetization data measured along the
[100] and [120] directions at 56 and 45.5 T, respectively. The
corresponding heights of the jumps are 8.4 and 5.6 μB/f.u.

Following Ref. 21, we attribute the jumps to stepwise
reorientation of the rare-earth moment between adjacent easy
directions within the basal plane. In the limit of strong
anisotropy, relevant also to Ho2Fe17, three or two jumps must
take place, depending on whether the field is applied along
an easy or a hard direction in the basal plane. Every abrupt
rotation of MHo through π/3 recoils upon MFe, so that both
sublattice moments reorientate discontinuously.

The magnetization of the unclamped sample is presented
in Fig. 3. The low-field part of the curve agrees well with the
fixed-sample data of Fig. 2 taken in the easy magnetization
direction [120]. At 40 T, there is a well-pronounced kink
corresponding to the beginning of continuous rotation of MHo

and MFe. Beyond that point, the [120] axis of the unclamped
crystal stays no longer parallel to the magnetic field, but
rather is involved in the coordinated rotation of the sublattice
moments. The high-field part of the curve roughly extrapolates
to the origin.

IV. THEORY

In order to describe quantitatively the low-temperature
magnetization of Ho2Fe17, we make use of the two-sublattice
model of Ref. 16. We are interested primarily in a special
case when the applied field is perpendicular to the sixfold
axis of the crystal—that is, when the field-induced first-order
transitions are observed. The easy-plane ferrimagnet Ho2Fe17

is particularly suitable for such orientations of an applied
magnetic field because then all the magnetic moments remain

FIG. 3. Magnetization curve measured on an unclamped single
crystal of Ho2Fe17.

in the basal plane and the model16 yields unambiguous
predictions. The starting point of the model (limited to the
special case H ⊥ [001]) is the following thermodynamic
potential:

� = λMFeMHo cos(α + β) − HMFe cos α

−HMHo cos β ± ∣∣KHo
4

∣∣ cos 6β. (2)

Here, MFe and MHo are magnetizations of the two sublat-
tices, λ is the intersublattice exchange constant (λ > 0), α and
β are angles between the magnetic field H and the vectors MFe

and MHo, respectively, and KHo
4 is the basal-plane anisotropy

constant of the Ho sublattice. (The basal-plane anisotropy
of the Fe sublattice is negligible.) The signs “+” or “−”
correspond, respectively, to the orientation of the applied field
along a hard or an easy direction within the basal plane.

Following Ref. 16, we introduce dimensionless variables,

h = H

λMFe
, φ = �

λM2
Fe

, κ =
∣∣KHo

4

∣∣
λM2

Fe

, m = MHo

MFe
, (3)

and rewrite the thermodynamic potential [Eq. (2)] as follows:

φ = m cos(α + β) − h cos α − mh cos β ± κ cos 6β. (4)

The process of generating magnetization curves consists in
minimizing the potential [Eq. (4)] with respect to the angles α

and β for a given field h and setting the obtained equilibrium
values of α and β into an expression for reduced magnetization:

σ = cos α + m cos β

1 − m
. (5)

The reduced magnetization is normalized to unity in weak
magnetic fields (h → 0,α → 0,β → π ).

Obviously, the shape of the curves σ (h) depends on two
parameters, m and κ . The value of m is readily found by
setting MHo to twice the free-ion moment, i.e., 20 μB/f.u.
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FIG. 4. Phase diagram of an easy-plane hexagonal ferrimagnet
with m = 0.524. The magnetic field is applied (a) in the hard or
(b) in the easy direction in the basal plane. Solid and dotted lines
are first- and second-order phase transition lines, respectively. In the
pictograms, the longer arrows correspond to MFe and the shorter ones
to MHo; the magnetic field (not shown) is directed upward.

Then, from the spontaneous magnetization, Ms = MFe −
MHo = 18.2 μB/f.u., we obtain MFe = 38.2 μB/f.u. and
m = MHo/MFe = 0.524. As against that, the anisotropy pa-
rameter κ is not known a priori. In order to get an overview

of all possible σ (h) dependences, it is instructive, following
Ref. 16, to describe the behavior of the entire class of systems
with a given m but different κ by means of phase diagrams
in the κ-h plane. Such diagrams for Ho2Fe17 (m = 0.524) are
presented in Fig. 4, where the upper panel (a) corresponds to
the magnetic field being parallel to a hard direction in the basal
plane [plus sign in Eq. (4)], and the lower panel (b) to an easy
direction within the basal plane. The latter case was analyzed
in detail in Ref. 16, dedicated to Er2Fe17. It is immaterial
that the easy direction in Er2Fe17 is the crystallographic a

axis [100], whereas in Ho2Fe17, it is the b axis [120]. The
difference between Fig. 4(b) of the present work and Fig. 5 of
Ref. 16 is merely quantitative, due to a slightly different m.
Explicit expressions for the coordinates of the key points in
this phase diagram at any m, obtained in Ref. 16, are given in
Appendix A.

Here, we will concentrate on the former case (H|| hard di-
rection in the basal plane), Fig. 4(a), which has not been studied
before. Figure 5 displays several representative magnetization
curves σ (h) relevant to this case. Each such curve, computed
at a certain fixed κ , corresponds to a vertical line in Fig. 4(a).
Where such a line crosses a solid/dotted phase separation line
in Fig. 4(a), a first-/second-order phase transition, respectively,
takes place. Such a transition corresponds to a jump/kink in
Fig. 5 so that the ordinate of the crossing point in Fig. 4(a) is the
threshold field of the transition in Fig. 5. Explicit expressions
for σ (h) can only be obtained in special cases of κ = 0 and
κ = ∞. In the former case, σ (h) is given by the following
expression [Eq. (6) in Ref. 16, derived earlier in Refs. 22 and
23] regardless of the orientation of the field in the basal plane:

σ (h) =

⎧⎪⎪⎨
⎪⎪⎩

1 if h < 1 − m

h
1−m

if 1 − m < h < 1 + m

1+m
1−m

if h > 1 + m.

(6)

In a weak magnetic field (h < 1 − m), the system is a
collinear ferrimagnet, at intermediate fields it has a canted
magnetic structure, and above h = 1 + m, it is a (forced)
ferromagnet. At h = 1 ± m, second-order transitions take
place; these are seen as kinks in the magnetization curve in
Fig. 5(a). For κ = ∞, we obtained the following expression:

σ (h) = 1

1 − m
×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h+ 1
2

√
3m√(

h+ 1
2

√
3m

)2
+ 1

4 m2

−
√

3
2 m if h < h1

h√
h2+m2 if h1 < h < h2

h− 1
2

√
3m√(

h− 1
2

√
3m

)2
+ 1

4 m2

+
√

3
2 m if h > h2,

(7)

where

h1,2 =
√

3m4 + 16(1 − m2) ± √
3m

4 − 3
4m2

. (8)

The three field intervals in Eq. (7) correspond to three
distinct phases, characterized by three different values of the
angle β between MHo and H . In the low-field phase, MHo

makes an obtuse angle with H , β = 5π/6. In the intermediate
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FIG. 5. (Color online) Representative magnetization curves for m = 0.524 and applied magnetic field pointing in the hard direction in the
basal plane.

phase, MHo is perpendicular to H , and in the high-field phase,
MHo and H make an acute angle, β = π/6. In all the cases,
MHo takes one of the crystallographically equivalent easy
directions within the basal plane. Transitions between the
phases take place at h = h1 and h = h2 and are first-order
phase transitions. They correspond to discontinuities (jumps)
in the magnetization curve [Fig. 5(f)].

At intermediate values of the anisotropy parameter κ , σ (h)
has to be calculated numerically, yet the positions of all
key points as well as the dotted lines in the phase diagram
[Fig. 4(a)] are given by simple expressions (see Appendix B).

In the case of a very weak anisotropy, κ < 1
36m(1 − √

m)2,
the locus of the system in the phase diagram crosses the dotted
lines three times, according as the field h grows. Consequently,
three field-induced second-order transitions take place and the
magnetization curve has three kinks [Fig. 5(b)]. Within the
initial growing portion of the curve, rotation of both sublattice
vectors, MFe and MHo, takes place, their antiparallel mutual
orientation being maintained to a significant extent. The vector
MFe turns from its initial position at α = π/6 toward the
magnetic field, becoming parallel to it at the transition point.

At the same time, MHo rotates from β = 5π/6 away from the
field and becomes antiparallel to the latter at the transition
point. The first transition takes place when the locus of the
system crosses the lower part of the dotted hyperbolic arc
in the southwest corner of the phase diagram [Fig. 4(a)].
Above the transition point, the orientation of the vectors MHo

and MFe does not change, and the system is a collinear
ferrimagnet. As the applied field grows, the magnetization
remains constant, σ ≡ 1, until the second threshold point is
reached. Now, the locus of the system crosses the upper part
of the dotted hyperbolic arc in Fig. 4(a), and the magnetization
σ (h) resumes its growth. The orientation of the sublattice
moments starts to change again. The angle β between MHo

and H decreases monotonically from π to 0. The angle α

between MFe and H changes nonmonotonically: it grows at
first from 0 to a certain maximum value, then it decreases
down to 0. The mutual orientation of the sublattice moments
changes gradually and monotonically from antiparallel to
parallel. The parallel orientation of all three vectors, MHo,
MFe, and H , is attained at the third threshold field, as the
system’s locus crosses the upper dotted hyperbola in Fig. 4(a).

214420-5



SKOURSKI, KUZ’MIN, SKOKOV, ANDREEV, AND WOSNITZA PHYSICAL REVIEW B 83, 214420 (2011)

Thereupon, the magnetization ceases to grow definitively and
is saturated.

According as the anisotropy parameter κ grows, the
intermediate-field horizontal portion of the magnetization
curve becomes ever more narrow, until it disappears altogether.
This happens when the locus of the system passes through
the vertex of the hyperbolic arc in Fig. 4(a), situated at κ =
1

36m(1 − √
m)2 and h = √

m − m. For larger κ , the collinear
ferrimagnetic state is never attained, and the magnetization
curve has only one kink corresponding to the transition into
the forced ferromagnetic state (spin flip) [see Fig. 5(c)]. The
spin flip occurs when the system’s locus in the phase diagram
[Fig. 4(a)] reaches the the high-field dotted hyperbola.

As κ increases further, the S-shaped anomaly in the
magnetization curves develops into a discontinuity [Fig. 5(d)].
At yet larger κ , a second S-shaped anomaly appears at a
higher field, which eventually also turns into a discontinuity
[Fig. 5(e)]. The two discontinuities appear when the system’s
locus in the phase diagram reaches the critical points C1 and

C2, respectively, i.e., at κ = 1
48m2(1 − 1

2m2 ± m

√
1 − 3

4m2).
A derivation of this expression, as well as a summary of the
positions of the main points and lines of the phase diagram
of Fig. 4(a), is given in Appendix B. From the physical
viewpoint, the jumps in the magnetization occur when the
vector MHo passes through a hard direction in the basal
plane, as it rotates toward the magnetic field. At small κ ,
overcoming the barrier associated with the anisotropy proceeds
as a continuous process; however, starting from certain critical
values of the anisotropy parameter, discontinuities appear. This
does not happen simultaneously; first, the position of MHo near
β = 2π/3 becomes unstable, then near β = π/3.

A further increase of κ does not lead to any qualitative
change in the σ (h) curves. They still have two discontinuities,
only the height of the jumps grows with κ . At the same time,
the change of slope (kink) associated with the spin flip moves
to higher fields, becoming ever less noticeable. As a matter of
fact, starting from about κ = 0.1, the magnetization curves are
indistinguishable from those with κ = ∞.

V. DISCUSSION

The theory developed in Ref. 16 and complemented in
Sec. IV suggests a simple explanation for the enigmatic
situation surrounding the basal-plane anisotropy constant KHo

4 .
According to this theory, the height of the first jump of
magnetization in the easy direction grows with κ , tending to a
certain limit as κ → ∞,16


σ1 = m(1 − m/4)

2 − m + m2/2
= 0.282, (9)

where m = 0.524 has been used. From our experimental
magnetization curve along [120], we deduce 
σ1 = 0.31, that
slightly exceeds the theoretical upper bound [Eq. (9)]. The dis-
crepancy is not significant, considering the already mentioned
uncertainty of the spontaneous moment and, therefore, of the
parameter m. Still, in order to reconcile the model with the
experiment in the best possible way, one has to conclude that
the system operates in the strong-anisotropy regime, when the
magnetization curves no longer depend on κ . The advantage of

this situation is that one can use explicit expressions for σ (h),
Eq. (7) of this work for H|| [100] and Eq. (7) of Ref. 16 for
H|| [120]. Yet, one has to accept that κ cannot be determined
from the available magnetization data. Having at our disposal
the height of the first jump, we cautiously estimate that

κ � 0.02, orKHo
4 � 3 × 102 J/kg. (10)

We are unable to put any upper limit on κ or KHo
4 at this

point. Yet, values significantly smaller than the estimated lower
bound (10) can be ruled out.

According to Eq. (A2), the dimensionless critical field of
the first jump equals 0.548 for H|| [120]. Experimentally, it is
observed at 45.5 T. Hence, for the molecular field on Ho, we
find

μ0Hmol = λMFe = 45.5 T

0.548
= 83 T. (11)

For H|| [100], the critical field of the first jump is obtained
from Eq. (8), lower sign: h1 = 0.667. This is converted
to teslas using the value [Eq. (11)] as a scaling factor:
μ0H1 = 0.667 × 83.0 = 55.4 T. This prediction is in good
agreement with the experiment (Fig. 2). Similarly, from
Eqs. (A3) and (A2), we predict two further jumps at 73 and
112 T for H|| [120], and from Eq. (8), a jump at 95 T for
H|| [100]. (In earlier calculations,21 the critical fields came
out systematically higher: 46, 97, and 135 T for H|| [120]
and 62 and 125 T for H|| [100].) Finally, the value [Eq. (11)]
and the spontaneous moment, Ms = 18.2 μB/f.u., can be used
to convert into absolute units the magnetization curves along
[100] and [120], as given by Eq. (7) of this work and Eq. (7)
of Ref. 16, respectively. The results are shown as dashed lines
in Fig. 2.

To complete the picture, one still needs a theoretical
magnetization curve for the third principal direction [001].
Since the experimental curve is rather featureless, a very
simple model may be adopted. The anisotropy of the iron
sublattice is neglected completely, whereas for holmium just
the leading anisotropy constant KHo

1 is allowed for. There is
no physical reason to believe that at T ∼ 4 K, KHo

2 or KHo
3 is

much smaller than KHo
1 . Moreover, the curve will be definitely

affected by KHo
4 , even taken at its lower bound (10). Yet, the

available data do not suffice for a unique determination of
all four relevant anisotropy constants, so these are replaced
by a single “effective” second-order anisotropy constant KHo

1 .
The advantage of such an approximation is the possibility of
expressing the magnetization curve in parametric form:24

h = m

m + κ1t

√
1 − (m + κ1t)2

1 − mt
, (12)

σ = h

1 − m

(
1 + κ1

m
t − κ1

2
t2

)
, (13)

with

κ1 = KHo
1

λM2
Fe

. (14)

The parameter t runs from a negative initial value, t0 = (1 −
m)/κ1, which corresponds to h = σ = 0, to a certain positive
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upper bound corresponding to full saturation. The initial slope,
χ0 = (∂σ/∂h)h=0, is given by

χ0 = 1

m(1 − m)
− 1 − m

2κ1
. (15)

From our experimental data we deduce χ0 = 8.6, then from
Eq. (14) we find κ1 = 0.052. This value is set into Eqs. (12) and
(13), which are now fully defined. The resulting magnetization
curve, upon appropriate conversion of units, is presented in
Fig. 2 (dashed line).

Comparing the experimental (solid) and calculated (dashed)
magnetization curves in Fig. 2, one observes that the latter
progressively “fall behind” the former. This is the case for
all orientations of applied magnetic field to roughly the
same extent. The lag does not affect the threshold fields or
relative heights of the magnetization jumps, which are well
reproduced by the calculations. At present, we are not in a
position to explain the provenance of the growing background
in the magnetization curves. A magnetization growth may
take place for several reasons, e.g., because the crystal is
twinned, or it may be that the iron sublattice magnetization
increases with magnetic field. The twinning does not appear
likely since the observed magnetization jumps have the full
expected heights and no satellites. If one could induce a
transition into a forced ferromagnetic state, it would be very
interesting to compare the magnetization with the sum of
the sublattice moments in our model, 58.2μB/f.u., and to
measure the differential susceptibility above the transition.
Unfortunately, the required field, 112 T, applied in the easy
direction [120] is presently not attainable in experiments of
this kind, where sufficient pulse duration is essential. Under
the circumstances, we took a different approach to checking
our interpretation of the data. Our attention turned to the
previously determined molecular field on Ho [Eq. (11)]. For
verification, we carried out magnetization measurements on
a free-to-rotate single-crystalline sphere of Ho2Fe17. The
magnetization (Fig. 3) has a clearly visible kink at 40 T. The
analysis of this experiment is particularly simple because it
is equivalent to the well-studied isotropic case.23 The critical
field of the kink equals λ(MFe − MHo), whence it follows that

μ0Hmol = MFe

MFe − MHo
μ0Hkink = 38.2

18.2
× 40 T = 84 T.

(16)

This agrees with the value [Eq. (11)] deduced from the
data taken on a fixed crystal and confirms the soundness of
our model. For comparison, the value found by Sinnema5,6,
μ0Hmol = 88 T, is somewhat too high, whereas Clausen and
Lebech4 obtained a far too low value, μ0Hmol = 58.5 T.
The reason for the discrepancy is that the neutron-scattering
data3,4 do not allow to determine Hmol independently from the
crystal-field parameters, and the latter were severely misjudged
in Refs. 3 and 4 (the two values of A6

6〈r6〉 at the top of Table I
were deduced from the same data set).

Coming back to the anisotropy constants, one might be
tempted by the idea of determining them from a fit to the
magnetization curve along the sixfold axis [001]. It should be
noted that allowing for higher-order anisotropy constants in
Eqs. (12) and (13) is not possible. Even if it were, it would
be pointless since higher-order anisotropy constants cannot

in principle improve the fit. Irrespective of the anisotropy,
the calculated curve must pass through the so-called orthogo-
nality point, whose coordinates are:25 H⊥ = Hmol

√
1 − m2 =

70.7 T and M⊥ = √
M2

Fe − M2
Ho = 32.5 μB/f.u. All that can

be reasonably extracted from the rather smooth experimental
curve is its initial slope. Unlike Eqs. (12) and (13), Eq. (15)
can be readily generalized to include higher-order anisotropy
constants. It suffices to replace the parameter κ1 defined by
Eq. (14) with the following quantity,

KHo
1 + 2KHo

2 + 3KHo
3 − 3KHo

4

λM2
Fe

, (17)

which by virtue of our data must equal −0.052. The dominant
contribution to Eq. (15) seems to come from KHo

4 ; cf. the
estimates (10). In this situation, little can be said with certainty
about KHo

1 , KHo
2 , or KHo

3 . This conclusion applies to all
currently available data. Determining KHo

1 and KHo
2 may

well become possible in the future, when the [001] curve
is measured to saturation, i.e., to the transition into the
forced ferromagnetic state (spin flip). The critical field of the
transition Hflip would enable one to find KHo

1 from Eq. (20) of
Ref. 25, and KHo

2 could then be found from the slope of the
curve just before the transition [Eq. (41) of Ref. 24].

As regards KHo
4 , we do not expect it to be significantly

higher than the estimated lower bound (10), since, otherwise,
an unlikely near cancellation of terms in (17) must take place.
Therefore, KHo

4 ∼ 3 × 102 J/kg can be adopted as an order-
of-magnitude estimate.

In conclusion, stepwise anomalies in the high-field mag-
netization curves of Ho2Fe17 have been observed at 45 T
for H|| [120] as well as at 55 T for H|| [100]. Further such
anomalies are expected at 73 and 112 T for H|| [120] and at
95 T for H|| [100]. The molecular field on the Ho sublattice
has been found to be about 83 or 84 T, whereas no precise
anisotropy constants could be deduced from the data available
so far.

ACKNOWLEDGMENTS

Part of this work has been supported by EuroMag-
NET under EU Contract No. 228043. A.V.A. thanks for
support Research Project No. AVOZ10100520 and Grant
No. 09/202/0339 of the Czech Science Foundation.

APPENDIX A: PHASE DIAGRAM FOR A MAGNETIC
FIELD APPLIED ALONG AN EASY DIRECTION

IN THE BASAL PLANE

This is a summary of the main facts—coordinates of key
points and equations of phase boundaries—concerning the
phase diagram of Fig. 4(b). All these results were obtained
earlier16 and are given here without proof. Where two objects
are described by a single equation with double signs, the upper
signs always correspond to the object named first.

The ordinates of the points A1 and A3 on the left-hand edge
of the diagram (at κ = 0) are

h = 1 ∓ m. (A1)
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The ordinates of the infinitely remote points B1 and B3 on the
right of Fig. 4(b) are

h = 1 ∓ m

1 ∓ m/4
. (A2)

The ordinate of the infinitely remote point B2 is

h =
√

1 − m2

1 − m2/4
. (A3)

The coordinates of the tricritical points C1 and C3 are

κ = ∓mh

36

(
1

h ± m
− 1

)
, (A4)

where

h = 1

3
∓ m + 2

3

√
1 ± 9

35
m

× cos

[
1

3
arccos

1 ± 27
70m − 81

70m2(
1 ± 9

35m
)3/2

]
. (A5)

The coordinates of the tricritical point C2 are

κ = 1
36m2(1 − m2), (A6)

h =
√

1 − m2. (A7)

The lines B1C1 and B3C3 are given by

h =
√(

1 ∓ m

2
± 18κ

m

)2

+ 36κ + 1 ∓ m

2
± 18κ

m
. (A8)

APPENDIX B: PHASE DIAGRAM FOR A MAGNETIC
FIELD APPLIED ALONG A HARD DIRECTION

IN THE BASAL PLANE

1. Phase boundary of the forced ferromagnetic state

Let us write down the necessary conditions for a minimum,
∂φ/∂α = ∂φ/∂β = 0, for Eq. (4), choosing the plus sign in
front of κ therein:

−m sin(α + β) + h sin α = 0, (B1)

−m sin(α + β) + mh sin β − 6κ sin 6β = 0. (B2)

Regarding the angles α and β as small quantities, we omit the
sine symbols from Eqs. (B1) and (B2):

(h − m)α − mβ = 0, (B3)

−mα + (mh − m − 36κ)β = 0. (B4)

In order for these simultaneous linear equations to have a
nontrivial solution, their determinant must be nil. Therefore,

κ = mh

36

(
1

m − h
+ 1

)
. (B5)

This equation describes the dotted hyperbola in the upper part
of Fig. 4(a). Equation (B5) can be readily rewritten in explicit
form, as h versus κ:

h =
√(

1 + m

2
+ 18κ

m

)2

− 36κ + 1 + m

2
+ 18κ

m
. (B6)

Note that the same result is obtained by changing the sign of
κ in Eq. (A8) taken with the lower signs.

2. Line delimiting the domain of stability of the collinear
ferrimagnetic phase

This is obtained by substitution of −m for m in Eq. (B5):

κ = mh

36

(
1

m + h
− 1

)
. (B7)

This expression describes the dotted hyperbolic arc in the
bottom left corner of Fig. 4(a). The coordinates of the vertex
(the right-most point) of the arc are readily obtainable from
the condition ∂κ/∂h = 0:

κv = 1
36m(1 − √

m)2, (B8)

hv = √
m − m. (B9)

3. Coordinates of the critical points C1 and C2

Set β = π/3 or 2π/3 into Eqs. (B1) and (B2) and solve
them for α and h:

α = arcsin
(

1
2

√
3m

)
, (B10)

h =
√

1 − 3
4m2 ± 1

2m. (B11)

Equation (B11) describes the ordinates of the points C1 and
C2. The abscissae are given by

κ = 1
48m2

(
1 − 1

2m2 ± m

√
1 − 3

4m2
)
. (B12)

The proof of this expression is given for the upper sign,
corresponding to β = π/3 + η, where η is a small angle. (The
proof for the lower sign is fully analogous; one only needs to
replace m throughout by −m.) Setting β = π/3 + η into the
equilibrium condition [Eq. (B1)], one solves it for α to terms
linear in η:

α = arctan

( √
3m

2h − m

)
+ 2m(h − 2m)

(2h − m)2 + 3m2
η + · · · .

(B13)

The expression is then used to eliminate α from the second
equilibrium condition (B2). To terms linear in η, the result is

√
3mh√

(2h − m)2 + 3m2
−

√
3

2
mh

+2mh(2h − m)(h − 2m)

[(2h − m)2 + 3m2]3/2
η − mh

2
η + 36κη = 0. (B14)

This equation describes implicitly the dependence h(η), which
in conjunction with an expression for σ (η) can be regarded as a
parametric description of the magnetization curve σ versus h.
At the critical point, the following conditions must be fulfilled:
∂h/∂η = 0,∂σ/∂η �= 0. Now, the full derivative of the left-
hand side of Eq. (B14) with respect to η equals identically 0.
The partial derivative, ∂/∂η = d/dη − (∂h/∂η)∂/∂h, must,
therefore, vanish at the critical point. Differentiating (B14)
with respect to η at constant h, we, thus, find

κ = 1

36

{
mh

2
− 2mh(2h − m)(h − 2m)

[(2h − m)2 + 3m2]3/2

}
. (B15)
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The sought expression [Eq. (B12)] is obtained by substituting
Eq. (B11) for h into Eq. (B15).

4. Coordinates of the infinitely remote points A1 and A2

on the right of Fig. 4(a)

These are given by Eq. (8):

h1,2 =
√

3m4 + 16(1 − m2) ± √
3m

4 − 3
4m2

. (B16)

To derive this expression, one has to take into consideration
that at κ = ∞, the angle β can only take one of three values
corresponding to three equivalent easy orientations of MHo.
Accordingly, three distinct phases are possible.

Phase 1: β1 = 5π/6. Setting this value into Eq. (B1), we
find

α1 = arctan

(
m

2h + √
3m

)
. (B17)

Substituting α1 and β1 for α and β in Eq. (4) and omitting the
infinite term in κ , we get the energy of phase 1:

φ1 = −
√(

h + 1
2

√
3m

)2 + 1
4m2 + 1

2

√
3m. (B18)

Phase 2: β2 = π/2,

α2 = arctan
(m

h

)
, (B19)

φ2 = −
√

m2 + h2. (B20)

Phase 3: β3 = π/6,

α3 = arctan

(
m

2h − √
3m

)
, (B21)

φ3 = −
√(

h − 1
2

√
3m

)2 + 1
4m2 − 1

2

√
3m. (B22)

Equation (B16) is derived from the conditions of equality of the
energies of phases, φ1 = φ2 (lower sign) and φ2 = φ3 (upper
sign). Substituting α1 and β1 or α2 and β2 or α3 and β3 for α

and β in Eq. (5), one obtains Eq. (7).
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