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Pulsating regime of magnetic deflagration in crystals of molecular magnets
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The stability of a magnetic deflagration front in a media of molecular magnets, such as Mn12 acetate,
is considered. It is demonstrated that stationary deflagration is unstable with respect to one-dimensional
perturbations if the energy barrier of the magnets is sufficiently high in comparison with the release of Zeeman
energy at the front; their ratio may be interpreted as an analog to the Zeldovich number, as found in problems
of combustion. When the Zeldovich number exceeds a certain critical value, a stationary deflagration front
becomes unstable and propagates in a pulsating regime. Analytical estimates for the critical Zeldovich number
are obtained. The linear stage of the instability is investigated numerically by solving the eigenvalue problem. The
nonlinear stage is studied using direct numerical simulations. The parameter domain required for experimental
observations of the pulsating regime is discussed.
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I. INTRODUCTION

Molecular magnets have been a subject of intense ex-
perimental and theoretical studies for almost two decades
(see Refs. 1 and 2 for a review). The field belongs to
mesoscopic physics as typical length scales are between
microscopic and macroscopic. Such an intermediate parameter
regime provides unique conditions for observing quantum and
classical phenomena acting together. Besides, a large magnetic
spin of a single molecule makes molecular magnets natural
candidates for novel magnetic storage media and quantum
computing.3,4

Two prominent and well-investigated materials in this
research field are Mn12 acetate and Fe8, both demonstrating
superparamagnetic properties.1 They have a large spin at the
ground state (S = 10) and strong magnetic anisotropy with
ten pairs of degenerated levels corresponding to positive and
negative projections Sz on a chosen axis, and an additional level
with Sz = 0 (see Refs. 5–8). When an external magnetic field
is applied to a sample of molecular magnets along the crystal
axis, then spin orientation in the direction of the field becomes
preferable. At low temperature all molecules populate only
one level (e.g., Sz = 10) and the magnetization reaches the
saturation value. If the direction of the external magnetic field
changes to the opposite one, then the former ground state of
the molecules becomes metastable with an increased potential
energy (the Zeeman energy). An energy barrier hinders direct
transition of the molecules from the metastable state to the
new ground state, which, therefore, can occur as thermal
relaxation or as avalanches. Thermal relaxation goes slowly
and uniformly in space for the whole sample. At temperatures
of a few Kelvin this process may be neglected, since its
characteristic time is rather large, e.g., ∼2 months for Mn12

at 2 K.5 However, many experimental works on molecular
magnets demonstrated quite a fast transition in the form of
an avalanche with a characteristic time of approximately a
few milliseconds.9,10 Recent detailed studies of the avalanche
revealed that the spin reversal does not happen simultaneously
within the whole sample in that case, but it occurs in a narrow
zone propagating as a front with a velocity of several meters
per second.11–18 The avalanche is accompanied by a significant
heat release, similar to a deflagration wave in combustion, and
for this reason it was named “magnetic deflagration.”

In slow combustion, the deflagration front corresponds to
a thin zone of chemical reactions separating the cold fuel
mixture and the hot burned products.19 The released energy is
transmitted to the cold fuel mixture due to thermal conduction;
the temperature of the fuel mixture increases, which stimulates
chemical reactions. The slow combustion front propagates
in gaseous mixtures with a substantially subsonic velocity
within the range from several centimeters to several meters per
second.19 Analogously, in magnetic deflagration, the energy
of the chemical reactions is replaced by the Zeeman energy
of the molecular magnets in an external magnetic field. The
released energy is distributed to the neighboring layers by
thermal conduction, which increases the temperature of the
originally cold medium and leads to a much higher probability
of spin transition. In recent studies, Garanin and Chudnovsky12

developed a theoretical description of a planar stationary
magnetic deflagration with a maximal possible release of
the Zeeman energy. They referred to such a regime as “full
burning,” meaning that initially all the molecules had spin in
one direction and at the final stage all the molecules changed
their spin. Since then, a number of papers have been devoted to
ignition techniques and speed measurements of the magnetic
deflagration in Mn12.14–18 Magnetic avalanches have been
also observed in other materials, such as the intermetallic
compound Gd5Ge4.20 However, it is not necessarily that all
molecules participate in the avalanche. Due to the thermal
equilibrium, a part of the molecules can occupy the other
energy level with the opposite spin direction (see Fig. 1),
hence only a part of molecules contributes to the total Zeeman
energy. As we show in the present paper, the Zeeman energy
release depends on the external magnetic field and on the
initial concentration of the active molecules. A sufficiently
low-energy release may lead to a pulsating regime of magnetic
deflagration.

The aim of the present work is to study the stability
of a planar stationary front of magnetic deflagration. Here,
we demonstrate that stationary deflagration is unstable with
respect to one-dimensional (1D) perturbations if the Zeeman
energy release at the front is sufficiently low in comparison
with the energy barrier of the spin transition. The condition of
the instability may be formulated using the Zeldovich number,
similar to the case of combustion of solid propellants.19,21–25 In
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FIG. 1. (Color online) The energy levels for the mag-
netic molecule system of Mn12 in the external magnetic field
Hz = 0.2 T.

the problem of magnetic deflagration, the Zeldovich number
is essentially given by the ratio of the energy barrier of the
molecular magnets and the temperature at the deflagration
as determined by the Zeeman energy release. When the
Zeldovich number exceeds a certain critical value, a stationary
deflagration front becomes unstable and propagates in a
pulsating regime. We obtain analytical estimates for the critical
Zeldovich number. We investigate the linear stage of the
instability numerically by solving the eigenvalue problem. We
study the nonlinear stage using direct numerical simulations.
We also discuss the experimental parameters required for
observations of the pulsating regime.

II. A PLANAR STATIONARY FRONT WITH INCOMPLETE
ZEEMAN ENERGY RELEASE

We consider a system of molecular magnets placed in an
external magnetic field, taking Mn12 acetate as a particular
example. The simplified Hamiltonian of the system has been
suggested to take the form12

H = −DS2
z − gμBHzSz, (1)

where S denotes the spin, D ≈ 0.65 K is the magnetic
anisotropy constant, g ≈ 1.94 is the gyromagnetic factor, μB

is the Bohr magneton, and Hz is the external magnetic field.
The energy levels for a molecule magnet Mn12 in the

external field of Hz = 0.2 T are depicted in Fig. 1. In Fig. 1
we indicate the Zeeman energy Q and the energy barrier Ea

of the transition from the metastable state to the ground state,
which plays the role of the activation energy for magnetic
deflagration (both values are presented in temperature units).
Using the Hamiltonian Eq. (1) we find how these two energies
depend on the magnetic field, according to

Ea = DS2
z − gμBHzSz + g2

4D
μ2

BH 2
z (2)

and

Q = 2gμBHzSz. (3)

The last term in Eq. (2) is quite small as compared to the
first two terms, so the activation energy decreases with an
increase of the magnetic field. However, the Zeeman energy
increases linearly with the magnetic field. If the magnetic field
is high enough, the energy difference between the ground state
(Sz = −10) and the metastable state (Sz = 10) is rather large,
so that all the molecules tend to occupy the lowest-energy
level, i.e., Sz = −10 in Fig. 1. When the direction of the
external magnetic field switches to the opposite one, then
the ground state and the metastable state exchange places
and all the molecules change their spin projection to the
opposite one. Garanin and Chudnovsky identified such a
transition as “full burning” of molecular magnets.12 They also
indicated that such a regime is possible if the magnetic field
is stronger than a certain critical value. Still, the external
magnetic field is a controlled parameter of the experiments,
which allows reducing the energy difference between the stable
and metastable levels in comparison with the equilibrium
temperature.

In that case the Zeeman energy is rather low, and we obtain
a considerable fraction of molecules on the first energy level
according to

n = 1

exp (Q/T ) + 1
, (4)

where the total number of molecules in all energy levels corre-
sponds to unity. We stress that in our case the Zeeman energy
can be comparable to or smaller than the final temperature, so
that both terms in the denominator of Eq. (4) are important.
In typical experimental conditions, the population of levels
above the first one is negligible. At the same time, the fraction
at the first level, Eq. (4), may be significant in a low magnetic
field and cannot be neglected. As we will see, the stability
of magnetic deflagration is sensitive to the activation energy
scaled by the energy release in the process. This ratio increases
also when the active Mn12 molecules are “diluted” with some
neutral media, as it was performed experimentally in, e.g.,
Refs. 26–28. When mixed carefully with other compounds, the
Mn12 molecules retain their magnetic properties. Since the heat
release in magnetic deflagration happens only due to active
magnet molecules, then the neutral compound reduces the total
energy release and the final temperature of the sample Tf , thus
increasing the scaled activation energy Ea/Tf . As a result, the
scaled activation energy in magnetic deflagration becomes a
parameter, which may be controlled in the experiments by the
external magnetic field and by the level of dilution.

The governing equations for magnetic deflagration are12

∂E

∂t
= ∇ · (κ∇E) − f Q

∂n

∂t
, (5)

∂n

∂t
= − 1

τR

exp

(
−Ea

T

) [
n − 1

exp (Q/T ) + 1

]
(6)

where E is the thermal phonon energy, κ is thermal diffusion
of energy, Q is the Zeeman energy release in temperature
units, f � 1 indicates possible reduction of the energy release
because of dilution of active molecules (f = 1 corresponds
to zero dilution), n is the fraction of magnetic molecules in
the metastable state, Ea is the energy barrier of tunneling
measured in temperature units, and τR is a constant of time
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dimension. The parameter τR characterizes the time of the spin
reversal with the common experimental evaluation τR ∼ 10−7

(see Refs. 11–15). A more accurate value of τR may be
obtained indirectly by measuring the deflagration speed and
the activation energy, and using a numerical solution such as
the one presented in this work. In general, τR may depend
on temperature, but we take it to be constant because of
the lack of experimental data on the subject. In magnetic
deflagration, thermal diffusion and heat capacity depend
strongly on temperature. Following Ref. 12, we take the heat
capacity in the classical form corresponding to phonons,29

C = AkB

(
T

�D

)α

, (7)

where �D is the Debye temperature, with �D = 38 K for
Mn12, kB is the Boltzmann constant, A = 12π4/5 corresponds
to the simple crystal model, and α is the problem dimension
[we take α = 3, which corresponds to the three-dimensional
(3D) geometry]. The dependence of thermal diffusion on
temperature may be taken in the form κ ∝ T −β , where
parameter β was considered in Refs. 12 and 30 within the
range between 0 and 13/3. In the present paper we take β = 3;
variations of this parameter change the deflagration structure
in the preheating zone, but they have a minor influence on the
deflagration stability. Using the definition of heat capacity
C = dE/dT , we find the phonon energy as a function of
temperature,

E = AkB

α + 1

(
T

�D

)α

T . (8)

An important parameter of deflagration dynamics is deter-
mined by the ratio of the energy barrier (in temperature units)
and the temperature in the hot region Ea/Tf . A combustion
counterpart of this value is related to the activation energy of
the chemical reaction, which is typically rather large. In the
case of complete burning in magnetic deflagration of Mn12,
this parameter was evaluated in Ref. 12 as Ea/Tf ≈ 6, which
is not a large value. At the same time, this parameter may
increase almost without limits at low magnetic fields and for
considerable dilution of active molecular magnets. When the
ratio Ea/Tf is very large, the transition from the metastable
to stable states goes in a thin region. In a general case of finite
Ea/Tf , Eqs. (5) and (6) may be solved numerically as an
eigenvalue problem.

First, we calculate the final temperature in the hot region
behind the magnetic deflagration front. Using the energy
conservation and Eqs. (4), (5), and (8), we obtain

AT α+1
0

(α + 1)�α
D

+ f Q

(
1 − 1

exp (Q/T0) + 1

)

= AT α+1
f

(α + 1)�α
D

+ f Q

exp(Q/Tf ) + 1
. (9)

Equation (9) determines the final temperature Tf as a function
of the magnetic field, the dilution factor f , and other
parameters of the process. The first terms on both sides of
Eq. (9) stand for the thermal energy, though the initial thermal
energy is small and usually can be neglected. The other terms
indicate the Zeeman energy due to the fractions of molecules
with a corresponding spin direction. In the present work, both
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FIG. 2. (Color online) The final temperature and the scaled
activation energy in magnetic deflagration vs the magnetic field for the
initial temperature T0 = 0.2 K and two dilution factors f = 1,1/3.

Zeeman terms are comparable by order of magnitude; their
balance yields the final thermal energy and Eq. (9) requires
a numerical solution. This is different from the simplified
case considered in Ref. 12. As we pointed out above, Ref. 12
studied the case of all molecules changing the spin projection,
e.g., from Sz = −10 to 10. In that case Eq. (9) reduces to
f Q(α + 1)�α

D = AT α+1
f and may be solved analytically. In

Fig. 2 we show the numerical solution to Eq. (9), i.e., the
final temperature and the scaled activation energy versus the
magnetic field for two dilution factors f = 1,1/3. In Fig. 2
we take the initial temperature T0 = 0.2 K, though it has
minor influence on the result. The dilution factor f = 1 stands
for pure Mn12 media, while f = 1/3 means that the average
energy release is three times lower in comparison with the pure
substance. The final temperature increases with the magnetic
field, while the scaled activation energy decreases. The change
in the scaled activation energy due to the dilution factor may
be also considerable.

We consider a stationary solution to Eqs. (5) and (6) in the
form of a planar front propagating with velocity Uf . To be
particular, we assume that the front moves along the x axis in
the negative direction, as shown in Fig. 3. Taking the reference
frame of the front, we find

Uf

d

dx
(E + f Qn) = d

dx

(
κ

dE

dx

)
, (10)

Uf

dn

dx
= − 1

τR

exp

(
−Ea

T

)[
n − 1

exp(Q/T ) + 1

]
. (11)

In the limit of a large activation energy Ea/Tf � 1, the
transition region may be presented as a surface of weak
discontinuity, where energy and temperature are continuous
and tend to their maximal values E → Ef , T → Tf (Ef ),
while their derivatives experience a jump. In this limit one
obtains the magnetic deflagration velocity19

Uf =
√

κf

ZτR

exp

(
− Ea

2Tf

)
, (12)

214417-3



M. MODESTOV, V. BYCHKOV, AND M. MARKLUND PHYSICAL REVIEW B 83, 214417 (2011)

0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0 2

n,
 T

/T
f,

 W
/W

m
ax

x/Lf

n

T/Tf

W/Wmax

Uf

β=13/3

β=3

β=0
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where

Z = Ea

Tf

f Q(nf − n0)

Cf Tf

= 1

(α + 1)

Ea

Tf

(13)

plays the role of the Zeldovich number; the last relation in
Eq. (13) follows from Eqs. (7), (8), and (10). Equation (12)
for the deflagration velocity coincides with Eq. (109) in
Ref. 12. Equation (12) provides implicit dependence of the
front velocity on the magnetic field, as the activation energy,
final temperature, and the Zeldovich number are also functions
of the magnetic field. Experimentally, the dependence has been
demonstrated and discussed in several papers.11,13–15 With the
accuracy of a factor of 1/ (α + 1), the Zeldovich number shows
the ratio of the activation energy and the final temperature
in the deflagration front. We can find the dependence of the
Zeldovich number upon the main experimental parameters
of the problem, taking into account Eqs. (2), (3), (7), (8),
and (10):

Z =
[

A

2(α + 1)α+2�α
DgμBSzHzf (n0 − nf )

] 1
α+1

×
(

DS2
z − gμBHzSz + g2

4D
μ2

BH 2
z

)
. (14)

Equation (14) shows how the Zeldovich number depends on
the magnetic field and the dilution factor. In particular, high
values of the Zeldovich number correspond to the low-field
strength. For a simplified quantitative estimate one can neglect
the magnetic terms in the second pair of parentheses, which
provide a contribution of less than a few percent for fields
∼0.1 T and smaller, and find an evaluation for the Zeldovich
number

Z ≈ 1.3[Hzf (n0 − nf )]−1/4, (15)

where Hz is the magnetic field in Tesla.

III. ANALYTICAL ESTIMATES FOR THE
PULSATION INSTABILITY

In this section we obtain an analytical scaling for the 1D
instability of the magnetic deflagration front in the model
of a thin transition zone, i.e., at a large Zeldovich number
Z � 1. In that case, according to Eq. (12), the deflagration
velocity is extremely sensitive to temperature variations in
the transition zone. In comparison with the Arrhenius function
exp(−Ea/2Tf ), all other parameters in Eq. (12) may be treated
as constant. The temperature in the transition zone may vary
because of the front perturbations, and the instant front velocity
may be written as

Ut = Uf exp

(
Ea

2Tf

− Ea

2Tt

)
, (16)

where label f refers to the stationary case, while t indicates
the time-dependent temperature in the infinitely thin transition
zone. The position of the transition zone x = φ(t) in the
stationary reference frame is determined by the equation

∂φ

∂t
= −Uf

[
exp

(
Ea

2Tf

− Ea

2Tt

)
− 1

]
, (17)

where the first minus sign indicates propagation of the front
in the negative direction. The boundary conditions at the
transition region may be found to be similar to Refs. 19 and 22.
Integrating Eq. (5) twice over the transitional zone, we obtain
continuous energy and temperature,

Eφ+ = Eφ−, (18)

where the labels φ+ and φ− correspond to the hot and cold
sides of the transition zone, respectively. The first derivative
of energy (i.e., energy flux) experiences a jump at the interface
as

−Uf Qn0 exp

(
Ea

2Tf

− Ea

2Tt

)
=κf

(
∂E

∂x

)
φ+

− κf

(
∂E

∂x

)
φ−

.

(19)

We investigate the linear stability of the stationary deflagration
and consider small perturbations of all variables in the
exponential form Ẽ ∝ exp(σ t), where the growth rate σ may
have both real and imaginary parts. We solve the stability
problem analytically in the limit of a thin transition zone
similar to Ref. 19. Outside the transition zone the perturbed
equations (5) and (6) are

σẼ + Uf

∂Ẽ

∂x
= ∂2

∂x2
(κẼ), (20)

σ ñ + Uf

∂ñ

∂x
= 0. (21)

Behind the transition zone we have ñ = 0. First we consider
a hypothetical case of a constant coefficient of thermal
conduction κ = const = κf . Solving Eq. (20) outside the
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transition zone with Ẽ ∝ exp(μx), we find two modes,

μ2 − Uf

κf

μ − σ

κf

= 0, (22)

μ± = Uf

2κf

∓
√√√√ U 2

f

4κ2
f

+ σ

κf

, (23)

with labels + and − indicating media behind and ahead of the
transition zone. In the case of magnetic deflagration, thermal
conduction decreases strongly with temperature κ ∝ T −β .
Still, the mode behind the transition zone with μ+ < 0 is an
exact solution even in that case, since the temperature behind
the transition zone is uniform in the stationary deflagration. On
the contrary, the mode ahead of the transition zone with μ− >

0 is only an approximation. Similar to the combustion theory,19

we may define the parameter Lf ≡ κf /Uf as the deflagration
front thickness related to thermal conduction in the hot region.
At the same time, the characteristic length scale of the
temperature profile in the stationary deflagration increases in
the cold layers as κ(T )/Uf , which allows to consider them
as quasiuniform with respect to the perturbations. Indeed,
the mode ahead of the transition zone describes the decay
of perturbations at the length scale μ−1

− with

μ− = 1

2Lf

[1 + √
1 + 4σLf /Uf ] ∝ 1

Lf

. (24)

Therefore, investigating the 1D instability analytically, it
is justified to consider only the heating layer of the size
approximately Lf close to the transition zone and to treat the
coefficient of thermal conduction as approximately constant.
The numerical solution to the problem obtained below supports
the analytical approximation.

We consider perturbations of the boundary conditions (17)–
(19) at the transition surface, following the analysis of Chap.
4 in Ref. 19. After heavy but straightforward algebra we end
up with a simple quadratic equation,(

4σL

Uf

)2

− 4σL

Uf

(Z2/4 − 2Z − 1) + 2Z = 0, (25)

which is similar to the respective result in the combustion
theory.19 Equation (25) describes the instability growth rate as
a function of the Zeldovich number. According to Eq. (25),
the instability develops for Z > 4 + 2

√
5 ≈ 8.5. Close to this

critical value the real part of the growth rate Re σ goes to zero,
while the imaginary part remains finite, ω = Im σ �= 0, which
indicates the pulsation regime of the instability. The obtained
critical value of the Zeldovich number corresponds to rather
high scaled activation energy Ea/Tf ≈ 34 [see Eq. (13)],
in comparison with the values typical for the regime of all
molecules participating in the avalanche.12 Still, this value
is attainable experimentally for smaller magnetic fields and
some dilution of the active molecules. At an even larger
value of the Zeldovich number, Z = 11.7, corresponding to
Ea/Tf = 46.8, Eq. (25) demonstrates bifurcation, so that
the instability growth rate becomes purely real with zero
imaginary part for Z > 11.7. Below we will compare the
analytical scaling Eq. (25) to the numerical solution to the
problem, taking into account a finite width of the transition
zone.

IV. NUMERICAL SOLUTION TO THE STABILITY
PROBLEM, TAKING INTO ACCOUNT A FINITE

WIDTH OF THE TRANSITION ZONE

In this section we solve the stability problem numerically,
taking into account a finite width of the transition zone. We
introduce dimensionless variables and parameters,

θ = T/Tf , a = n/n0, ξ = x/Lf ,

� = Ea/Tf , � = Q/Tf , κ = κf θ−β (26)

and rewrite the evolution equations (5) and (6) as

θα ∂θ

∂τ
+ θα ∂θ

∂ξ
= ∂

∂ξ

(
θα−β ∂θ

∂ξ

)
+ J� exp

(
−�

θ

)

×
[
a − 1

exp (�/θ ) + 1

]
, (27)

∂a

∂τ
+ ∂a

∂ξ
= −� exp

(
−�

θ

) [
a − 1

exp (�/θ ) + 1

]
, (28)

where � = Lf /(τRUf ) is an eigenvalue of the stationary
problem and the designation J corresponds to the ratio of
Zeeman and thermal energies,

J = f Q�α
D

AkBT α+1
f

. (29)

It can be shown that the parameter J is almost a constant,
J ≈ 1/ (α + 1). We also introduce the thermal flux ψ =
θα−β∂θ/∂ξ , so that the stationary deflagration is described
by the system of equations

∂ψ

∂ξ
= θβψ − J�a exp

(
−�

θ

)
,

∂θ

∂ξ
= θβ−αψ, (30)

∂a

∂ξ
= −�a exp

(
−�

θ

)
.

The boundary conditions for the system (30) are obtained
from a numerical solution to Eq. (9), which yields the final
temperature and the concentration values. We integrate this
system from the right-hand side (for the geometry of Fig. 3),
starting with θ = 1 and concentration af , and finish our
integration when the concentration approaches asymptotically
the value a0; the scaled concentrations are determined by
Eq. (4) for a fixed initial temperature. Typical profiles of scaled
concentration, temperature, and energy release,

W = � exp

(
−�

θ

) {
a −

[
exp

(
�

θ

)
+ 1

]−1 }
, (31)

are depicted in Fig. 3 for the magnetic deflagration propagating
to the left-hand side with β = 3. In Fig. 3, the scaled activation
energy is taken rather high, � = 30. The dashed and dashed-
dotted lines show how the preheating zone depends on the
parameter β. The front velocity is determined by the eigenvalue
of the problem � in Eq. (30), which was computed numerically
using the shooting method similar to Ref. 31. We can see in
Fig. 3 that the final number of molecules in the metastable state
behind the deflagration front is different from zero nf = 0.47,
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which indicates that burning is incomplete. The initial number
of molecules in the metastable state is also different from unity,
n0 = 0.77, due to the nonzero temperature ahead of the front
before switching of the magnetic field [see Eq. (4)]. Figure 3
shows also that the total thickness of the deflagration front
is much larger than Lf . This difference in the characteristic
length scales should be attributed, first of all, to the temperature
dependence of thermal conduction. Still, even in the case
of constant thermal conduction typically used in combustion
problems, the effective flame thickness is almost an order of
magnitude larger than the conventional definition for Lf , e.g.,
see Ref. 32.

Now we consider the stability of the magnetic deflagration.
We investigate the dynamics of small perturbations of the
stationary solution, so that all variables may be presented as
ϕ = ϕ0 + ϕ̃ exp (γ τ ). Then the perturbed system (30) is

∂ψ̃

∂ξ
= θβψ̃ + (θαγ +βθβ−1ψ − JG)θ̃− J� exp

(
−�

θ

)
ã,

∂θ̃

∂ξ
= θβ−αψ̃ + (β − α) θβ−α−1ψθ̃,

∂ã

∂ξ
= −Gθ̃ −

[
γ + � exp

(
−�

θ

)]
ã, (32)

where the designation

G = � exp

(
−�

θ

)
1

θ2

[
�a −

(
� − �

exp (�/θ ) + 1

)

× 1

exp (�/θ) + 1

]

has been introduced for brevity. Parameter γ stands for
the scaled instability growth rate γ = σLf /Uf . In order
to specify boundary conditions for the numerical solution,
we find the decaying perturbation modes in the uniform
regions ϕ̃ ∝ ϕ̃ exp(μξ ). The system (32) involves three modes
in the uniform regions: two in the hot matter with μ < 0,
ξ → +∞, and one in the cold matter with μ > 0, ξ →
−∞. We integrate the system (32) numerically three times,
corresponding to the three perturbation modes: once from
the left-hand (cold) side and twice from the right-hand (hot)
side. At some point, e.g., at the maximum of the energy
release, the solutions form a matrix, with the determinant
depending on the instability growth rate γ . The condition of
the zero matrix determinant specifies the growth rate γ as an
eigenvalue of the system (32). This method has been applied
successfully in studies of different hydrodynamic instabilities,
e.g., the Rayleigh-Taylor instability and the Darrieus-Landau
instability of combustion and laser ablation, as well as for other
plasma instabilities.31,33–35

V. RESULTS AND DISCUSSIONS

A numerical solution to the stability problem is shown
in Fig. 4 for different values of the scaled activation energy
proportional to the Zeldovich number as Ea/Tf = 4Z for a
3D problem; other deflagration parameters are the same as
those used in Fig. 3. As we can see in Fig. 4, planar stationary
magnetic deflagration is unstable at sufficiently large values of
the scaled activation energy; the stability limit was calculated
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σL
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f/
U

f

Ea/Tf

The analytical model

Numerical solution to Eqs (39)

Stability limit

FIG. 4. (Color online) The instability growth rate σ and the
perturbation frequency ω vs the scaled activation energy calculated for
the same parameters as in Fig. 3. The solid lines show the domain of
zero frequency; the dashed and dotted lines correspond to the regimes
when perturbations have both a real (growth rate σ ) and an imaginary
part (frequency ω) in the problem eigenvalue. The dashed-dotted lines
present the analytical model, Eq. (25). The markers show the results
of the direct numerical simulations: the open circles stand for a stable
region and the filled triangles represent the unstable pulsating regime
of the deflagration.

as Ea/Tf = 28.2. The instability domain consists of two parts
separated by a bifurcation point at Ea/Tf = 33.2. Most of
the domain (to the right-hand side of the bifurcation point)
corresponds to purely real instability growth rate σ > 0, with
two branches describing the fast and slow perturbation modes
(shown by the solid lines). The instability growth rate of
the fast mode increases with the scaled activation energy
without any limit. The analytical model, Eq. (25), predicts
the asymptotic increase of the growth rate for the fast mode
as σ ∝ (Ea/Tf )2 for Ea/Tf → ∞. The growth rate of the
slow mode decreases with the scaled activation energy. For
this reason it is expected that the slow mode plays a noticeable
role only close to the bifurcation point, where the growth
rates of the fast and slow modes are comparable. In a small
part of the instability domain, for intermediate values of the
scaled activation energy in between the stability limit and
the bifurcation point, 28.2 < Ea/Tf < 33.2, the instability
growth rate is complex with the real part σ > 0 (dashed
line) and imaginary part ω (dotted line). Although this part
of the instability domain is rather small, it indicates the
physical outcome of the instability at the nonlinear stage.
Because of the nonzero frequency ω �= 0, it is natural to expect
that the instability leads to a pulsating regime of magnetic
deflagration at the nonlinear stage. The analytical solution,
Eq. (25), obtained within the model of a thin transition zone
(dashed-dotted lines) shows qualitatively the same stability
properties of magnetic deflagration as the numerical solution.
Still, we observe a minor quantitative difference between the
analytical model and the numerical solution. According to
the analytical model, the stability limit and the bifurcation
point are expected at Ea/Tf = 34.0 and Ea/Tf = 46.8, which
differ by ∼20%–30% from the respective numerical values.
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FIG. 5. (Color online) The stability limit (dashed line) of the
magnetic deflagration in coordinates of the dilution factor f and the
magnetic field H . The shading shows the instability growth rate.
Other solid lines correspond to the respective constant values of the
Zeldovich number.

The limited accuracy of the analytical model is due to the
simplifying approximations of a constant coefficient of energy
diffusion and an infinitely thin zone of energy release. In
particular, the shortcomings of the discontinuity model have
been discussed in Refs. 24 and 25 in the context of solid
propellant combustion.

The numerical solution to the stability problem indicates
the experimental parameters required to observe the unstable
nonstationary regime of magnetic deflagration. We plot the
stability diagram in Fig. 5 in f -Hz coordinates using Eq. (15);
the shading represents absolute value of the instability growth
rate. The dashed white line in Fig. 5 corresponds to the critical
value of the Zeldovich number (the stability limit) obtained
numerically. Magnetic deflagration propagates stationary in
the parameter domain to the right-hand side of the stability
limit, in the region of a high magnetic field. To the left-hand
side of the critical curve, for a low magnetic field, the stationary
magnetic deflagration is unstable, and we expect a pulsating
regime of the deflagration front. Particularly, in the case
of Mn12 with a dilution level f = 1/3, one should expect
instability for magnetic fields below 10−2 T, which is possible
to achieve experimentally.

In order to understand front dynamics at the nonlinear stage
of the instability, we perform direct numerical simulation of
Eqs. (27) and (28). In our simulations we use the method
of finite difference for the spatial derivatives and the common
fourth-order Runge-Kutta method for the time step integration.
The results of our simulations, i.e., evolution of the magnetic
deflagration speed, are shown in Fig. 6 for different values of
the scaled activation energy. Figures 6(a) and 6(b) demonstrate
front behavior close to the stability limit in the stable (a) and
unstable (b) parameter domain. In the first case with Ea/Tf =
28.55, the velocity perturbation oscillates and decays in time,
which implies a negative instability growth rate. On the
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FIG. 6. (Color online) Deflagration speed vs time for different
values of the scaled activation energy Ea/Tf = 28.55, 28.8, 30.2,
33.8, 39.6 for (a)–(e), respectively.

contrary, in Fig. 6(b) with Ea/Tf = 28.8, the amplitude of
velocity oscillations grows with time, which corresponds to
the instability onset. The markers in Fig. 4 show the oscillation
frequency of the magnetic deflagration obtained in direct
numerical simulations, with open circles and filled triangles
standing for the stable and unstable regimes, respectively.
As we can see, the direct numerical simulations are in
good agreement with the solution to the eigenvalue problem,
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which concerns both the stability limits and the oscillation
frequency. Still, the instability is rather weak in Fig. 6(b),
with the oscillations described well by the sine function. The
nonlinear effects become noticeable for higher values of the
scaled activation energy with sharp peaks and smooth troughs
in the oscillations, as presented in Fig. 6(c) for Ea/Tf =
30.2. The simulations explain the physical mechanism of the
obtained instability. Magnetic deflagration propagates due to
two effects: release of the Zeeman energy in a thin transition
zone and transfer of the energy to the cold layers (preheating)
due to thermal conduction. In a stationary regime of magnetic
deflagration, these two processes work at the same rate and
balance each other. However, at high values of the activation
energy, the rate of energy release is too sensitive to temperature
in the transition zone. Small temperature perturbations may
increase the rate of spin switching considerably, which makes
the transition zone sweep fast over the preheated matter until
it comes to cold regions and stops waiting for a new portion
of cold matter to be preheated. As soon as it happens, the next
pulsation of the front takes place.

It is interesting that Figs. 6(a)– 6(c) demonstrate three qual-
itatively different regimes of magnetic deflagration, although
the activation energy changes only within 5% from Fig. 6(a) to
Fig. 6(c). In Fig. 6(d) we take the activation energy Ea/Tf =
33.8 close to the bifurcation point and see a complicated front
behavior at the onset of the velocity pulsations. Presumably,
the complicated behavior happens because of two unstable
modes with close instability growth rates at the vicinity of
the bifurcation point. Still, after an initial transition period,
the front pulsations resemble those of Fig. 6(c). Finally,
taking an activation energy that is noticeably larger than
the bifurcation point Ea/Tf = 39.6, we observe even more
pronounced nonlinear features in the front oscillations, with
even sharper peaks of large amplitude, as shown in Fig. 6(e).
The obtained results are qualitatively similar to the pulsation
instability of solid propellant combustion studied in, e.g.,
Refs. 21 and 23. Thus, the scaled activation energy (or the
Zeldovich number) is the main parameter, which controls 1D
stability properties of magnetic deflagration. Other problem
parameters, the power exponents α, β, and the scaled initial

temperature θ0, influence the front stability slightly, as long as
the Zeldovich number is fixed in agreement with the theoretical
model of Sec. III.

VI. SUMMARY

In this paper we have obtained 1D instability of magnetic
deflagration in a medium of molecular magnets. The main
parameter of the problem is the Zeldovich number, which
represents the activation energy of the system (in temperature
units) scaled by the temperature at the deflagration front
with a numerical factor depending on the type of heat
capacity. We have demonstrated that the deflagration front
becomes unstable when the Zeldovich number exceeds a
certain critical value Z ≈ 7. We have obtained analytical
scaling for the instability parameters at a linear stage within
the model of an infinitely thin zone of Zeeman energy
release. We have also solved the eigenvalue stability problem
numerically, taking into account the internal structure of
the deflagration front. The numerical solution determines
the experimental parameters necessary to observe the insta-
bility. Besides, we have performed direct numerical simu-
lations, which demonstrated that the instability leads to a
pulsating regime of magnetic deflagration at the nonlinear
stage.

Although the present analysis is limited to the 1D case, it is
known from combustion science that the pulsating instability
may develop in 2D and 3D geometries as well,19 producing
a variety of nonlinear regimes, e.g., see recent experiments
on gaseous combustion.36 Reproducing these regimes for
magnetic deflagration requires heavy 3D simulations, tak-
ing into account anisotropic properties of the crystals of
molecule magnets, which is beyond the scope of the present
work.
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