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Impact of local lattice distortions on the structural stability of Fe-Pd magnetic
shape-memory alloys
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The binding surface of Fe-rich Fe-Pd alloys is explored by means of first-principles calculations in the
framework of density functional theory involving unconstrained optimization of the atomic positions within a
108-atom supercell. We find that static displacements arising from geometric optimization provide an important
contribution to the total energy, effectively compensating favorable contributions gained from introducing
L12 order in stoichiometric Fe3Pd. In the concentration range for magnetic shape-memory applications, the
energy profile with respect to tetragonal distortion is altered qualitatively, shifting the ground state of the
intermixed disordered system from face-centered cubic (fcc) to body-centered tetragonal (bct). From the radial
pair distribution function and electronic density of states obtained from a 500-atom supercell calculation we
identify the origin of the displacements. These arise from the size-dependent relaxations of the larger Pd atoms,
on the fcc side in combination with a Jahn-Teller-like rearrangement of Fe d states at the Fermi level.
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I. INTRODUCTION

In recent time, materials exhibiting magnetic shape-
memory (MSM) behavior have become the subject of intense
research (for a recent overview on this topic, see Refs. 1–3
and references therein). In MSM materials, large mechanical
strains of several percent can be induced by reasonable
magnetic fields of the order of one Tesla. This entitles them for
usage in alternative sensor or actuator systems. The prevailing
mechanism relies on the easy reorientation of structural
(martensitic) domains, which are coupled to the direction
of magnetization by the large magnetocrystalline anisotropy
of the material. For applications with mass market potential,
systematic improvements of the existing MSM materials need
to be realized. These include a larger operating range up to
temperatures around 100 ◦C, for example, for applications in
the automotive sector as well as better mechanical properties
for postprocessing.

An important group of MSM alloys are Fe-based alloys
with Pt-group elements with compositions allowing a face-
centered cubic (fcc)–body-centered cubic (bcc) transformation
in the respective temperature range. Bulk iron undergoes a
structural phase transformation around 1185 K from a fcc
high-temperature phase to a low-temperature bcc phase, which
is ferromagnetic with a Curie temperature of 1043 K. Increas-
ing the valence electron concentration e/a through alloying
elements with a larger number of d electrons systematically
decreases the structural transition temperature. The structural
transition is displacive and diffusionless; it occurs between a
high-temperature high-symmetry phase called austenite and
a low-temperature phase, called martensite, in which the
symmetry is usually lowered, for example, by tetragonal
distortions. In ferromagnetic Fe-based alloys with e/a between
8.7 and 8.5, the martensitic transition disappears and fcc
austenite becomes the stable ground-state structure (see, e.g.,
Refs. 4–6 for an introduction).

Iron alloys with Pt-group elements are known for a variety
of anomalies with respect to their magnetostructural proper-
ties. Some of them, as the systematic reduction of thermal

expansion termed the Invar effect, and the above-mentioned
magnetic shape-memory behavior are of high technological
importance. The Invar effect is especially pronounced in
Fe65Ni35, Fe70Pd30, and Fe72Pt28 alloy compositions and has
been under intense scrutiny for more than a century.7–9 In the
past three decades, the MSM properties of Fe-based alloys
also moved into the focus of scientific interest.10–12 Fe-based
systems with significant MSM behavior are based on disor-
dered Fe70Pd30 alloys, highly ordered Fe3Pt, and also Fe-Ni-Co
alloys with an addition of a few at-% Ti.13–16 However, the
considerable magnetic-field-induced strain (MFIS) observed
in the former two, 3.0 % for Fe-Pd and 2.3% for Fe3Pt, are
reported for prohibitively low temperatures of 77 K and 4 K,
respectively. At temperatures approaching the austenitic phase,
the MFIS is decreasing as does also the c/a ratio, which
determines the upper limit of the achievable strain. Current
strategies to shift the martensitic temperature to a relevant
range involve the co-alloying with a third element. The most
promising candidates in this respect found so far are Mn and
Cu.17–20

In the Fe-based alloys, the MSM effect is not as pro-
nounced as for the prototype Ni-based Heusler alloys like
Ni2MnGa,21–23 but it is natural to assume its origin to be
related. One common key ingredient in the Heusler systems
is the appearance of modulated martensites24–26 while it is
a slightly distorted face-centered tetragonal (fct) phase in
the case of Fe-Pt and Fe-Pd. The fct phase appears as an
intermediate structure between the high symmetry austenite
and the low-temperature martensite, which is body-centered
tetragonal in the case of the ferrous alloys.10–12

A helpful parametrization of the martensitic transformation
process is established by the so-called Bain path.27 It relates the
martensite and austenite in terms of the tetragonal distortion
c/a. Since both ends can have cubic symmetry (i.e., fcc and bcc
as in the case of Fe), there is some ambiguity in the description.
In the present work, we chose the austenite as a reference,
thus c/a = 1 for fcc and c/a =√

1/2 for bcc. Recently, a
number of independent investigations were addressing the
structural stability of the ordered Fe-rich phases with Pt-group
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elements with respect to tetragonal distortions along the
Bain path.28–30 Together with previous studies, predominately
touching magnetic properties, electronic structure,31–35 and
Invar-related anomalies,36–41 many features of these alloys
can now be regarded as reasonably well understood. However,
the ordered MSM alloy Fe3Pt is—because of its extremely
low martensite temperature—an interesting candidate from the
fundamental point of view, but not a prospective basis for the
development of real-world actuators or sensors. Furthermore,
the qualitative differences in the binding surface, that is,
the total energy E(V,c/a) as a function of volume V and
tetragonal distortion c/a, with respect to different realizations
of order show that the ordered models are only of restricted
use to estimate structural properties of disordered Fe alloys
with Pt-group elements. Therefore explicit modeling of a
statistically random arrangement of atoms is inevitable for
a deeper understanding of the instabilities leading to the MSM
behavior in the disordered candidates.

For the description of disorder, essentially two popular
strategies exist. The first and apparently more elegant way
is to model disorder analytically by effectively mixing the
electronic description of the atoms on the corresponding
lattice sites (for a recent review on this topic, see Ref. 42).
This allows one still to make use of Bloch’s theorem and
describe the structure in small (even primitive) lattice cells,
while translational symmetry is strictly speaking absent in the
disordered case. This can be done by the so-called virtual
crystal approximation (VCA) which relies on a superposition
of the potentials to solve the electronic problem. A related
approach is the coherent potential approximation (CPA). Here,
in contrast, not the potential, but the scattering properties of
the different atoms are superimposed, which are represented
by the scattering path operators belonging to the atoms of a
given species. In order to describe a random medium, these
atoms are thought to be embedded into an effective medium as
an impurity. This impurity problem is conveniently solved in
terms of Green’s functions, which can be used to determine the
coherent scattering path operator of the effective medium in an
additional self-consistency cycle. Thus, CPA implementations
are frequently (but not exclusively) found in connection with
Korringa-Kohn-Rostoker Green’s function methods.

The second route relies on a straightforward explicit
description of disorder using as-large-as-possible supercells.
Their sites are then randomly occupied by “pure” atoms
according to a predefined composition (and distribution).
Apart from finite size effects, which are related to the
inherent inability to correctly reproduce correlations with
distances larger than the extension of the supercell, a truly
random distribution is only obtained in the limit of large
numbers (i.e., as the average of a large number of supercells
generated in this way). For each single configuration, statistical
fluctuations within the distributions might lead to deviations
in the measured properties from the envisaged statistical
average values. In order to take care of the fact that in
Fe-based MSM alloys the relevant phase is only observed
in a concentration window of a few atomic percent, supercell
sizes in the order of 100 atoms have to be considered. For
such large systems, systematic averaging over dozens of
configurations calculated within DFT is prohibitive, if at the
same time the evolution of the properties upon variation of

an external parameter (e.g., the tetragonal distortion) is to be
monitored. A bypass to this problem provides the generation
of so-called special quasirandom structures43 (SQS) allowing
an optimized representation of statistical disorder within
small unit cells. Here, the configurations are actively selected
according to their compliance to a given statistical distribution,
which is described in terms of pair (and triplet) correlation
functions. Reproducing the statistical distribution of atoms and
retaining a small supercell are mutually exclusive conditions,
which might be optimized potentially at the expense of
other properties. Nevertheless, for several problems, it has
been proven a suitable compromise allowing for fairly small
supercells.44–48

From the theoretical side the existence of the fct intermedi-
ate phase in Fe-Pd alloys was addressed so far in the framework
of density functional theory electronic structure calculations in
combination with an analytic description of disorder in terms
of the CPA. Initial work was performed by Stern et al.49,50

using the KKR Green’s function method. An extensive survey
of the compositional dependence of structural and magnetic
properties of FexPd1−x alloys on the basis of the linearized
muffin-tin orbitals method (LMTO) in connection with the
CPA was recently published by Burzo and Vlaic.51 A major
advance concerning understanding of the involved electronic
mechanism has been gained by the work of Ingo Opahle and
coworkers.52 Unlike the other groups, the authors use the
CPA in connection with the full potential localized orbital
method (FPLO),53–55 which is expected to yield comparable
accuracy to full potential plain wave methods. Opahle et al.
propose that, in analogy to the Ni-Mn-Ga Heusler alloys, a
band-Jahn-Teller mechanism is responsible for the occurrence
of the thermoelastic transition from the fcc to the fct phase.
The transition is driven by the degeneracy of the minority
channel Fe-d states with t2g symmetry at the Fermi level
close to the � point, which is split in the martensitic phase,
thereby lowering the band energy. The minority spin density
of states corresponding to the cubic (fcc) and tetragonal (fct)
structure verify a shift of Fe d states away from the Fermi
level. The authors argue that the resulting gain in band energy
of about 14 meV can lead to the formation of a local minimum
corresponding to a new, metastable phase—presupposed that
the binding surface E(V,c/a) is sufficiently flat with respect
to c/a, as it may be expected close to the martensitic fcc-bct
transition. Indeed the authors observe a flattened energy
landscape for a system with 80 at-% Fe. This is consistent
with the experimental observation that Fe70Pd30 thin films can
be grown epitaxially on various substrates, thereby inducing
tetragonal distortions which span nearly the complete Bain
path.56 The shift in composition is a consequence of the use
of the local spin density approximation for the exchange-
correlation functional in this work. The calculated binding
curve E(c/a)|V=const exhibits an additional shallow minimum
around c/a = 0.88 which might be attributed to the fct phase.

On the other hand, it has been shown recently by first-
principles calculations that the phase stability of the corre-
sponding ordered MSM alloys is influenced by a characteristic
atomic shuffle which is indicated as a soft mode in the
phonon dispersion relations. In L12 ordered stoichiometric
alloys Fe3Pt, Fe3Pd and Fe3Ni imaginary contributions appear
in one acoustic branch at the M point,30 which indicates the
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instability of the L12 lattice. This can be resolved by suitable
displacements of the Fe atoms made in a 2 × 2 × 1 supercell
according to the eigenvectors of the unstable phonon mode,
which is accompanied by a reduction of the initially cubic
symmetry to a tetragonal one. The origin of this instability has
again been traced back to an accumulation of Fe states at the
Fermi surface which are redistributed by the corresponding
lattice relaxation.

The purpose of the present investigation is therefore to
explore the influence of local lattice distortions on the binding
surface of disordered Fe-based MSM alloys. We will compare
the binding surface E(c/a,V ) or, respectively, constant volume
cross sections of it, for ordered and disordered configurations
for different compositions in the MSM region. The latter
are optionally allowed to undergo relaxations according to
the interatomic forces. Naturally, this implies the use of
supercells instead of the CPA. An important difficulty with
respect to our goal arises from the fact that the randomized
distribution of atoms in the supercell breaks a given—in this
case, cubic—symmetry of the supercell. This is especially
severe in the case of small cells, while in the limit of large
numbers these effects are averaged out. Thus, if in finite
cells, structural energies (or other properties) are calculated
as a function of the symmetry breaking tetragonal distortion,
the results will in general differ according to in which of the
initially equivalent cubic directions the distortion was applied.
Using small cells containing only a few dozens of atoms,
this might lead to significant errors. Therefore, the authors
decided to employ considerably larger cells consisting of at
least 108 atoms. The improved statistical basis also reduces
the necessity to optimize the arrangement of the elements
with respect to the correlation function thereby avoiding
possible unwanted side effects on other properties. Starting
from a purely (uncorrelated) random distribution of atoms, the
obtained configuration subsequently underwent several tests in
order to exclude that an—unlikely, but possible—pathological
distribution of atoms may lead to obviously artificial results.

II. COMPUTATIONAL DETAILS

The supercell calculations were carried out in the frame-
work of the density functional theory58 taking advantage of
the Vienna ab-initio simulation package (VASP),59 which is
efficiently parallelized allowing for the treatment of large
supercells on massively parallel computer hardware.60 VASP

achieves an excellent compromise between speed and accuracy
by describing the wave functions of the valence electrons
using a plane wave basis set while taking advantage of the
projector augmented wave (PAW) approach,61 which takes
care of the interaction with the core electrons. For the accurate
description of structural properties of ferrous alloys, the
use of the generalized gradient approximation (GGA) for
the representation of the exchange-correlation functional is
desirable. As in our previous ab initio study for ordered
Fe3Pd we used the formulation of Perdew and Wang62,63 in
connection with the spin interpolation formula of Vosko et al.64

For systems of the order of 102 atoms the computational
demands of DFT calculations also require compromises with
respect to the technical parameters limiting the accuracy, for
example, in terms of a reduced set of electrons treated as
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FIG. 1. (Color online) Benchmark calculations for ordered Fe3Pd
with tetragonal distortion along the Bain path ranging from bcc to
fcc showing a comparison of the total energy obtained within the
primitive cell (four atoms) and large k-point set, and a supercell
(3×3×3 primitive cells) with different k meshes. A constant volume
of 13.08 Å3/atom is assumed. For all curves, the energy is related to
the bcc state, c/a =√

0.5, as a reference. The hatched areas refer
to results obtained using the full potential linearized augmented
plane wave method (FLAPW) implemented within the WIEN2K

package 57 (horizontal lines) and VASP results obtained with different
PAW potentials and varying formulations of the GGA exchange
correlation potential (vertical lines). Details can be found in Ref. 30.
Supercell calculations with a k mesh of 4×4×4 reproduce the
benchmark results with reasonable accuracy of a few meV/atom
along the full Bain path.

valence electrons or a limited k mesh. In the present case, we
used potentials explicitly describing the 3d74s1 electrons for
Fe and 4d95s1 for Pd in combination with an energy cutoff of
Ecut = 335 eV. Thus, the first effort should be dedicated to a
comparison to well-known results obtained with high accuracy.
The optimum benchmark to estimate possible errors made in
calculations of real Fe-Pd MSM systems offers the ordered
Fe3Pd alloy. Following this line of thought, the investigations
of the binding surfaces were started by using as a model
system the 108-atom supercell (i.e., 3×3×3 L12 simple cubic
primitive cells containing four atoms each). For comparison,
the Brillouin zone (BZ) was integrated in reciprocal space over
two Monkhorst-Pack65 meshes with 2×2×2 and 4×4×4 k

points in the full BZ, respectively. In both cases BZ integration
was carried out with the finite temperature smearing according
to Methfessel and Paxton66 with a broadening of σ = 0.2 eV.
The final comparison to previous benchmark results30 obtained
with different codes and exchange correlation potentials is
shown in Fig. 1. The supercell calculations with k mesh of
4×4×4 reproduce the corresponding primitive cell results
with a (relative) deviation of the order of 1 meV/atom. With
the smaller k mesh, the accumulated energy difference along
the Bain path amounts to 6–8 meV/atom. Keeping in mind
that these calculations are faster by a factor of eight, this can
still be regarded a reasonable compromise for many cases
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(e.g., where the corrugation of the energy profile significantly
exceeds this error), or for a comparison of energies obtained
with the constraint of a fixed cell shape, as the requirements
for convergence with respect to the k mesh can be somewhat
relaxed here.

The investigation of the disordered structures took place
using an analogous 3×3×3 supercell containing simple cubic
(sc) elements with four atoms each (108 atoms in total).
The atoms were distributed randomly over the sites. The
binding surface was determined in a two-step fashion. First,
for each tetragonal distortion, the internal degrees of freedom
were optimized according to the interatomic forces with the
built-in conjugate gradient scheme using the smaller 2×2×2
Monkhorst-Pack grid. The interatomic forces were converged
down to a maximum value of 20 meV/Å, while the conversion
criterion for the energies assured a numerical accuracy of
10−4 eV of each ionic step. The Bain path was sampled
consecutively starting from c/a = 1.0 (fcc) using the fully
relaxed positions of the previously obtained run for the next
larger c/a value as a starting point for the new structure. The
second step consists in a single point calculation on the denser
4×4×4 grid without further relaxation, in order to allow for a
sufficient accuracy for the comparison of the energies between
the different cell shapes. For the accurate determination of
the radial distribution function and the electronic density
of states (DOS), a 500-atom supercell was set up (5×5×5
simple cubic cells with four atoms each). The structural
optimization again took place on a 2×2×2 Monkhorst-Pack
grid in the fashion described above, while the DOS was
evaluated in another single-step calculation with a 4×4×4
Monkhorst-Pack grid and integration over the BZ took place
using the tetrahedron method with Blöchl corrections.67 The
precision of the electronic self-consistency cycle was increased
to 10−6 eV here.

For comparative purposes, additional calculations have
been carried out with a KKR-CPA approach implemented in
the Munich SPR-KKR code68,69 (version 5.4) using either
a four-atom cell describing the L12 type of order and
correspondingly applied tetragonal distortion (space group
number 123, I4/mmm) or the same cell with complete disorder
on all positions. The muffin-tin radii were kept consistent
(same for all positions) in both setups. We used a 15×15×15 k
mesh (288 points in the irreducible BZ). Angular momentum
expansion was taking place up to f states and 30 points
were used to describe energy contour in the complex plane.
The calculations were carried out within the atomic sphere
approximation (ASA) as well as in full potential mode, both in
combination with the GGA exchange-correlation functional of
Perdew, Burke, and Ernzerhof70 The SPR-KKR calculations
have been performed in the fully relativistic mode, whereas,
in contrast, for the VASP calculations a scalar relativistic
description of the Hamiltonian has been used throughout.

III. ORDER AND STATIC DISPLACEMENTS
IN Fe75Pd25 ALLOYS

As indicated above, generating a single cell with 108
randomly chosen atoms may in general not be sufficient to
guarantee a perfect statistical distribution. In the present case,
the fraction of Pd-Pd, Fe-Pd, and Fe-Fe nearest neighbor
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FIG. 2. (Color online) Comparison of the (relative) ordering
energies �Eorder = Edisordered − EL12 between KKR-CPA calcula-
tions (circles) and plane wave supercell calculations (triangles and
squares). Static relaxations (squares) lead to a significant lowering of
the energy of the disordered system, which is nonuniform along the
Bain path. Without taking into account atomic relaxations (triangles),
the explicit supercell description of disorder agrees well with the CPA
results.

pairs in the sample served as a measure. For the Fe75Pd25

configuration to be used in the further course of this study,
values of 6.33%, 56.33%, and 37.35% were found for the
three possibilities, respectively, which agrees well with the
values of a perfectly random distribution, which are 6.25%,
56.25%, and 37.5%, respectively. Similar agreement was
also reached with respect to the fraction of next-nearest
and third-nearest neighbor pairs. A further, more prag-
matic verification can be obtained from the comparison of
the ordering energy �Eorder along the whole Bain path with
the results of an analytical description of disorder within the
KKR-CPA scheme (c.f. Fig. 2). The ordering energy is defined
as the difference �Eorder(c/a) = Edisordered(c/a) − EL12 (c/a)
between the disordered and the L12 ordered configuration. In
both cases, the atoms were placed on ideal lattice positions
as the KKR-CPA scheme does not allow for geometrical
optimization. For all c/a ratios, the values obtained with the
supercell approach lie in a distance of a few meV/atom to both
KKR-CPA results, confirming that a representative distribution
of the atomic species on the supercell sites was chosen for this
comparison.

All calculations consistently suggest a positive �Eorder,
which at first sight implies that the L12-type order should
be preferred for fcc and bcc structures and, correspondingly,
all tetragonal structures in between. However, this outcome
changes completely if the atoms in the supercell are allowed
to adjust their positions according to the interatomic forces.
Now the energy of the disordered structure becomes at par
with the perfectly L12 ordered one at the fcc end and slips
about 35 meV/atom below it on the bcc side. On the other
hand, condensation of the imaginary phonon mode at the M
point leads to a further gain in the order 5 meV/atom for the
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L12 ordered arrangement in a face-centered environment (not
included in Fig. 2).30 Nevertheless, since the disordered alloy
benefits from configurational entropy, it appears unlikely that
a considerable degree of long-range order might be achieved
in the thermodynamic limit, since the main thermodynamic
driving force working in favor of the ordered structures is
nearly absent. This is in accordance with most experimental
reports on stoichiometric Fe3Pd. Indeed, in the thermodynamic
limit, Fe-Pd alloys in the MSM concentration range are
expected to be unstable against decomposition into bcc-Fe
and L10 FePd, which has also been confirmed by recent DFT
ground-state calculations.28 In contrast, Buschow et al. noted
in their large survey of magneto-optical properties of more than
200 alloy compositions the appearance of order after long-time
annealing.71 Thus this issue must be considered unresolved
from the experimental point of view and—although it appears
unlikely judging from the total energy differences only—the
appearance of partial and short-range order cannot be excluded
entirely on the basis of the present results either.

Considerable static relaxations are indeed expected when
different atomic radii are associated with the two atomic
species (one 3d and one 4d element, in our case), which
have indeed been found to contribute in similar magnitude
to the total energy.44 Significant static relaxations were also
reported by Liot and collaborators for equiatomic Fe50Ni50

72

and from a recent 64-atom SQS calculation of an fcc Fe65Ni35

Invar alloy,73 where the atomic radii of the 3d elements are of
similar size. Here, the effect was attributed in part to different
magnetic states of the atoms. Fe-Pd alloys exhibit in the Fe-rich
composition range, similar to Fe-Ni and Fe-Pt, Invar-type
anomalies, thus comparable mechanisms might be expected
in Fe-Pd, too.

The major point of Fig. 2, however, lies in demonstrating
that the energetic contribution from these displacements is not
uniform and varies strongly across the binding surface, sig-
nificantly increasing toward the bcc side. This has immediate
consequences in the vicinity of phase transitions, if the binding
surface is essentially flat. Thus, one must conclude—with
respect to structural changes—that analytic descriptions of
disorder which do not take care of static relaxations, as, for
example, within the CPA, may not be appropriate for the
prediction of ground-state structures in such cases. This would
require the extension of the multiple scattering formalism
in terms of a CPA taking into account the characteristic
displacements of the atoms (on average).

A constant volume cross section of the binding surface of
Fe75Pd25 from 108-atom supercell calculations is provided in
Fig. 3. The energies are given relative to the disordered case
at c/a = 1 (fcc) with atoms fixed at the ideal lattice positions.
These are represented by triangles and diamonds and displayed
in the upper part. Since, as mentioned above, the distribution
of atoms in the supercell does not obey cubic symmetry, the
binding curves differ depending on which of the Cartesian
axes of the supercell is chosen to become the short c axis. The
absolute difference for all three possibilities are of the order of
5 meV/atom along the complete Bain path. The discrepancy
with respect to the k mesh is of similar magnitude. It appears
largest close to the center of the Bain path.

The unrelaxed fcc cell has been used as the starting point
for the structural optimization. Afterwards the Bain path was
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FIG. 3. (Color online) Total energy of relaxed and unrelaxed
disordered and ordered structures of Fe75Pd25 along the Bain path.
Reference for all curves is the disordered, unrelaxed fcc geometry at
c/a = 1. Calculations with a mesh of 2×2×2 k points are shown as
open symbols (black), with a k mesh of 4×4×4 as shaded symbols
(blue). All calculations were carried out for the same atomic volume
(13.08 Å3/atom). For all but two calculations the shortened c axis
has been chosen parallel to the x axis of the fcc supercell (upward
triangles; symbols as in Fig. 2). For comparison the calculation of
the unrelaxed disordered structure has been repeated with the c axis
parallel to the y axis (downward triangles) and the y axis (diamonds).
This shows that the error due to insufficient statistics is comparable to
the error caused by a limited k mesh (≈5 meV/atom along the Bain
path). The relaxed disordered configurations (open squares) have been
obtained in consecutive relaxation and deformation steps starting
from c/a=1 (as denoted by the arrows). Reversing this sequence
(small solid circles) leads to a small region close to c/a=1 where the
total energy depends on the deformation history.

sampled from the fcc to the bcc side, initializing the calculation
for the next c/a value with the optimized configuration of the
preceding one. An interesting detail in this respect is that
reversing the sequence of alternating shear and relaxation
steps, now approaching fcc starting from c/a = 0.90, leads
to a small hysteresis which only appears in the vicinity of
the cubic structure. This suggests that the potential energy
surface will consist of a number of nearly degenerate local
minima, which are capable of providing a kind of memory of
previous deformations. A possible reason for this behavior will
be discussed later in Sec. V. This dependence of the elastic
response on the sample history might lead to problems in the
precise determination of mechanical equilibrium properties
as elastic constants, especially in the vicinity of the fcc
structure. The effect on the total energy, however, is small
and inferior to the other technical sources of errors, due to
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the potentials, the incomplete convergence of the k mesh, and
the spatially inhomogeneous distribution of the atomic species
across the supercell. In total, these inaccuracies may add up to
an uncertainty of the order of 10 meV/atom along the complete
Bain path for the 108-atom system. This aspect should be kept
in mind with respect to the absolute numbers provided by this
work.

IV. BINDING SURFACE OF Fe-Pd MAGNETIC
SHAPE-MEMORY ALLOYS

The stoichiometric composition provides firm grounds for
a comparison with the ordered alloys, which are much easier
to handle from the computational point of view. However,
the technological interest is restricted mainly to compositions
around Fe70Pd30. Therefore, additional calculations have been
carried out for this and more Pd-rich compositions. Our
results demonstrate that, in accordance with the experimen-
tal phase diagram, the fcc structure becomes increasingly
favorable with decreasing Fe content. This trend is more
pronounced for the unrelaxed, ideal lattice. Here the energy
difference between fcc and bcc, Eideal

bcc − Eideal
fcc , increases from

−10 meV/atom for Fe75Pd25 to +6 meV/atom in Fe70.4Pd29.6

as can be seen from the right panel of Fig. 4. In Fe65.7Pd34.3, a
value of +21 meV/atom is reached. For the relaxed structures,
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FIG. 4. (Color online) Total energy of relaxed (squares) and
unrelaxed (triangles) disordered and ordered structures of Fe75Pd25,
Fe70.4Pd29.6, and Fe66Pd34 along the Bain path (solid, shaded, and
open symbols, respectively). Reference for each composition is the
disordered, unrelaxed fcc geometry at c/a = 1.0. All calculations
were carried out for the same atomic volume (13.08 Å3/atom) with
a k mesh of 4×4×4 points in the irreducible Brillouin zone. The
shortened c axis has been chosen parallel to the x axis of the fcc
supercell. The lines are only a guide to the eye.

the change in binding energy, Erelaxed
bcc − Erelaxed

fcc , is decreasing
accordingly from −35 meV/atom to −24 meV/atom for
Fe70.4Pd29.6 and −8 meV/atom for Fe65.7Pd34.3, respectively.
At the same time, the energy gain due to relaxation, Erelaxed

fcc −
Eideal

fcc , is increased (29 meV/atom for Fe70.4Pd29.6 compared
to 23 meV/atom in the stoichiometric case).

The binding curves shown in Fig. 4 are obtained at a
constant fixed volume of 13.08 Å3/atom. This simplification
is reasonable under the condition that the equilibrium atomic
volume does not change along the Bain path, which is a
prerequisite for a thermoelastic martensitic transformation
which is a peculiar property of magnetic and conventional
shape-memory alloys. Indeed, the complete binding surface of
Fe70.4Pd29.6, which is shown in Fig. 5 (left), demonstrates that
the relative variation of the equilibrium volume between the
fcc state at c/a = 1 and the absolute minimum on the bcc side
is of the order of �V/V = 0.75%. Although about one order
of magnitude larger than for other shape-memory systems,75

this value is still sufficiently small that the corresponding
error does not impair the overall accuracy of the present
calculations. Furthermore, the shape of the constant volume
cross sections does not change significantly in the vicinity
of the equilibrium volume. Nevertheless, since hydrostatic
pressure is known to stabilize the martensitic phase, obtaining
the full binding surface for all compositions is desirable for
future high-precision investigations. Furthermore, a difference
in the equilibrium volume between ordered and disordered
configurations will influence the martensite stabilization by
symmetry conforming aging processes involving short-range
order or rearrangement of defects.76,77

The location of the absolute minimum appears shifted
slightly toward larger c/a ratios, away from the ideal bcc
value. This may be seen as a tentative indication that the
ground state is, as found in experiment, a slightly tetragonally
distorted bcc structure. But, again, the respective gain in energy
is rather small compared to the technical uncertainties. Similar
reasoning might hold true for the apparent tendency to form a
double minima structure as indicated in the binding curve of
Fe65.7Pd34.3 shown in Fig. 4. For more Fe-rich compositions,
however, the variation upon tetragonal distortion along the
Bain path can be regarded as rather smooth and monotonous
and the binding surface does not exhibit clear features which
may play a significant role at finite temperatures and can be
related to the existence of an fct phase. Thus, one important
question emerging from this observation is what—if not
specific features of the binding surface—is the stabilizing
origin of the fct structure, which is the relevant phase for MSM
applications and found in experiment at finite temperatures.

Face-centered cubic Fe-Pd in the respective concentration
range is known to exhibit Invar-like anomalies of the thermal
expansion arising from a strong interaction between magnetic
and spatial degrees of freedom. Thus in order to obtain a
complete picture, the relation between magnetic properties
and structural distortion also needs to be accounted for.
Figure 5 shows that the ground-state spin magnetic moment
depends solely on the volume per atom and is hardly
changing along the Bain path. This is in nearly quantitative
agreement with the extrapolation of the experimental satu-
ration magnetization to T = 0 as shown in Fig. 6 and the
concentration-dependent hyperfine field distribution obtained
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FIG. 5. (Color online) Complete binding surface E(V,c/a) (left) and magnetization profile M(V,c/a) (right) of the Fe70.4Pd29.6 alloy
obtained by 108-atom supercell calculations including structural relaxations of the atoms (4×4×4 k points). The binding surface exhibits one
single minimum close to bcc (V0 = 13.14 Å/atom, c/a = 0.717) and no signature of an fct minimum at larger c/a. Ground-state magnetization
(right panel) and equilibrium volume vary only slightly along the Bain path. Contour lines are drawn every 2 meV or 0.005 μB, respectively.

from Mößbauer experiments.78 The average data arise from
a stable high-spin Fe moment of 2.72 μB and an induced Pd
moment of 0.31 μB at the fcc end. While the former hardly
varies along the Bain path (slightly reduced by approximately
0.01 μB for bcc), the Pd moments increase steadily upon
tetragonal distortion reaching a value of about 0.35 μB on
the bcc side, consequently leading to a slightly enhanced
total moment, here, in agreement with the experimental trend.
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FIG. 6. (Color online) (Left) Comparison of the calculated
magnetization (average spin moment per atom) with experimental
data extrapolated to T = 0 obtained from Ref. 74. Since the DFT
calculations do only consider the spin moments and neglect orbital
contributions, the values are consequently a few hundreds of μB

smaller than in experiment. The theoretical values for the bcc
structures are slightly larger than for fcc coordination. This trend
corresponds to the small jump in the experimental data at the fcc-bcc
transition.

Furthermore, the static distortions do not contribute signifi-
cantly to the magnetic properties. If the atoms are located on
ideal lattice positions, the average magnetic moment increases
only slightly by 1%–2%, regardless of the tetragonal distortion
of the lattice. Thus, judging from the present calculations,
there is no trace of a considerable interdependence between
magnetism and structure at T = 0. Nevertheless, although not
visible in our ground-state calculations, Invar-type excitations
will be present at finite temperatures especially on the fcc
side and it can be speculated whether they might provide a
further contribution to the free energy stabilizing the cubic
and eventually also the fct phase.

V. ELECTRONIC ORIGIN OF THE STATIC
DISPLACEMENTS

The previous section has shown that static ionic displace-
ments have the potential to invert the energetic sequence of
phases. Therefore, it is worthwhile to look at the origin of
these local distortions in more detail. As the investigation
of Opahle et al. has demonstrated,52 Fe-rich Fe-Pd bears
the prerequisites to exhibit a cubic-to-tetragonal instability
according to a band-Jahn-Teller mechanism, arising from an
enhanced electronic density of states (DOS) at the Fermi level.
On the other hand, for the L12 ordered Fe3Pd alloy, atomic
relaxations lead to an antiferrodistortive displacement pattern,
which only affects the Fe species. This arises from significant
nesting portions of the Fe bands at the Fermi surface, which
are connected by a k vector of (1/2,1/2,0), which exactly
corresponds to the wave vector of a soft phonon in the
transversal acoustic TA1 branch,30 as previously discussed
in Sec. I. For the ordered Fe3Pt alloy, this anomaly is well
known from neutron diffraction experiments.79–81 The ordered
L12 structure can be conceived as corner-sharing Fe octahedra
embedded in a simple cubic Pd matrix. The antiferrodistortive
transformation breaks the cubic symmetry. This process results
in a tetragonal lattice, which can be characterized by a
pure Fe plane sandwiched between mixed Fe-Pd planes. The
atoms in the mixed planes stay in place, while the atoms in
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the Fe planes are subject to in-plane motion, which points
inward and outward of the simple cubic lattice spanned by
the stationary Pd atoms. In order to fulfill this constraint, the
deformation pattern is rotated by 90% in adjacent cells in the
x-y plane, which shows up as a short-wavelength modulation.
This process invokes an orthorhombic distortion of the Fe
octahedra, yielding a threefold splitting of the nearest neighbor
Fe-Fe pair distances reminding one of the original Jahn-Teller
picture.

A smeared out softening of the TA1 branch in [110]
direction has also been observed experimentally in disordered
Fe-Pd and Fe-Pt alloys at smaller wave vectors away from
the zone boundary.81,82 Considering that Fe clusters, which
are susceptible to this kind of distortion can be considered to
be statistically distributed within the bulk alloy, this would
finally result in a rather smeared out feature. It may be
speculated whether this anomaly can be interpreted in terms
of a corresponding distortion with similar electronic origin,
occurring with a larger, statistically modified period.

Local distortions can be studied in a complementary way in
terms of the radial pair distribution function g(ri − rj ), which
is a measure of the conditional probability starting from lattice
site i to find another atom at site j at the distance r = |ri − rj |:

g(r) =
∑

i,j

δ(r − |ri − rj |)
4πr2ρ

, (1)

where ρ is a normalizing factor representing the atomic
density. To improve the presentation, the δ functions have been
replaced by a Gaussian distribution function with a variance
of 0.01 Å2.

Jahn-Teller-like orthorhombic distortions of Fe octahedra
show up in a threefold splitting of the nearest neighbor peak of
the partial Fe-Fe distribution function gFe−Fe(r). In a previous
attempt, this has been evaluated employing a disordered 108-
atom supercell as in the present study.83 Indeed, a considerable
broadening of the nearest neighbor peak of gFe−Fe(r) is found.
Its width is consistent with the spreading of the peak observed
in the ordered alloy, but a clear proof for a threefold splitting
is missing. One likely reason is that a 108-atom supercell does
not provide sufficient statistics to resolve the fine features of
g(r). It may also be too small to accommodate longer-ranged
elastic interactions mediated by the lattice strain fields, which
may wash out characteristic distortion patterns. Therefore, the
structural optimization procedure was repeated with the VASP

code within a 500-atom 5×5×5 sc supercell containing 160 Pd
and 340 Fe atoms, yielding the nominal composition Fe68Pd32.
The corresponding total and partial pair distribution functions,
shown in Fig. 7, confirm that the nearest neighbor Fe-Fe peak
is significantly wider compared to the mixed Fe-Pd as well
as to the Pd-Pd peak. More important, a threefold splitting
of the order of 0.05 Å, which is slightly smaller than the
splitting predicted for the ordered alloy, is clearly visible. This
indicates that also in the disordered alloy, structural anomalies
are present, which arise solely from interactions between Fe
pairs. Keeping in mind the analogy to the Jahn-Teller distorted
octahedra in ordered Fe3Pd, it is straightforward to conceive
that the actual relaxation patterns of corresponding Fe clusters
in the disordered alloy will likely accommodate a tetragonal
distortion of the lattice by changing their relative orientation.

3 4 5

Distance r (Å)

P
ai

r 
di

st
rib

ut
io

n 
fu

nc
tio

n 
g 

(r
) 

(a
rb

. u
ni

ts
)

Total
Fe-Fe
Fe-Pd
Pd-Pd

Fe68Pd32

c/a = 1.00

FIG. 7. (Color online) Total and partial radial pair distribution
function g(r) of a 500-atom Fe68Pd32 supercell describing a disor-
dered fcc alloy obtained after ab initio structure optimization. The
thick black line refers to the total pair correlation function g(r), while
the thinner solid (blue), dashed (brown), and dash-dotted (magenta)
lines refer to the partial contributions arising from pure Fe pairs, Pd
pairs, and mixed Fe-Pd pairs, respectively. The arrows (orange) mark
the positions of the ideal lattice peaks.

The consequence is a kind of memory of the sample history,
eventually showing up in a small hysteresis as the one observed
in Fig. 3.

The Fe-Fe contribution marks the left end, while gFe−Pd(r)
and gPd−Pd(r) peak at the center and at the right end of the first
peak in the total g(r). This, in turn, is owed to the different
atomic radii of the elements and reflected in the large spread
of 0.1 Å in the element-resolved average nearest neighbor
distances, which are given together with the corresponding
values for next-nearest and third neighbors in Table I. The
second and third peaks are significantly broader than the
first one while the spread between the average contributions
has become significantly smaller. In contrast to the nearest
neighbor case, where the Pd-Pd pairs experience the largest
separation, they are now found at closer distances than the

TABLE I. Averages of the element-resolved neighbor distances
r = |ri − rj | between nearest, next-nearest, and third-nearest neigh-
bor pairs and the corresponding spacing for the ideal fcc lattice
with the same lattice constant. The numbers in parentheses are the
corresponding standard deviations. The average displacements from
the initial ideal lattice positions are 0.1764 Å (± 0.0730Å) for Fe and
0.1707 Å (± 0.0688Å) for Pd.

r (Å) Nearest Next nearest Third nearest

Fe-Fe 2.626(0.092) 3.739(0.165) 4.581(0.112)
Fe-Pd 2.657(0.059) 3.755(0.126) 4.587(0.107)
Pd-Pd 2.717(0.049) 3.708(0.151) 4.593(0.099)
Ideal 2.645 3.740 4.581
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Fe pairs, which are on average one lattice constant apart
from each other; only the mixed contribution reflects the
larger size of the Pd atoms. Interestingly, although the Pd-Pd
distances experience in both cases the largest deviations from
the pair distances of the ideal lattice, the average absolute
shift of the atoms with respect to their ideal lattice positions
is (slightly) larger for the Fe species. For the third neighbor
peak, differences between the partial contributions are not
encountered and all partial contributions match the shape of the
total g(r). This indicates that the most important interactions
are presumably between nearest neighbor pairs and the size
effect averages out at longer distances. However, in particular
the second neighbor peak is rather asymmetric, extending
toward smaller distances. During the transformation along the
Bain path from fcc to bcc first and second neighbor peaks split
up. Fractions of both, four atoms of the first and two of the
second neighbor peak, move closer to each other and finally
join to form the second neighbor peak of the bcc lattice. Thus,
this feature might be interpreted as a precursor for the onset
of a tetragonal distortion, which arises from the interatomic
interactions and is already present in the displacement pattern
of the cubic phase.

The static distortions can be related to changes in the
electronic DOS. The DOS is evaluated with a mesh of 4×4×4
k points since it is more susceptible to the convergence with
respect to the k mesh than the structural quantities. This allows
the interpretation of fine features giving rise to a band-Jahn-
Teller mechanism. A comparison of the DOS with respect to
changes arising from local lattice distortions is shown in Fig. 8.
Indeed, the minority DOS corresponding to the unrelaxed
configuration exhibits a tiny but noticeable maximum just
below the Fermi level, which moves to lower energies after
optimization, while the Fermi level comes to lie in a local
minimum. Indeed, only Fe states contribute to this peak
and significant changes of the Pd partial contributions—apart
from a hardly visible shift of a hybridization hump close to
EFermi—are not present after relaxation. This substantiates that
the threefold multimodal splitting of the gFe−Fe(r) is largely
independent of the interactions with the surrounding Pd atoms.

Further differences in the Fe partial DOS, which might
be responsible for the comparatively large changes of the total
energy, are encountered in the majority spin channel, where the
typical fcc-type three-peak structure extending from −0.5 eV
down to −3.5 eV is washed out to a large extent. This again
has only minor effect on the Pd DOS, which is rather flat
below −1 eV. Significant changes in the Pd DOS, however,
are found at the lower edge of the d band, in analogy to
reports on the disordered Cu75Pd25 alloy.44 The bandwidth
of 4d metals is naturally larger than for 3d metals and thus the
Pd 4d electrons dominate the lower edge of the d band, while
3d-4d hybridization drags Fe states down. During relaxation,
the width of the d band decreases. This is owed to the increased
distance between the Pd atoms in the relaxed structures with
respect to the overall average value, as can be seen in Fig. 7.
The relaxation of the Pd atoms should be expected to be larger
on the bcc side, since it is the more open structure, potentially
providing a larger contribution to the total energy. According
to this interpretation, the relaxations are emerging to the partial
electronic pressure of the 4d electrons and only a fraction can
be accounted for by the band-Jahn-Teller mechanism which
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FIG. 8. (Color online) Electronic density of states of the disor-
dered Fe68Pd32 alloy obtained from a 500-atom supercell calculation.
(Top) Face-centered cubic structure (c/a = 1) with atoms on ideal
positions. (Bottom) DOS after structural relaxation. The total DOS
are represented by the thick black lines; thinner blue and brown
lines refer to partial Fe and Pd contributions, respectively. For better
comparison, the minority DOS at the Fermi level of the unrelaxed
disordered fcc configuration is marked in both panels by a broken
horizontal line (orange color).

is only present on the fcc side and largely independent of the
other mechanism.

VI. CONCLUSIONS

We explored the binding surface, ordering, and compo-
sitional tendencies of martensitically transforming Fe-rich
Fe-Pd alloys, which are in the compositional range of inter-
est for magnetic shape-memory applications and Invar-type
thermal expansion anomalies, by means of first-principles
calculations obtained within a 108-atom supercell including
unconstrained optimization of atomic positions. It was demon-
strated that the energetic contribution of atomic relaxations
varies significantly upon a tetragonal distortion along the Bain
path, which connects face-centered and body-centered cubic
structures. Close to the Fe70Pd30 magnetic shape-memory
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composition, this leads to a qualitative change of structural
properties, manifesting in an inversion of slope and curvature
of the binding surface, which makes the fcc austenite unstable
against a tetragonal distortion. Naturally, this can only occur
in the vicinity of the martensitic phase transformation since
only here the binding surface is sufficiently flat and local
distortions and corresponding lattice vibrations may contribute
significantly to the free energy surface. Although the ground-
state calculations do not predict a significant variation of the
magnetic structure along the Bain path, finite temperature mag-
netic excitations should be taken into account as well in further
investigations.

By means of large-scale calculations involving a 500-atom
Fe68Pd32 supercell, we identified in accordance with a previous
study based on an analytic description of disorder52 an
accumulation of Fe states at the Fermi level for the ideal,
undistorted lattice, which potentially gives rise to a band-
Jahn-Teller relaxation mechanism. The optimization of atomic
positions, which is possible within the supercell approach,
reveals that a tetragonal distortion which can resolve this
potentially unstable situation will be in close competition with
corresponding changes in local atomic arrangement. From
the statistical mechanics point of view it appears likely that
uncorrelated local processes will dominate over a collective
distortion. As a consequence the local Jahn-Teller-type dis-
tortions could set up a preference for a tetragonal distortion
of the lattice. This is the case for the highly ordered Fe3Pt
alloy30,84 and indicated by the asymmetric shape of the second

neighbor peak in the pair distribution function in the present
study. However, the fact that the Jahn-Teller mechanism in
Fe-Pd is superimposed by distortions related to the different
atomic sizes, which cannot be disregarded in the Fe-Pd system
impedes the substantiation of this conjecture on the basis of
the present data.
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67P. E. Blöchl, O. Jepsen, and O. K. Andersen, Phys. Rev. B 49, 16223

(1994).
68H. Ebert et al., computer code SPR-KKR (the Munich

SPR-KKR package, version 5.4) [http://olymp.cup.uni-
muenchen.de/ak/ebert/SPRKKR].

69H. Ebert, in Electronic Structure and Physical Properties of Solids,
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