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Large change in the exchange interactions of HgCr2O4 under very high magnetic fields
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The combination of high-frequency electron magnetic resonance (EMR) and magnetization measurements
enables us to evaluate the exchange interactions in high-field phases of polycrystalline samples of the chromium
spinel oxide HgCr2O4. The evaluation indicates that the lattice distortion in this compound largely modulates
the exchange interactions between the Cr3+ spins to stabilize its distinct plateau with one-half of the saturation
magnetization. Furthermore, we show that a release of the lattice distortion occurs in very high magnetic fields.
Our result suggests that the spin-lattice coupling, which causes the large changes in the exchange interactions,
plays a crucial role in giving rise to the peculiar magnetization process of HgCr2O4.
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I. INTRODUCTION

In geometrically frustrated antiferromagnets, vast degener-
acy prevents the systems from taking a unique ground state.
In such systems, a small perturbation away from an ideal
model, which causes lifting of the ground state degeneracy, can
possibly play a significant role in inducing exotic phenomena.
In particular, recent studies revealed that novel types of phase
transitions are driven by the coupling of multiple degrees of
freedom. Indeed, for chromium spinel oxides ACr2O4 (A= Cd
and Hg), it has been proposed that a robust 1/2-magnetization
plateau is stabilized by the spin-lattice coupling.1–5 In ACr2O4,
magnetic Cr3+ ions with S = 3/2, which have an isotropic
Heisenberg-type character with no orbital degeneracy, form a
highly frustrated pyrochlore lattice, which is composed of a
three-dimensional arrangement of corner sharing tetrahedra.
These compounds undergo a transition from a paramagnetic
phase with a cubic Fd3̄m crystal symmetry to a magnetically
ordered phase with a lower crystal symmetry.1,2,6 The distinct
magnetization plateau appears in their high-field magneti-
zation processes at low temperatures.1,2 In this paper, from
high-field ESR and magnetization measurements, we will
show a peculiar behavior where a large change of the exchange
interactions due to the spin-lattice coupling occurs to stabilize
the plateau in the chromium spinel oxide HgCr2O4.

Figure 1 shows magnetization curves at different temper-
atures observed in a polycrystalline sample of HgCr2O4. The
magnetization M increases almost linearly at low fields, but
a sudden jump into a plateau phase with a magnetization of
one-half of the saturation value occurs around H c1 = 10 T. The
plateau phase terminates at H c2 = 27 T, and the magnetization
smoothly increases above this field. Then, it shows a kink at
H c3 = 36 T with a small hysteresis, and finally the saturation
is achieved at around 43 T. In the plateau phase, a peculiar
type of symmetry breaking into a collinear ferrimagnetic
state with three up and one down spins on each chromium
tetrahedron is expected. Theoretical studies have demonstrated
that a magnetization plateau can appear owing to a thermal
or quantum fluctuation in geometrically frustrated systems.7,8

However, the plateau due to such a mechanism is only expected
to appear in a narrow field and temperature region. On the
other hand, in the chromium spinel compounds the plateau is

stable in a very wide field and temperature region. A significant
feature in the appearance of the plateau for these compounds is
that it is accompanied by a deformation of the crystal lattice.1,9

Recent diffraction measurements have revealed that the
crystal structure in the plateau phase has the same space-group
symmetry as the magnetic structure, which is a 16 sublattice
ferrimagnetic one with a cubic P 4332 symmetry.9 In this
plateau phase, the distance between two Cr3+ spins aligning
antiparallel to each other is about two percent shorter than
the one for spins with a parallel alignment, suggesting that
the lattice distortion stabilizes the ferrimagnetic order.9 In
fact, it was also demonstrated that effective theories, which
take a magnetoelastic interaction into account, can lead to
a wide magnetization plateau.3–5 The role of the spin-lattice
coupling can be summarized as follows: atomic displacements
caused by the lattice transformation bring about changes
in the exchange interactions resulting in the appearance of
the robust magnetization plateau. In this study, we have
found that the large changes in the interactions actually
occur owing to the lattice transformation in HgCr2O4. Our
analysis shows that the lattice distortion in the 1/2-plateau
phase modulates the exchange interactions between the Cr3+
spins in such a way that the nearest-neighbor interactions
become unequal to stabilize the plateau. Moreover, as the
magnetic field further increases above H c2, release of the
lattice distortion starts to take place. We suggest continuous
changes of the exchange parameters in a field region H c2 <

H < H c3 and a structural transition of a first order at H c3.

II. EXPERIMENTAL PROCEDURES

High-field electron magnetic resonance (EMR) measure-
ments on a polycrystalline sample of HgCr2O4 have been
performed in the frequency region from 75 GHz to 1.4 THz.
The measurements in the frequency region from 78 GHz
to 1.4 THz in pulsed magnetic fields of up to 55 T at
1.3 K were conducted by using a far-infrared laser, a
backward-wave tube, and Gunn oscillators as light sources.
Detailed frequency dependencies of the ESR spectrum below
360 GHz in static magnetic fields up to 14 T at 1.6 K were
measured by utilizing a vector network analyzer and a
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FIG. 1. (Color online) High-field magnetization (M) curves
observed at 1.3 and 0.4 K, and the field-differential-magnetization
(dM/dH ) curve at 1.3 K in HgCr2O4. The magnetization curve at
0.4 K shifts up by 0.5μB/Cr3+.

superconducting magnet. The magnetization curves at 1.3 and
0.4 K shown in Fig. 1 were obtained in this study. The result
is consistent with the previous report.2 The magnetization at
0.4 K was measured by utilizing a 3He cryostat. Polycrystalline
samples of HgCr2O4 were prepared by thermal decomposition
of Hg2CrO4.2,10,11

III. RESULTS AND DISCUSSION

Figure 2 shows the EMR spectra observed in a polycrys-
talline sample of HgCr2O4. A symmetric line shape of the
EMR spectra indicates that the system is highly isotropic.
The frequency-field relation of the EMR resonance points is
shown in Fig. 3. Vertical dashed lines show H c1, H c2, and
H c3. For H c1 and H c3, the mean values of the transition
fields between field ascending and descending processes are
indicated. In the lowest field anitiferromagnetic phase, two
kinds of EMR modes, ωg with a finite zero-field gap and a
gapless ω0, are observed. As the field increases, the ωg mode
approaches the paramagnetic resonance line with g = 1.97,
determined from the EMR measurements at 150 K, whereas
the ω0 deviates from that. In the plateau phase above H c1, three
kinds of EMR modes, ω+, ω−, and ωu, are obtained. The ω+
with a strong signal intensity is observed at the paramagnetic
resonance fields. The ω− mode has a negative slope and
becomes soft at H c2. The ωu mode has a positive slope with
g = 1.97 in the 1/2-plateau phase. Above H c2, the slope of this
mode, however, changes to negative. At H c3, the resonance
frequency of the ωu mode steeply drops to zero. We analyze
the EMR modes based on a molecular-field theory in terms
of a four-sublattice model for which the sublattice moments
occupy vertices of a single tetrahedron. For the analysis, a
Heisenberg-type Hamiltonian H= ∑

J ij Si·Sj with J > 0
for an antiferromagnetic interaction is assumed. We take only
the nearest-neighbor exchange interaction into account for the
analysis because the previous magnetization measurements
under high pressure indicated significant dominance of the
nearest-neighbor interaction compared to further-neighbor
ones.12 The theoretical ESR modes are obtained from a
conventional method by solving equations of motion.13
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FIG. 2. (Color online) Frequency dependence of EMR spectra
observed in pulsed fields at 1.3 K. The dashed vertical lines from
left to right indicate H c1, H c2, and H c3 respectively. The inset shows
extended ESR spectra at 60 and 120 GHz observed in static fields at
1.6 K.

First, we examine the lowest-field phase below H c1.
The magnetic structures proposed in this phase are rather
complicated, characterized by two kinds of wave vectors.9

Each tetrahedron in these structure, however, is made up
of two up spins and two down spins. Thus we assume a
Nèel-type magnetic structure with two up and two down
spins for the analysis of this phase. A molecular-field theory,
assuming this structure with an easy plane anisotropy, gives
two observable EMR modes, expressed as h̄ω0 = gμBH and

h̄ωg =
√

(gμBH )2 + E2
g with Eg = 4 S (J AF D)1/2/gμB. The

EMR mode ω0 and ωg are expected for the easy plane
and for the hard axis, respectively. From the zero-field gap
Eg = 102 GHz and magnetic susceptibility χ = (g μB)2/(8
J AF) = 0.065 (μB/T), the exchange interaction J AF between
spins with antiparallel alignment and the zero-field splitting
D term in the antiferromagnetic phase are evaluated to be
J AF/kB = 5.1 K and D/kB = 0.13 K. The principal axis of the
CrO6 octahedron in the spinel structure orients along [1 1 1],
[1 −1 1], [−1 1 1], or [−1 −1 1] directions. This means that
the magnetic principal axis of each Cr3+ spin is in a tetramer
pointing along four kinds of directions. In such a case, an
effective anisotropy, which corresponds to the average of the
anisotropy for all the Cr3+ sites, is evaluated from the EMR
measurements. Since D is small enough compared with J AF,
we neglect the anisotropy in the following analysis. It should
be mentioned that although the lattice distortion is expected to
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cause at least two kinds of nearest-neighbor interactions, our
simple analysis can derive only one interaction. Furthermore,
the observed deviation of ω0 from the paramagnetic resonance
line can not be explained. For a more detailed discussion
of the low-field phase, however, measurements of the single
crystal, which unfortunately has not been synthesized so far,
are desired.

Next, we discuss the field-induced phases above H c1. In
the 1/2-plateau phase we assume a collinear ferrimagnetic
state with three up and one down spins on a tetrahedron. We
consider that the value of the exchange interaction J 1 between
spins aligning antiparallel to each other is different from
that of J 2 between spins with parallel alignment because of
the difference between the Cr-Cr distances. The details of the
molecular-field calculation are described in the Appendix. The
calculation gives three kinds of ferrimagnetic resonance modes
expressed as follows:

h̄ω+ = gμBH, (1)

h̄ω− = 6J1 − gμBH, (2)

h̄ωu = 3(J1 − 3J2) + gμBH. (3)

Here, the ωu mode is doubly degenerated. As shown in
Fig. 3, the ESR modes observed in the plateau phase can be
reproduced by theoretical lines calculated with the parameters
of J 1/kB = 6.0 K, J 2/kB = 2.5 K, and g = 1.97. This result
indicates a significantly large inequality between J 1 and J 2.
Above H c2, it is expected that a magnetic structure in which
spins are smoothly canted from the collinear ferrimagnetic
configuration is realized because the magnetization change
at H c2 is continuous. Assuming this canted ferrimagnetic
structure, the molecular-field calculation gives the ω+ mode
that coincides with the paramagnetic-resonance line as well as
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FIG. 3. (Color online) Frequency-field relation of the EMR
resonance points. Solid and dotted curves are theoretical ESR modes.
Dashed vertical lines show H c1, H c2, and H c3. The inset shows the
magnetization curves above the 1/2-magnetization plateau. The solid
and dashed curves in the inset are experimental and theoretical results,
respectively

with that in the plateau phase, and the ω− mode turns to be
ω− = 0. These are compatible with the experimental results.
The ωu mode for H > H c2, which is given as ωu = 9(J 1 − J 2),
however, does not agree with the theoretical line calculated
with the J 1 and J 2 of the plateau phase. As the field increases,
the experimental resonance points for the ωu mode deviate
from the calculated ESR mode, shown by the dotted line in
Fig. 3. This fact suggests that the exchange interactions are not
the same as those in the plateau region for H >H c2. Since ωu is
proportional to the difference between J 1 and J 2, the observed
negative slope of the ωu mode above H c2 indicates a decrease
in the difference between the exchange interactions as the field
increases. Thus, we determine the J 1 and J 2 for H > H c2 so as
to reproduce the ωu and the magnetization M , which is given
as M = (gμB)2H/(8J 1) for a Cr3+ ion by assuming the canted
ferrimagnetic structure. Figure 4 shows the field dependencies
of the exchange interactions obtained by our analysis. This
result shows that both J 1 and J 2 are field dependent for
H c2 < H < H c3. At H c3, where the magnetization curve
shows a kink, the resonance frequency of the ωu sharply drops
to zero. Therefore, the J 1 and J 2 must become identical at
this field. This behavior indicates that a first-order structural
transformation to the spinel structure with no distortion takes
place at H c3. Above this field, the exchange interaction is
evaluated from the analysis of M by assuming a ground-
state magnetization of a classical pyrochlore antiferromagnet,
which is given by the same expression as for the canted
ferrimagnetic state. The analysis indicates a slight decrease
in the interaction above H c3. One may consider the crystal
structure without lattice distortion to be compatible with a
field-induced ferromagnetic structure in which all spins are
polarized along the field direction and thus no geometrical spin
frustration exists. In the field region above H c3, however, the
magnetization shows a further increase. A recent Monte-Carlo
simulation for the classical pyrochlore antiferromagnet with
an effective biquadratic interaction, which is derived from the
magnetoelastic coupling, showed that the magnetization curve
before the saturation largely broadens with a slight increase
in temperature.14 Overall the behavior of the experimental
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FIG. 4. (Color online) Exchange interactions evaluated from the
analysis. Dashed vertical lines show H c1, H c2, and H c3.
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magnetization curve, however, does not change between 0.4
and 1.3 K, as shown in Fig. 1. On the other hand, one can find
the peak of the differential-magnetization (dM/dH ) curve
at 38.6 T, suggesting the possibility of existence of another
phase between the canted ferrimagnetic and fully polarized
phases. We also notice a tiny dM/dH peak around 30 T. These
findings show that the magnetization process of HgCr2O4 is
more complicated than that predicted by the theory with the
effective biquadratic interaction.3,4,14

In the above discussion, we have shown the changes of
the exchange interactions in HgCr2O4 as the magnetic field
increases. It is reasonable to consider that these changes are
caused by the field-induced structural transformations. Besides
the structural transition from the lowest field phase with the
orthorhombic Fddd symmetry to the 1/2-plateau phase with
the cubic P 4332 symmetry at H c1,9 recent synchrotron x-ray
diffraction measurements have shown a gradual change in
the lattice parameter as the field increases above H c2.15 The
continuous field dependence of the exchange interactions,
suggested from our analysis for H c2 < H < H c3, is consistent
with this observation. Our analysis indicated the crucial role
of the spin-lattice coupling in the appearance of the robust 1/2
plateau and the release of the lattice distortion in high magnetic
fields for HgCr2O4. For H > H c1, the lattice distortion
strengthens the exchange interaction J 1 between the spins with
antiparallel alignment and weakens the interaction J 2 between
the spins with parallel alignment to stabilize the ferrimagnetic
structure. Then, in the field region between H c2 and H c3, the
distortion gradually diminishes as magnetic fields increase,
giving rise to the continuous changes of J 1 and J 2. Moreover,
our results suggested that the transition to the phase with higher
symmetry than P 4332 occurs at H c3. The analysis showed that
the values of the exchange interactions in HgCr2O4 largely
change owing to the lattice transformation. A large inequality
between J 1 and J 2 with the ratio J 1/J 2 = 2.54 is evaluated
for the plateau phase. On the other hand, it is known that the
exchange interactions between Cr3+ spins in the chromium
spinel compounds are particularly sensitive to the Cr-Cr
distance. Actually, substitution of ions on the A site, which
causes variation of the lattice constant, causes a considerable
change in the Weiss temperature.1,2,16 The pressure effects on
the Weiss temperature also indicated a large enhancement of
the antiferromagnetic interaction due to the shrinkage of the
Cr-Cr distance.12 Previous studies demonstrated a dominant
contribution from the direct Cr-Cr exchange interaction, which
is strongly affected by the Cr-Cr distance, on the nearest-
neighbor interaction in the chromium spinel oxides.12,17–19

CdCr2O4 with the lattice constant a = 8.596 Å has a Weiss
temperature θ = − 70 K,1,16 whereas HgCr2O4 with a = 8.661
Å has θ = − 32 K (see Ref. 2). Thus a shrinkage in the Cr-Cr
distance of one percent is expected to cause an increase in the
Weiss temperature by a factor of about two. We believe that
about a two percent difference of the Cr-Cr distances in the
plateau phase, which was reported from the x-ray diffraction
measurements,9 is enough to cause the large inequality of
the exchange interactions evaluated in this study. Finally, we
mention a remaining issue in this work. The EMR mode ωu is,
in principle, unobservable owing to the fact that the transverse
components of precession motion against the magnetic field of
each sublattice cancel each other. The complicated magnetic

anisotropy of the spinel compound, in which the magnetic
principal axis of each Cr3+ spin points along four kinds of
directions as mentioned before, might give rise to a finite
transition probability. To clarify the reason of why the ωu

mode is observed further detailed theory is desired.

IV. SUMMARY

In conclusion, from the analysis of the EMR modes
and magnetization curve based on a molecular-field theory,
we have evaluated the exchange interactions of HgCr2O4

in very high magnetic fields. Our analysis shows that the
interactions are largely changed owing to the field-induced
lattice transformations, and it indicates a crucial role of the
spin-lattice coupling in the appearance of the 1/2 plateau in
HgCr2O4.

ACKNOWLEDGMENTS

This work was partly supported by Grant-in-Aid for
Scientific Research (Nos. 17072005 and 20340089) from
MEXT and by Global COE Programs (No. G10) from JSPS.

APPENDIX

The EMR modes in the plateau phase are calculated based
on a molecular-field theory. In terms of a four-sublattice model,
the molecular-field energy is given as

E = A(M1 M2 + M1 M3 + M1 M4)

+B(M2 M3 + M3 M4 + M4 M2)

− 1

2

∑
i

M i�̃M i − H0

∑
i

M i, (A1)

where M1 is a sublattice moment for down spins, and M2,
M3, and M4 are those for up spins. The first and second
terms represent the exchange interactions with J1 and J2,
respectively. Coefficients A and B are expressed by

A = 4

N

2J1

gμB
(A2)

and

B = 4

N

2J2

gμB
, (A3)

where N is the number of spins, g is the g value, and μB

is the Bohr magneton. The third term represents a uniaxial
anisotropy with a tensor form given by

�̃ =

⎛
⎜⎝

�′ 0 0

0 �′ 0

0 0 −2�′

⎞
⎟⎠. (A4)

The relation between �′ and the zero-field-splitting (ZFS) D

term is given as

D = 3gμB�′M0

2S
. (A5)
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The fourth term represents the Zeeman energy. The EMR
resonance conditions are obtained by solving the equation of
motion,

1

γ

M i

dt
= [M i × H i], (A6)

where H i is a molecular field acting on the ith sublattice and
is given by

H i = − ∂E

∂ M0
. (A7)

The equation is solved by assuming a precession motion of
sublattice moments around the axis parallel to the external
magnetic field. For example, in the case of H0‖z, the following
expressions are substituted in the equation:

Mx,y
i (t) = ∂Mx,y

i eiωt, (A8)

Mz
i = M0 = N

4
gμBS, (A9)

where ∂Mx,y
i is a constant. In the case of D << J and

D << gμBH0, which are satisfied in the plateau phase of
HgCr2O4, the EMR modes can be expressed as follows:
for H0‖z

h̄ω+ = gμBH0 + 6D, (A10)

h̄ω− = −gμBH0 + 6J1 + 6D, (A11)

h̄ωu = gμBH0 + 3(J1 − 3J2) + 6D, (A12)

and for H0‖x,y

h̄ω+ = gμBH0 − 3D, (A13)

h̄ω− = −gμBH0 + 6J1 − 3D, (A14)

h̄ωu = gμBH0 + 3(J1 − 3J2) − 3D. (A15)

The obtained EMR modes, which are linear with respect to
magnetic fields, are simple. Owing to the magnetic anisotropy,
the EMR modes shift an order of D from those of D = 0. How-
ever, because D/kB = 0.13 K in HgCr2O4, it is small enough
compared to the exchange interaction so we can neglect the
ZFS in our analysis. Thus, even though we use the powder sam-
ple, we accomplish a detailed analysis for the plateau phase.

The intensity of the EMR mode is calculated to be
proportional to the square of the total amplitude �M of the
precession motion of the sublattice moment, which is given as

�M =
∣∣∣∣
∑

i

(
∂Mx

i + iMy
i

) ∣∣∣∣. (A16)

∂M
x,y
i s are obtained by solving the equation of motion. �M

for the ω+ mode is calculated as

�M ≈ 2 + 3D

J1
∼ O(1), (A17)

whereas for the ω− mode it is calculated as

�M ≈ D

J1
∼ O(0.1). (A18)

These results explain the observed weak signal intensity of the
ω− mode. In the case of the ωu mode, the total amplitude �M is
calculated to be zero because the amplitudes of the precession
motion ∂M

x,y
i for each sublattice cancel each other. Such an

ESR mode is, in principle, unobservable. On the other hand, the
observed signal of the ωu mode is weak but finite. The reason
why the ωu mode becomes observable is, however, not clear
at the moment. The EMR modes for the canted ferrimagnetic
structure are obtained by solving the transposed equation of
motion:

1

γ

d M ′
i

dt
= R̃i

[(
R̃−1

i M ′
i

) × (
R̃−1

i H ′
i

)]
. (A19)

Here, R̃i is a matrix that transposes the coordinates such that the
equilibrium direction of the magnetization of each sublattice
corresponds to the z axis. R̃i is given as

R̃i =
⎛
⎝

cos θi 0 − sin θi

0 1 0
sin θi 0 cos θi

⎞
⎠, (A20)

where θi (i = 1–4) is an angle between the direction of the
ith sublattice moment and the direction of the external field.
M ′

i and H ′
i are the ith sublattice moment and the molecular

field on this moment expressed by new coordinates. The angle
θi is determined by the following equilibrium conditions that
minimize the free energy:

sin θ1 = 3 sin θ2,3,4 (A21)

and

AM0(cos θ1 + 3 cos θ2,3,4) = gμBH0. (A22)

After calculating the equilibrium directions of the sublattice
moments, we obtain the resonance conditions for the canted
ferrimagnetic structure as follows:

h̄ω+ = gμBH0, (A23)

h̄ω− = 0, (A24)

h̄ωu = 9(J1 − J3). (A25)

In the calculation for the canted ferrimagnetic structure we
neglected the ZFS term.
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