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The equilibrium phase behavior of microphase-forming systems is notoriously difficult to obtain because
of the extended metastability of their modulated phases. In this paper we present a systematic simulation
methodology for studying layered microphases and apply the approach to two prototypical lattice-based systems:
the three-dimensional axial next-nearest-neighbor Ising (ANNNI) and Ising-Coulomb (IC) models. The method
involves thermodynamically integrating along a reversible path established between a reference system of free
spins under an ordering field and the system of interest. The resulting free-energy calculations unambiguously
locate the phase boundaries. Simple phases are not found to play a particularly significant role in the devil’s
flowers and interfacial roughening plays at most a small role in the ANNNI layered regime. With the help of
generalized order parameters, the paramagnetic-modulated critical transition of the ANNNI model is also studied.
We confirm the XY universality of the paramagnetic-modulated transition and its isotropic nature.
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I. INTRODUCTION

Lattice models are central to statistical mechanics. They
strip away the complexity due to packing and help reveal the
influence of nongeometrical factors on both equilibrium and
nonequilibrium self-assembly. The Ising model, for instance,
offers a singular window on critical phenomena and on
gas-liquid coexistence;' Flory-Huggins’s theory of solvated
polymers is core to the physics of polymers;? and spin glasses
are key sources of inspiration for the difficult problem of
structural glass formation.? If a lattice model of a system exists,
it is often a good strategy to solve it before embarking on a
study of more elaborate variants.

Microphase formation is one such phenomenon that
could benefit from further consideration of lattice-based
models. The frustration of short-range attraction—or some-
times repulsion*—by a long-range repulsion, irrespective
of the physical and chemical nature of these interactions,
leads to universal spatially modulated patterns.’ Periodic
lamellae, cylinders, clusters, etc., are thus similarly found
in block copolymers,>® oil-water surfactant mixtures,”!”
charged colloidal suspensions,'' and numerous magnetic
materials.'>!3 Microphase formation has also been hypoth-
esized to play a role in biological membrane organization'*
and in the formation of stripes in certain superconductors,'>~2°
although the microscopic interpretation is still debated.
The spontaneous nature of microphase organization allows
for these mesoscale periodic textures to find technologi-
cal success as thermoplastic elastomers® and nanostructure
templates.?!

Obtaining detailed control over microphase morphology
remains, however, notoriously difficult.?> Annealing,>? exter-
nal fields,?* strain complression,25 addition of fullerenes,2°
or complex chemical environments®’ are often necessary to
order diblock copolymers, for instance. Understanding how to
tune and stabilize microphases is essential to broadening their
material relevance, yet experimental systems provide limited
microscopic insights. A number of continuous space?®-3* and
lattice®>* models have thus been devised for theoretical
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and simulation studies, some of which have even become
textbook material.***> Grasping the equilibrium properties of
these models is necessary to resolve problems surrounding the
nonequilibrium assembly of microphases.***% But although
the modulated regime is a key feature of these models, it
has not been accurately characterized in any of them. Even
for the most schematic formulations, the existing theoretical
treatments have only offered limited assistance.

Direct computer simulations have also been unable to
provide reliable equilibrium information.*>*° Traditional sim-
ulation methodologies that facilitate ergodic sampling of
phase space by passing over free-energy barriers, notably
parallel tempering and cluster moves, are of limited help in
microphase-forming systems. Because of the dependence of
the equilibrium periodicity on temperature, sampling higher
temperatures leaves the system in a modulated phase with
the wrong periodicity; and because of the lack of simple
structural rearrangements for sampling different modulations,
the efficiency of cluster moves is limited. We recently
introduced a free-energy integration method for simulating
modulated phases that overcomes this hurdle.’”® Here, we
detail this method and apply it to the study of two canonical
three-dimensional (3D) spin-based systems: the axial next-
nearest-neighbor Ising (ANNNI) and the Ising-Coulomb (IC)
models. Both of these models are known to form lamellar
phases of different periodicities at low temperature, but their
phase structure is still not completely understood. The phase
information we obtain by simulation further allows testing of
various theoretical predictions. The plan of this paper is to
introduce the models (Sec. II), the simulation methodology
(Sec. III), and the generalized order and critical parameters
(Sec. 1IV). After discussing the results (Sec. V), a short
conclusion follows.

II. MODELS

Before introducing the models, a clarification of the
nomenclature for describing layered microphases is in order.

©2011 American Physical Society
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FIG. 1. (Color online) (Top) Snapshot of the ANNNI antiphase
(2)atT =2.4,k = 0.7fora20 x 20 x 40 lattice. Differently shaded
beads indicate spins up or down. (Bottom) Notation examples of the
lamellar phases (23) and (2).

Two conventions for characterizing the periodicity of lamellar
phases coexist in the scientific literature. The first compactly
identifies a phase with a simple wave number ¢ = 1/ (in
units of 2m), where A is the period length. The second, a
short-hand form (m/n*) introduced in Ref. 51, is less compact
but provides a more intuitive description of the layered phase.
In this notation, integers are used to describe a lamellar
phase formed by periodic repetition of patterns of j pairs
of opposite-spin lamellae of width m followed by & pairs of
opposite-spin lamellae of width n (Fig. 1). For example, phase
(00) is the ferromagnetic phase and phase (2) consists of two
layers of spins up followed by two layers of spins down. But
phase (23) has a period A = 5, because thermal fluctuations
blur the layer boundaries and the thickness of each lamella
takes the average value

A _m ] + nk' )

2 Jj+k
Although this notation, can only represent phases of rational
periodicity, it is well suited for describing the commensurate
phases that are here observed.

A. ANNNI model

The ANNNI model was first introduced to rationalize he-
lical magnetic order in certain heavy rare-earth metals.36-38>2
The simple model’s description of the experimentally observed
order is only qualitative,>® but because of its surprisingly
complex phase behavior, it is now canonical for the study

of systems with competing interactions.*** Its Hamiltonian
on a simple cubic lattice
HANNNIZ_J ZSiSj+KJZSiSj (2)
(i, )) [i.,j1:

is expressed for spin variables s; = £1 coupled through
a positive constant J. With the Boltzmann constant kg,
J/kp sets the temperature T scale. Alignment is favored
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for nearest-neighbor pairs (i,j) but frustrated with relative
strength k¥ > 0 for z-axial next-nearest-neighbor pairs [, j],.
The exact solution of the one-dimensional version of the model
provides T = 0 phase information for all other dimensions:>!
Ferromagnetic order is the ground state for k < 1/2, while
the layered antiphase (2) minimizes the energy for « > 1/2.
A mean-field description qualitatively captures the higher
dimensional, finite-T features of the model:*>> The system
is paramagnetic at high T'; it is ferromagnetic at low T and «;
and modulated layered phases form for sufficiently high 3%,
These three regimes join together at a multicritical Lifshitz
point (x.,T;) whose special critical properties have been
predicted by theory®*>® and verified in simulations.””*** High-
temperature series expansions have also been used to study the
paramagnetic phase and predict its limit of stability.5> These
predictions were confirmed by finite-size critical rescaling for
the paramagnetic-ferromagnetic (PF) transition’%3-%5 and by
heat capacity®'%® and generalized susceptibility®® measure-
ments for the paramagnetic-modulated (PM) transition. For
k < kr, the PF transition has Ising universality,%®” while
for ¥ >k, the PM transition has been argued to have
XY unive:rsallity,36’68’69 but direct simulation verifications are
incomplete®® and the results of the high-temperature series
expansion analysis are inconclusive.®>’" The ferromagnetic-
modulated (FM) transition is predicted by a Landau-Ginzburg
treatment to be first order with ¢ changing discontinuously
from 0, and to be tangent to the PF and PM transition lines at
the Lifshitz point.”!

Commensurate (2/3) phases spring from the multiphase
point at T = 0 and « = 1/2. The structure of the branching
processes at low 7" has been carefully studied’?> and forms the
basis for the low-temperature series expansion.”* For the rest
of the modulated regime, approximate theoretical treatments,
such as a mean-field theory with a soliton correction,”* an
effective-field theory,75 and the tensor product variational
approach (TPVA)’® have been used. Monte Carlo simula-
tions have also been carried out in this regime,SI’64 but the
hysteresis resulting from the high free-energy barriers that
separate modulated phases from each other limits accurate
determinations of the phase boundaries from annealing-based
approaches.’’>? Avoiding annealing is thus preferable for
accurately locating transitions within the modulated regime.>
It is thought that incommensurate phases and interfacial
roughening could lower the transition free-energy barriers
between different commensurate modulated phases on suffi-
ciently large lattices,’? but these phases have not been observed
thus far.

B. Ising-Coulomb model

The Ising-Coulomb (IC) model, in which the nearest-
neighbor ferromagnetic coupling spin is frustrated by long-
range Coulomb interaction of relative strength Q, was first
suggested as a model for the stripe-phase behavior of
high-temperature superconductors in two dimensions.*>’’ It
was also adopted as a generic coarse-grained description
of microphase formation in systems with competing pair
interactions in three dimensions*»’®7° and used to study
the effect of dispersion forces on phase transitions in ionic
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systems.?” Although it is based on the Ising model, its
Hamiltonian,

SiSi
Hygc=-J ZSiS_,' + QJZ r—”j» 3)
i.j) Y

i>j

does not allow ferromagnetic ordering for any Q > 0. An
infinitesimally small Coulomb frustration is sufficient to
induce layering.”® By analogy with a Landau-Ginzburg model
with frustration,*>”781:82 it is, however, expected that any
screening of the Coulomb interaction moves the onset of
modulation to a finite Q.333* Interestingly, the @ — oo limit
recovers the simple-cubic lattice restricted primitive model
(LRPM) of Dickman and Stell at full occupancy.®>-8

The one-dimensional 7" = 0 phase sequence is known to
be made of equal-length blocks of alternating orientation.?’ In
higher dimensions, although no rigorous demonstration exists,
layered phases of integer periodicity are also expected to be
the ground state at low Q.”° In that regime, an approximate
mapping to a one-dimensional system seems reasonable. For
sufficiently large Q, two- and three-dimensional periodic
structures, i.e., “cylinders” and “clusters,” minimize the
energy, and for Q > Q(z)v ~ 15.33 antiferromagnetic Néel
order is expected.”’ Mean-field treatments’*" and Monte
Carlo simulations (for Q < 1)** describe the paramagnetic-
modulated (PM) transition. Although the mean-field treatment
overestimates the transition temperature,’”" its predictions
are generally similar to the phase behavior obtained from
simulations.*> Because of the long-range isotropic Coulomb
interaction, the transition is “fluctuation-induced” first order
forany 0 < Q < Qy,%* and at low Q the modulated phases
melt at 7,(Q) ~ T.(0) — Q'/*, where T,(0) &~ 4.51 is the 3D
Ising simple cubic critical point.”® For Q > Qy the continuous
paramagnetic-Néel (PN) transition has Ising universality,
and at high Q, the critical temperature 7,.(Q) ~ T.(c0)Q —
T.(0),” where the trivial linear dependence results from the
choice of units and T,(c0) ~ 0.515 is the LRPM result.3>% A
triple point connects the paramagnetic, modulated cluster, and
antiferromagnetic Néel phases at (Qy,7T.(Qy)), but only the
mean-field estimates Qy = 36/m ~ 11.5and T,(Qy) = 1.61
are known.”” Within the modulated layered regime proper,
phases spring out at the boundary between neighboring
low-temperature ground states of integer periodicity.*> The
process is akin to that observed between the antiphase and the
ferromagnetic phase in the ANNNI model. The simulations
in the layered regime capture the presence of these phases,
but the use of a simulated-annealing approach in a strongly
hysteretic regime is likely to have biased the estimates for the
transition temperatures.*?

III. METHOD

Monte Carlo simulations are here used for determining the
absolute free energy of the different modulated phases.
The thermodynamic integration, the reference systems, and
the Monte Carlo sampling details are presented in this section.

A. Thermodynamic integration

The free energy is obtained from Kirkwood thermodynamic
integration,®’°> which involves simulating a system with a
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Hamiltonian that couples a reference system Hamiltonian Hy
with that of the system of interest H;:

H, = (1 —MHy+ AH,. 4)
For a given A, the Helmholtz free energy F; obeys
o __Tin_ (o) s
o Z;, 0 oA [,

where Z; is the canonical partition function and (- - -), denotes
a canonical average under H,. The difference between the
free energy of the system of interest F; and that of a known
reference system Fy at phase point (7, ko) is thus

' 19H,
Fi(To, ko) — Fo(Ty, ko) = T dx
0 ]y

1
Z/ (H, — Hy), dr.  (6)
0

In order to obtain reliable numerical results, the integration
path from A = 0 to 1 must be reversible; no first-order phase
transition may take place along it. The choice of reference
system, which is central to the approach, is detailed in
the next subsection. The numerical integration is done by
simulating the system at discrete A points chosen following
a Gauss-Lobatto scheme.”® Because of a rapid change in the
integration curve as A — 1, the latter part of the integral uses
logarithmically spaced points that are densely distributed near
A =1 (Fig. 2). This adjustment is necessary for accurately
sampling the z-axis lattice translations of small systems in
weak external fields.

Investigating the T -frustration plane point by point is
computationally wasteful. Data acquisition is significantly
accelerated by thermally integrating to nearby temperatures
T or frustrations « (or, equivalently, Q) using a known state
point (Ty,xo) as reference by

T
Fi(Ti,k0)  Fi(To.x0) :/ <ﬂ> d(1/T) (1)
Tc Ko

T Ty o \ol/T
or
K COF
Fi(To,k1) — Fi(To,k0) = — | dkx, (8)
Ko 0K T
where
)
= (H 9
<81/T)K0 < 1>K0 ()
and

OF\  [oH\ B
(), ~(5), - pe) - o
To

[i.jl:

In practice, the free-energy results are fitted with a polynomial
of degree three or four. The free energy at any point within
a relatively short interval is then interpolated from the
parameterized function.

B. Reference system

In order to guarantee a reversible integration path, the
reference system should reflect the symmetry of the phase
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FIG. 2. (Top left) Thermodynamic integration of the ANNNI model at k = 0.7 and T = 2.5 for phase (2) using sinusoidal and square fields
as reference. (Bottom left) Change in the structure factor peak height along the integration path and the free-energy results for the two different
references. (Top right) Thermodynamic integration of the IC model at Q = 0.8 and 7 = 1.06 for phase (21*). The integration curve from a
fluctuating to a constant magnetization system is shown in the inset. (Bottom right) The structure factor at different wave vectors demonstrates

the preservation of the modulation along the integration path.

under investigation. A good reference system should also have
a Hamiltonian Hy whose partition function Z, and free energy
Fp can be obtained analytically or at least with high numerical
accuracy. For the lamellar phases observed on lattices with
N = L,L,L, sites, we propose a reference that has decoupled
spins under a z-axial periodically oscillating field B(z) with
amplitude By,

N
Hy=—By)_siB(), (11
i=I

similarly to the periodic potential wells confining free particles
used in Ref. 94. It trivially follows that,

L.
F 1 <« ByB
Bl E In | 2 cosh 0B(@) .
NT L, g T

The amplitude By should be sufficiently strong to prevent layer
melting and changes of layer periodicity as the field is turned
off, yet sufficiently weak to allow sampling of the integrand.”
Fortunately, the relatively high free-energy barriers between
neighboring modulated phases make phase transitions along
the integration path highly unlikely, even if sections of the
path are formally metastable. Due to the broken symmetry
between the different coordinate axis, we can also, without
loss of generality, lock the lamellae in a specific orientation
when initializing configurations for the IC model.

The applied field B(z) need not be the exact equilibrium
profile of the modulated layers as long as the integration from
B(z) can be done reversibly. For instance, either square or

12)

sinusoidal fields can be used as reference states for the study
of modulated phases with integer periodicity. The free-energy
results of both approaches agree with high accuracy (Fig. 2).
The equivalence also holds in the low-temperature regime,
where the ground-state profile is more akin to a square well
than to a pure sine function.’’ Because sinusoidal fields are
“soft” in the interlayer region, which helps averaging the
layer fluctuations, and because they provide a compact and
efficient way to describe noninteger periodic lamellae, we
choose

13)

where a small phase angle ¢ is added to prevent the lattice
planes from directly overlapping with the zeros of the field.

The IC model, which must remain charge neutral, requires
that the reference partition function Z, be computed subject
to a fixed magnetization constraint. In the infinite system limit
this correction is negligible, but on a finite lattice it may
affect transition temperatures. For the paramagnetic phase,
the reference system Hamiltonian Hy with By = 0O results in
Fy/N = —T In2 for an unconstrained system [Eq. (12)], but
the properly constrained reference system instead has

F} 1 | N
— = —— n R
NT N N/2
where ( N]\;Z) is the binomial coefficient. For N = 12% x 24 =
3456 spins, the difference between the two results is ~0.0017,

which may be significant because of the small entropy
differences between layered phases. Calculating Fy is not,

B(z) = sin(2rqz + ¢o),

(14)
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however, as straightforward for By 7% 0. One has to define
a thermodynamic integration path between fluctuating and
constant magnetization systems

H, = Hy + A , s)

2
i

with A going from O to co. In practice, (%) =|)_; si| rapidly
decays to zero with growing X, and therefore integrating to a
finite & of order unity is sufficient. The zero-magnetization
free energy F| is then obtained by adding the correction
from thermodynamic integration to Fy from Eq. (12) (Fig. 2).
We note, however, that even in the small IC systems studied
here, the free-energy corrections for different modulated
phases are very similar for a given temperature. The phase
transitions are thus only imperceptibly affected by the shift.

C. Monte Carlo sampling

We perform constant-7 Monte Carlo (MC) simulations
on a cubic lattice under periodic boundary conditions, using
N = L,L,L, =40? x 240 spins for the ANNNI model and
N =122 x24 spins for the IC model, unless otherwise noted.
Ewald summation is used to compute the long-range Coulomb
interactions in the IC model.”>°° The phases studied have wave
numbers ¢ = n/L, with integer n’s, which keeps modulations
commensurate with the lattice. We initialize the modulated
phases with a sinusoidally varying spatial probability of the
desired periodicity. We find that the system relaxes to the
equilibrium spin profile for a given xy plane,

D), (16)

7 iexy

Sey(2) =

irrespectively of the initialization scheme as long as it has the
correct periodicity.

Basic MC sampling consists of single-spin flips for the
ANNNI model. Spin exchanges, which enforce charge neu-
trality, are used for the IC model. Phase-space exploration
gains in efficiency by complementing the basic sampling with
iterations that take advantage of phase symmetry.

(1) For the modulated phases, layer swaps allow for the
individual layer thickness to fluctuate while preserving the
overall periodicity. Multiple layer swaps are necessary to
alter the periodicity and therefore even neighboring modulated
phases are well separated in configuration space.

(2) Near the PM transition, an anisotropic cluster algorithm
for the ANNNI model® and a modified Wolff algorithm that
considers the corrections from long-range interaction for the
IC model*® are used, in order to capture the strong fluctuations.

(3) For systems with an applied external magnetic field,
random displacements of the entire modulated pattern relative
to the field along the z axis help sample the translational
degrees of freedom.

For reference point integrations, up to 10> MC moves (N
attempted spin flips or exchanges per move) are performed
after 5 x 10* MC moves of preliminary equilibration. For the
thermal and frustration integrations, only 10* MC moves are
necessary, because the free energy is not as sensitive to the
accuracy of the integration slope as itis to its starting point over
the small T intervals considered. In the vicinity of the critical

PHYSICAL REVIEW B 83, 214303 (2011)

transitions, we also use the multiple histogram algorithm, in
order to obtain high-precision results with a minimal number of
computations.”” The method relies on reweighing the sampled
configurations at a fixed temperature 7y, typically nearby T,
by the Boltzmann factor difference e="/T~1/TE for results
at neighboring temperatures 7.%® Our implementation uses a
logarithmic summation scale, in order to avoid sum overflow
in large systems.”®

IV. ORDER AND CRITICAL PARAMETERS

Structural order parameters help locate phase transitions
and are particularly important for the study of continuous
and weakly first-order transitions in models studied here. The
generalization and application of the study of critical and
roughening transitions in modulated phases is presented in
this section.

A. Modulation order parameters

Functions of the Fourier spin density
N
S =) siem (17)
i=1

are natural choices for characterizing modulations in layered
systems. The simplest of them, the generalized magnetization
per spin, is defined analogously to the absolute magnetization
in the Ising model*®

1
(m(q)) = =/ (5¢)(5—¢)

N

2 2
=% <,ZSi cos(qz,-)> + < Xi:s[ sin(qz,-)> . (18)

A direct use of (m(q)), however, causes problems in long
simulations, because in principle it averages to zero as
the lattice drifts along the z direction, which eventually
recovers translational symmetry (Fig. 3). Maximizing the
real component of §, with respect to a phase shift in the
z direction for each configuration before taking the thermal
average resolves this issue. In practice, we use a straightfor-
ward parabolic interpolation scheme.” Using the optimized
version of (m(q)), even in simulations that are too short for
the system’s periodicity to completely diffuse, significantly
improves the data quality (Fig. 3). Only quantities based on
optimized §, are therefore used in the rest of this work. The
generalized magnetization decays (m(q)) ~ (T. — T)? with
critical exponent $, but the decay properties are not ideal for
numerically detecting critical temperatures in finite systems.
The next higher magnetization moment, the z-axial static
structure factor, is similar to the equivalent liquid-state quantity

2
>, 19)

51,61

NS(q) = (5,5-) = N*(m*(q))

< Z s; cos(qz;) Z s; sin(gz;)

where (m?(q)) is the second moment of the magnetization.

Both S(g) and its normalized version /S(q)/N = /(m2(q))*

grow upon cooling and are maximal at the wave number g,

2
+
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FIG. 3. Optimized and unoptimized (m(q)) and »/S(q)/N for the
ANNNI model at k = 0.7 and g. = 0.1917. The difference between
S(q)/N and (m(q))* gives x(¢) [Eq. (20)].

of the first modulated phase below T,.. The monotonically
increasing S(gq) is, however, ill-suited for detecting the PM
transition in simulations, because, like (m(q)), it does not give
a clear visual signature of 7,. The generalized susceptibility

1
Tx(g) = ﬁ((gqs—ﬂ - <§q)(§—q>)
= N(m*(q)) — N(m(q))*, (20)

i.e., the second cumulant of the magnetization, does not
suffer from this caveat. It indeed diverges on both sides
of the transition x(gq.) ~ |T — T.|~" with critical exponent
y, as would x(0) in the Ising model, and was used in
our previous study>’ (Fig. 4). But directly correcting for
finite-size effects results in a high sensitivity of the transition
location to simulation noise. The Binder-cumulant route
is more convenient for detecting 7., because its value at
the critical point U} is straightforwardly insensitive to scaling
the system size.*>!'° For layered phases, a generalization
of the expression
(m*(@))

Us@) =1 = 3 50 @n
in terms of the second and the fourth (m*(¢)) = (575%,)/N*
g-modulated magnetization moments is needed.

Because of the anisotropy of the modulated phases, it is
useful to review how breaking isotropy may affect critical
properties. In a system of dimensions parallel L = L, and
perpendicular L = L, = L, to the modulation propagation,
the correlation length & may diverge with different critical
exponents

g ~IT —T|™™, &L~ I|T =T ™. (22)

The critical Binder cumulant U} = Ui(g., T¢) is then invariant

for a fixed ratio L /L"""™* (Fig. 5).1°"19 At a uniaxial Lifshitz
point, such as in the ANNNI model,” vy =~ v, .57 For the
PM transition, at k > k., we also consider the possibility of
anisotropic critical behavior. Although a direct determination
of vy /vy is numerically difficult, indirect finite-size study of

systems with a fixed ratio L /L = 2 shows that U} does not
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FIG. 4. Finite-size scaling of the magnetization (top), susceptibil-
ity (middle), and heat capacity (bottom) of the ANNNI model at k =
0.8 and g. = 0.2, using v = 0.66, y = 1.32, = 0.34, « = —0.01,
and C = 20.

vary at the PM transition (Fig. 5). This observation suggests
that vy /v, ~ 1;i.e., & and &, diverge with the same critical
exponent vy = vy = v at the PM transition. Critical anisotropy
is thus neglected in the rest of this study.

Binder cumulants also allow us to independently determine
the critical exponent v using the peak value of the derivative
of Uy:

oU, 1
In = —In L + constant. (23)
/T ] s
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FIG. 5. Binder cumulant of the ANNNI model at ¥k = 0.8 and
q. = 0.2. The curves, which intersect at the critical temperature
T, = 4.141, monotonically decrease with 7. The limited validity
regime of histogram reweighing results is here responsible for the
nonmonotonicity. (Inset) Finite-size scaling analysis of the peak of
the derivative of Uy(gq.) and In(m(g.)?). The logarithm scales as 1/v,
which here gives v = 0.66(2).

A similar relation for the structure factor gives*"’

3 In(m? 1
n 91In{m~(q)) = —In L + constant. (24)
o1/T max VY

The system size L in the scaling relation can be either L
or L, as long as the ratio L/L, is fixed. For an isotropic
critical point, as long as the dimensions are rescaled by the
same factor, the form of the collapse and the critical exponents
remain unchanged (Fig. 5).

Once v and 7, are obtained, the critical exponents f
and y can more easily be determined through finite-size
scaling.® The quantities LA/¥ (m(q.)) and L~/" x(q.) overlap
for different system sizes when drawn as a function of the
scaled temperature L'/V(T — T.)/T.. The heat capacity can
also be similarly rescaled, but only if C diverges at T, as
for transitions with Ising universality. For transition with XY
universality, for which « = —0.01, C peaks at a finite value
CZ in the infinite system size limit. The proper scaling relation
is then L=/V(C — C2°),!9%1% but such rescaling for a small
a is subject to sizable numerical errors.'”> The hyperscaling
relation 2 — & = 3v is used instead to determine o.'%

B. Interfacial roughening

In the Ising ferromagnetic regime, even though the cor-
relation length isotropically diverges at the critical point,
the interface between two regions of opposite magnetization
presents a roughening transition T at roughly half the critical
temperature.'%-1% Below Ty the interface is localized, while
above Ty its width diverges logarithmically with surface area.
In simulation, an interface is created within the bulk by using
an antiperiodic boundary condition along the z direction!®
and the transition can be localized by finite-size analysis
(Fig. 6). Modulated phases present a series of interfaces
between lamellae of opposite magnetization that may also
roughen with increasing temperature. It has indeed been
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W2

FIG. 6. The roughening transition in the ferromagnetic regime
at k = 0.2 using systems of size L* x 26 is found at Ty = 2.35(5).
(Insets) Average magnetization profile and gradient at 7 = 3.5.

suggested that the interface location of modulated lamellae
should logarithmically diverge.®®!'0 If that were the case,
interlayer fluctuations at temperatures between Tk and T,
could participate in phase branching and the formation of
equilibrium incommensurate structures in the large-system
limit. '

A generalization of the simulation approach is necessary to
study this question. The variance of the interface position z,

W2 = ((z - (2))%), (25)

measures the fluctuations of the interface location and is
expected to diverge logarithmically with system size for
T > TR,

W2 ~1InL,. (26)
For T < Tk, W? should have an even weaker system size

dependence. For thermal averaging, the normalized magneti-
zation gradient

_ dsyy(2)/dz
8() = [[dsgy(2)/dz)dz @n
_ Sxy(z +1D - sxy(Z) (28)

Y lse@+ 1) —sy(@]°

is used as a weight function.!'?> The equilibrium profile Sxy(2)1s
obtained by aligning instantaneous profiles to correct for lattice
drift before averaging (Fig. 6). For the modulated regime,
where multiple interfaces are present, layers within half a
period of the interface i, i.e., layers whose z coordinates belong
to a set I, are grouped together in the variance calculation

2
WP =3 g - (Z zg(Z)) : (29)

zel zel

and the results for the various interfaces are averaged at the
end.
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V. RESULTS AND DISCUSSION

Assembling the results from the various observables ob-
tained from the computational techniques provides a clearer
understanding of the equilibrium phase behavior of the
ANNNI and IC models. In this section, we concentrate on
the properties of the modulated regime.

A. Phase transitions between layered phases

The size of the energy gap between neighboring phases
with ¢’s commensurate with the simulation box reflects the
limited and constrained choice of modulations realizable on a
finite periodic lattice (Fig. 7). In an infinite periodic system,
where all rational modulations are valid but irrational ¢’s are
excluded, this gap would be infinitely small because rational
numbers are dense on the real axis.’¢¢*!!3 The smooth and
extended energy curves for the different modulations are
also characteristic of strongly metastable phases (Figs. 7
and 8). The high free-energy barriers between layers of
differing periodicity result in phases that are sufficiently
long-lived to persist throughout the entire simulation if the
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L, L, cross section is large enough. Different phases can be
observed at a given temperature and frustration, depending
on how the system is initialized. For smaller cross sections,
however, the reduced number of spins involved in changing
the periodicity lowers these transition barriers. For a fixed
system size, although a longer L, allows the study of more
modulated phases, the need to keep these phases stable limits
the maximal aspect ratio L : L, of the simulation lattice.
In practice, the selected ratio must balance these competing
demands. A microscopic understanding of the transition mech-
anism between layered phases of different periodicity is still
incomplete,’! but we empirically find that a size ratio of 2: 1 is
sufficient.

The crossing of the free-energy curves for neighboring
modulated phases identifies the transition temperature. Us-
ing this approach side steps the hysteresis that otherwise
afflicts annealing approaches and results in a more accurate
depiction of the modulated regime than has previously been
obtained.**03-64114 For the IC model, for instance, the free-
energy calculations locate the phase transitions at temperatures
at least 10% lower than reported in Ref. 43, where the the
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para (c)
L |
1.15 1.25
T
1 oo
| - 05
1
sl " @t .
oooooos (21% 1 o4
« 06+
= , 403 ~
K2 paramagnetic L—&
£ |
= 04r %%*\ 402
0.2 - -4 0.1
,V<m(q,T22; °
am - (@ |
0 : : ‘ 0
0.95 1.05 1.15 1.25
T

FIG. 7. (a) Energy and free-energy results for the ANNNI model at ¥ = 0.7 for modulations ranging from phase (2) to phase (2°3'4)
at melting. The PM transition 7. = 3.988 (vertical dashed line) is obtained from Uj. (b) Under the same conditions as (a), equilibrium
devil’s staircase compared with the rescaled soliton result (dashed line), and (m(q)) compared with the power-law decay form with 8 = 0.34
obtained from finite-size scaling (solid line). Note that in the low-temperature limit, the square profile of phase (2) gives (m(q)) — 27/2.
(c) Energy and free-energy results for the IC model at Q = 0.8 for phases (1), (21*), and (21?), and the paramagnetic phase. The PM transition
T, = 1.15(1) is obtained from C. The short vertical dashed line indicates the transition temperature between phases (1) and (212), obtained
from simple annealing (see text; Ref. 43). (d) Under the same conditions as (c), devil’s staircase and normalized structure factor. Note that in

the low-temperature limit, the profile of phase (1) gives \/(m(g)?) — 1.

214303-8



MONTE CARLO APPROACH FOR STUDYING MICROPHASES ..

F/N, E/N

FIG. 8. Energy and free-energy curves of the IC model for phases
(3) and (2) at T = 1.45. The phase boundary from free-energy
calculation (solid lines) agrees with the 7 = 0 mean-field prediction
(dotted line) and is different from the energy inversion (dashed lines;
Ref. 79).

system was prepared in the 7 = 0 ground state and studied
by simulated annealing. At Q = 0.8, we can even identify
a commensurate modulated phase (21%) that was entirely
missed by the annealing study. The other possibly missed
commensurate phase (21 10y is, however, unstable here as well,
presumably because of finite-size effects (Fig. 7). Qualitatively
similar results are also obtained for Q = 0.144 and Q = 0.17
(not shown).

By integrating over frustration at low temperature we
can also identify the boundary between phases of integer
periodicity in the IC model. The results at finite temperatures
agree very closely with the 7 = 0 energy derived transitions.
The location of the free-energy crossover between phases (1)
and (2) (not shown) as well as between phases (2) and (3)
is only mildly affected by temperature (Fig. 8). The thermal
fluctuations produce a similar free-energy shift of both phases,
which leaves the Q location of the transition unchanged.
We thus expect similar results at other (n)-(n 4+ 1) phase
transitions.

The PM transition is not accurately obtained by direct free-
energy comparisons for either system. For the ANNNI model,
the continuous transition is best studied through the specialized
tools of critical phenomena (see below). But even for the IC
model, the fluctuation-induced first-order transition does not
result in sufficiently high free-energy barriers for noticeably
supercooling the paramagnetic phase in such a small system.
The system instead rapidly freezes into a modulated phase
below the transition and shows only a minimum of hysteresis.
As a result, the transition identified from the heat capacity
peak by annealing in Ref. 43 is equivalent to what is obtained
here. A more careful system size dependence study would be
necessary to refine the transition estimate.

B. Devil’s staircase and order parameter

The equilibrium wave number obtained from the free-
energy results displays the characteristic devil’s staircase.”*
The stability regime of a given modulated phase stretches over
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an ever smaller 7 range upon cooling. For the ANNNI model,
the predicted truncation of the sequence before reaching the
antiphase makes the staircase “harmless,”!!> but the simulated
system size is here insufficient to distinguish this scenario
from the infinite “devil’s last step” sequence in which no
commensurate phase is missed.’®!'> The overall shape of
the decay can, however, be compared with the soliton theory
prediction.”* Although the soliton does not correctly capture
the PM transition temperature, once 7 is linearly rescaled to
make 7, coincide, the agreement is fairly good (Fig. 7).

The equilibrium generalized magnetization behaves sim-
ilarly to its ¢ =0 version in the Ising model. For the
ANNNI model around 7, the quantity grows monotonically
upon cooling. It continuously increases at first, but jumps
discontinuously upon reaching the antiphase. In this last
region the magnetization profile tends toward a periodic
square, whose profile structure is only partially captured by a
simple sinusoidal function. For the IC model, the renormalized
structure factor, which is indistinguishable from (m(q)) at low

0.25

high T series
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simulation o -
02 F Lifshitz |
0.15
®
3
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o
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FIG. 9. Simulation wave number periodicity at melting g. for
different frustration strengths of the ANNNI (top) and the IC (bottom)
models superimposed with theoretical predictions. The solid line for
the IC model captures the accessible wave number for L, = 24.
(Top inset) The critical exponent y obtained by finite-size scaling
is compared with the high-temperature series expansion (Ref. 62)
and the field-theory predictions for the exponent (Refs. 68 and 69).
The Lifshitz information is taken from Ref. 59.
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temperatures, is also not an ideal order parameter. When the
system changes from phase (21%) to (21%), for instance, the
peak height actually goes down. Here again, the modulation
profile is not well captured by a simple sinusoidal function. In
both models, the inclusion of higher order harmonics might
better detect growing order upon cooling.

C. Modulation at melting

The periodicity of the modulated phase at the PM transition
q.(x) [or g.(Q)] is remarkably insensitive to the theoretical
approach used for capturing its behavior. In the ANNNI model,
the agreement between simulation results, mean-field theory,>
HT series expansion,®%? and the critical scaling near the
Lifshitz point

ge ~ Ik —xr|P, (30)

using the critical exponent either from series expansion f; =
0.5 4 0.05°"%? or from renormalization group 8; = 0.514,'!”
is very good (Fig. 9). The similarity of the RG critical
exponent with the mean-field value further suggests that
the dependence of microphase periodicity on frustration is
much easier to capture than the transition temperature. The
free-energy correction due to fluctuations is likely similar for
neighboring layered phases.

For the IC model, the mean-field prediction for the continu-
ously changing g, is also within the simulation accuracy in the
layered regime (Fig. 9), but the relatively small lattice size pre-
vents a quantitative assessment of the theoretical predictions.
In the high-Q regime, where a Néel-paramagnetic-modulated
phase triple point is expected, our coarse simulation estimate
Oy ~ 15.8 clearly differs from the mean-field prediction of
11.5.7° A large deviation between the theoretical prediction
and the direct calculation is also observed at T = 0, where
Q(z)v = 9.549 and 15.33, respectively.”” Both those differences
can mostly, and possibly completely, be explained by the
low accuracy of the lattice Fourier transform in the large-Q
limit, where modulated phases of small domains form.”’
Note, however, that the critical nature of the Qy point,
which depends on the properties of the modulated-Néel
transition, could also impact its location. If it is a bicritical
point, fluctuations could result in larger deviations from the
mean-field predictions. A generalization of the free-energy
simulation approach to other modulated geometries should be
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able to resolve this question, but is beyond the scope of this
work.

D. ANNNI critical behavior

The critical properties of the ANNNI model have been
extensively studied using a high-temperature (HT) series
expansion.®6>70 For instance, critical temperatures can
be estimated by resumming truncated series with Padé
approximants.®>!'® The arbitrariness of selecting the Padé
order results in a range of estimates (Tables I and II). The
values of 7, obtained from finite-size scaling quantitatively
agree with these estimates and are an order of magnitude more
precise than both the HT series results and previous simulation
estimates. %%

The critical exponents from the HT series expansion,
however, only qualitatively agree with the simulation results.
The coefficients of HT series change continuously with «.
Finite series can thus only smoothly approximate sudden
changes in critical behavior, while the critical exponents are
here expected to change discontinuously on both side of the
Lifshitz point. The apparent continuous variation of y with
k obtained from HT series expansion is thus unphysical and
should disappear if an infinite number of expansion terms
were used.®' Field theory arguments suggest, however, that
the critical exponents should have Ising universality below
the Lifshitz point, XY above the Lifshitz point,®® and uniaxial
Lifshitz universality at the Lifshitz point.>’ The Ising® and
Lifshitz point® predictions have been previously confirmed
by Monte Carlo simulations, but above the Lifshitz point the
model’s behavior is not so clear. In particular, the HT series
results for y at large « undershoot the XY exponent value. In
the words of Ref. 62, at high ¥ “a puzzling and unexplained
feature [of the HT series expansion results] is the apparent
decrease of y to something like the Ising value.” Later similar
studies did not quite resolve this question and even suggested
that a different type of universality might be observed beyond
k ~ 2.7° Our earlier simulation results did not provide a clear
resolution of this issue either, because of limited system sizes
and insufficient averaging in the critical region.’® Simulation
of larger systems using the multiple-histogram method lifts
any remaining ambiguity. The critical exponent results support
an XY universality of the transition for all ¥ > « studied.
The values of v and y agree with each other and with the

TABLE 1. Critical parameters of the ANNNI model for ¥ < x;, = 0.270(4) obtained by finite-size scaling of cubic systems with L =
16,32,40,64,80 for « = 0.1 and 0.2 and from previous simulations (Refs. 59 and 65). Ising values are given for reference. The uncertainty on
T. and g, from the HT series expansion results from the Padé-approximant method (Ref. 62). At «;,, v is reported. The starred (*) o results are

obtained from the hyperscaling relation 3v =2 — o (ora + 28 + y = 2 for k = 0.24).

K Ising 0.1 0.15* 0.2 0.24* 0.265% 0.270°
T™MC 4.512 4.265(1) 4.15(2) 3.987(1) 3.86(2) 3.77(2) 3.7475(5)
THT 4.51(2) 4.26(2) 4.13(2) 3.98(2) 3.85(2) 3.76(2) 3.75(2)

v 0.63 0.62(1) 0.61(3) 0.62(2) 0.51(4) 0.33(3)*
o 0.11 0.143)* 0.17(9)* 0.14(6)* 0.28(12)* 0.47(12)* 0.18(2)

B 0.34 0.31(2) 0.30(3) 0.31(3) 0.23(3) 0.19(2) 0.238(5)
y 1.24 1.25(2) 1.20(6) 1.23(3) 1.26(6) 1.40(6) 1.36 (3)

4Reference 65.
bReference 59.
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TABLE II. See Table I for details. Critical parameters of the ANNNI model for x > «k, obtained by finite-size scaling of systems with
L, =60,120,150,180, and 240 atx = 0.522, L, = 120,240, and 360 atx = 0.7, L., = 60,100,120,200, and 240 atk = 0.8, L, = 60,120,180,
and 240 at k = 2.0, and from previous simulations (Refs. 51 and 66). XY values are given for reference.

P Xy 0.5 0.522 0.6° 0.7 0.8 2.0
Phase (3) (3) (29334 (29314 (23) (263)
g™ 0.167(4) 0.18(3) 0.192(4) 0.200(4) 0.233(4)
g"T 0.167(1) 0.180(1) 0.192(1) 0.200(1) 0.232(1)
qMF 0.1705 0.1816 0.1919 0.1994 0.2301
TMC 2.202 3.723(1) 3.82(3) 3.988(1) 4.141(1) 5.796(1)
THT 2.202¢ 3.72(2) 3.81(2) 3.99(3) 4.14(1) 5.79(1)
v 0.67 0.66(2) 0.67(4) 0.66(2) 0.67(3)
a —0.01 0.02(6)* —0.01(9)* 0.02(6)* —0.01(9)*
B 0.35 0.35(2) 0.35(3) 0.34(3) 0.36(2)
v 1.32 1.30(4) 1.32(8) 1.33(4) 1.32(6)

4Reference 105.
bReference 66.
‘Reference 51.
dReference 116.

XY values, and most are significantly different from the Ising
exponents (Table II and Fig. 9). The finite-size scaling of C
using « derived from hyperscaling relations further supports
the agreement (Fig. 4). These observations additionally shed
some doubt on the existence of a transition at x ~ 2.70

The XY universality of the PM transition can be understood
from the similarity between its two-component order parame-
ter and that of the XY model.''*!?° A mean-field picture for the
order parameter of the ANNNI model [Eq. (19)] suggests that
a spin i in the modulated phase can be thought of as evolving
within a magnetization profile of periodicity ¢ formed by all
the other spins. A change of the average local magnetization
at position 7 is equivalent to shifting the phase angle gz; with
respect to that profile. Note that the isotropic nature of the
critical PM transition also suggests that pairs of spins parallel
and perpendicular to the z axis are equivalently correlated. The
z-axis magnetization profile itself is correlated in the x and y
directions. In the language of XY model, the phase angle is
also correlated under translations in the x or y directions.

Why then, one may wonder, do the series expansion results
not converge to the XY-type y value at high «? Examining
the limit ¥ — oo suggests an answer. In that limit the next-
nearest-neighbor interaction dominates and the spins decouple
into series of intercalated 1D Ising antiferromagnetic chains.
That singular limit has 1D Ising universality for which y = 1.
The finiteness of the HT series expansion results in a slow
decay of y toward unity, as the large « terms in the series
dominate the expansion. In this respect, the series is both a
high-temperature and low-« expansion, which further restricts
its range of validity.

E. ANNNI roughening transition

We first consider the impact of frustration on the roughening
transition of the ANNNI model in the ferromagnetic regime
(Fig. 6). Although the Ty values extracted from simulations are
quantitatively different from the series expansion results,'”
similar trends are observed (Figs. 10). In particular, the

transition temperature Ty is relatively invariant to increases
in frustration. The formation of an interface is surprisingly not
aided by frustration, with T decreasing with increasing «.
And contrary to the scenario predicted for other microphase-
forming systems,'?! the roughening transition does not pass
through or near the Lifshitz point. Instead, the roughening
transition line on the 7-x phase diagram is expected to
reach the FM phase boundary near « ~ 0.43. Interestingly,
a finite-temperature intercept suggests that the FM transition
may be markedly different above and below Tg.

Ithas also been suggested that aroughening transition might
be observed for the modulated phases as well.''%!?! For the
ANNNI model, however, we find no indication of interfacial
roughening, at least for two simple modulated phases: phase
(2) at k = 0.8 and phase (3) at k = 0.52 (Fig. 11). For the
latter, the interface location remains clearly defined at all
T < T,, even for the largest systems considered. It cannot be
excluded that a divergence may be observed for much larger
interfacial areas than those we studied. Yet the lattice is here at
least an order of magnitude larger than the size necessary for
detecting roughening in the ferromagnetic phase (Fig. 6). We
venture to speculate that at least on a lattice, the persistence
length of the lamellae might be very large, possibly infinite.
If that were the case, the roughening of the modulated layers
would then coincide with 7. Further simulation and theoretical
work are necessary to clarify the situation.

F. Phase diagrams

Detailed low-T series expansion studies of the phase
behavior around « = 1/2 conducted by Fisher et al.”>'"®
suggest that a series of “simple phases” of the form (2/3)
spring out from the the multiphase point at 7 = 0 and “mixed
phases” generated by combinations of neighboring simple
phases branch out at 7 > 0. The temperatures accessible in
simulations are relatively far from the regime of validity of
this theory and thus, from this point of view, it is misleading
to compare them directly. It is nonetheless interesting to note
that the two approaches appear to converge for 7' < 2.
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FIG. 10. (Color online) Phase boundaries for the ANNNI model obtained from U; (1) and F (©). The Lifshitz point location (e) is taken
from Ref. 59. High- (Refs. 61,62) and low-temperature (Ref. 73) series expansions as well as TPVA (Ref. 76) results are represented. The
stability wedges of phases (3) and (23) obtained from simulation are seen to be qualitatively different from the mean-field theory predictions
(right inset; Ref. 55). The roughening transition results in the ferromagnetic regime are similar to the series expansion results (Ref. 109).

Various approximate theoretical treatments have been used
to analyze the ANNNI phase diagram more globally. In
addition to the traditional mean-field approach,’* an effective
field”> and a tensor product variational approach (TPVA)®
have more recently been used. These last two approaches
reasonably capture the external boundaries of the modulated
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FIG. 11. Interface width W? of phase (3) of the ANNNI model
at k = 0.52 as a function of T for various system sizes L? x 36.
No roughening transition is detected within the stability regime. The
magnetization profile sy, (z) for the system of L = 128 at 7 = 3.0 is
also shown (left inset) along with its normalized gradient g(z) (right
inset).

regime. The two treatments, however, qualitatively disagree
on the internal structure of that same regime. On the one hand,
the effective-field method,” like the mean-field treatment and
the soliton approximation,’* fills the modulated interior by
exceptionally stable bulging simple phases, such as phase
(3) and phase (23) (Fig. 10). On the other hand, TPVA
predicts rather narrow stability wedges for the commensurate
phases.”® The simulation results tend to favor the second
scenario. Although the devil’s staircase indicates that the
rate of wave number change slows upon approaching T,
only the antiphase has a broad presence in the modulated
regime. The stability range of the different modulations is
fairly small, and all of the phases commensurate with the
periodic box are stable in turn. The branching and mixing of
the stable low-temperature (2/3) phases is already complete
at the temperatures studied here.®!!> In particular, no special
stability is observed for phases (3) and (23) (Fig. 10). For
phase (3) some bulging is seen, because of the slower rate
of change of the periodicity near x = 1/2. Simulating larger
lattices, which allow for a more refined g selection, however,
shrinks that phase’s footprint. For phase (23), the range of
stability does increase slightly with «, but the effect seems to
be due to the finiteness of the lattice. In any case, the increase is
much less pronounced than the bulging scenarios predict’*7
(Fig. 10).

For the IC model, qualitatively similar branching is ex-
pected in the devil’s flower region, which is found between
phases of integer periodicity. The systems simulated here are,
however, too small to examine this issue critically. Except
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for the caveats presented in the previous sections, our results
mostly agree with the simulation results of Ref. 43.

V1. CONCLUSION

Our simulation study has clarified the structure and tran-
sition properties of the modulated regime of the ANNNI and
the IC models. Previous theoretical treatments had sometimes
been insufficient, particularly concerning the stability regime
of the various modulated phases, the critical nature of the
ANNNI PM transition, and the role of roughening. The
isotropic nature of the critical behavior of the ANNNI
model beyond the Lifshitz point, despite the existence of
anisotropic interactions and phases, is an interesting result
that deserves future considerations. In the case of lamellar
phase roughening, no clear conclusion can be drawn, but
our results suggest that the phenomenon is at least a lot less
pronounced than in the Ising model, which may give hope of
experimentally forming microphase patterns on much larger
scales than previously thought. From a theoretical perspective,
it is also interesting to highlight, however, that mean-field
theory is particularly adept at predicting the periodicity of
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modulated phases at the PM transition. This observation may
explain why the approach has been so successful at describing
order in other microphase-forming systems, such as diblock
copolymers.!?%123

In addition to lamellar phases, modulated assemblies can
exhibit a variety of other symmetries. They can also be
observed off lattice. Generalizing the approach to continuous
space and to other order types would thus greatly benefit
the study of more complex microphase-forming systems.
For the IC model, it could for instance help determine the
nature of the modulated-Néel transition and other properties
of the high-Q regime, which we have only briefly explored.
Completing the simulation tool set would also pave the way
for studies of the nonequilibrium microphase assembly, where
most of the materials challenges lie.
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