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Simulation of melting of two-dimensional Lennard-Jones solids
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We study the nature of melting of a two-dimensional (2D) Lennard-Jones solid using large-scale Monte
Carlo simulation. We use systems of up to 102 400 particles to capture the decay of the correlation functions
associated with translational order (TO) as well as the bond-orientational (BO) order. We study the role of
dislocations and disclinations and their distribution functions. We computed the temperature dependence of the
second moment of the TO parameter (�G) as well as of the order parameter �6 associated with BO order. By
applying finite-size scaling of these second moments, we determined the anomalous dimension critical exponents
η(T ) and η6(T ) associated with power-law decay of the �G and �6 correlation functions. We also computed
the temperature-dependent distribution of the order parameters �G and �6 on the complex plane that supports
a two-stage melting with a hexatic phase as an intermediate phase. From the correlation functions of �G and
�6, we extracted the corresponding temperature-dependent correlation lengths ξ (T ) and ξ6(T ). The analysis of
our results leads to a consistent picture strongly supporting a two-stage melting scenario as predicted by the
Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY) theory where melting occurs via two continuous
phase transitions, first from solid to a hexatic fluid at temperature Tm, and then from the hexatic fluid to an
isotropic fluid at a critical temperature Ti . We find that ξ (T ) and ξ6(T ) have a distinctly different temperature
dependence, each diverging at different temperature, and that their finite-size scaling properties are consistent
with the KTHNY theory. We also used the temperature dependence of η and η6 and their theoretical bounds to
provide estimates for the critical temperatures Tm and Ti , which can also be estimated using the Binder ratio. Our
results are within error bars, the same as those extracted from the divergence of the correlation lengths.
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I. INTRODUCTION

The most widely considered theory of two-dimensional
(2D) melting is the so-called KTHNY theory of Kosterlitz and
Thouless,1 Halperin and Nelson,2,3 and Young,4 which predicts
that melting in two dimensions occurs via two continuous
phase transitions, first from solid to hexatic fluid, and then
from hexatic fluid to isotropic fluid. This theory begins from
the fact that true translational order can not exist at any nonzero
temperature in 2D because of the infrared divergence caused by
the zero point motion of long-wavelength density fluctuations.
According to the KTHNY theory, another form of true
long-range order exists below some nonzero temperature Tm

where only the directions of the nearest-neighbor bonds order.
This long-range bond order disappears above Tm because of
dislocation unbinding, which leads to an intermediate phase,
the hexatic phase, characterized by topological order, where
(while dislocations are unbound) disclinations with opposite
topological charge remain bound. These disclinations become
unbound at a higher temperature Ti where the system becomes
an isotropic disordered fluid.

Simulation of melting in classical 2D systems has been
tackled by means of a variety of computational studies5

for several decades without reaching a definite conclusion
regarding its nature. In particular, for hard disks in 2D, a large
number of computer simulation studies have been applied
to understand 2D melting since this is the toy model on
which the Metropolis Monte Carlo method itself was first
introduced6 and, soon afterward, the 2D melting of hard
disks was studied.7 One of the reasons for the difficulty to
reach an unequivocal conclusion is that in 2D a conventional

solid with true translational order can not exist and, instead,
the correlations decay very slowly over long distance. This
requires large size systems where the relaxation time scales
become very long for these types of phenomena. In particular
for hard-disk systems, when using a local updating algorithm
or even molecular dynamics, particles remain stuck in their
local “cage” for large computational time scales, precisely
because of the hard-disk constraint.

One might think that Monte Carlo simulation of soft-core
potentials, such as the Lennard-Jones system in 2D, might
not be plagued by the same level of computational severity as
the hard-disk systems because of the softening of the hard-
core constraint. As a matter of fact, there are a number of
studies of the Lennard-Jones solid8 by computer simulation
where also a general consensus about the nature of melting has
not been established. Some studies have favored a first-order
transition from solid to liquid,9–12 as predicted by the grain
boundary melting suggestion,13 while other studies14–17 have
leaned toward the KTHNY theory.

Most arguments in favor of a first-order melting transition
have focused on the fact that such a transition will give rise to a
phase-coexistence region in the NVT ensemble or a hysteresis
loop in the NPT ensemble. For example, Strandburg et al.12

showed that the lingering bond-orientational order in the
intermediate phase is inhomogeneously distributed and thus
due to phase-coexisting behavior, while Abraham10 observed
hysteresis loops across the melting transition using an isobaric
molecular dynamics method. However, these studies were
of relatively small systems (1024 particles or less), and the
large-scale computations of Chen et al.18 have demonstrated
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the need for very large system sizes (over 36 000 particles) in
the (meta-)stabilization of the hexatic phase. So, while some
studies of finite systems may indicate first-order behavior in
the melting transition, the question of the phase transition
behavior in the thermodynamic limit is unanswered by such
studies. Indeed, Toxvaerd9 observed a shallowing of the van
der Waals loop with increasing system size, although he did
not draw the conclusions that the first-order weakening would
lead to a continuous phase transition in the thermodynamic
limit.

A natural way to approach the thermodynamic limit phase
transition behavior is to study the finite-size scaling of the
system and see if it is in agreement with first-order or
continuous melting predictions. This is most readily done in
the NVT ensemble. It may be argued that the phase coexistence
possible in the NVT ensemble may lead to the mistaking of
a liquid-solid phase coexistence for the hexatic phase. This
ambiguity between the hexatic phase and liquid-solid phase
coexistence led to Tobochnik and Chester19 concluding that
their extensive results for low-density Lennard-Jones systems
were consistent with the identification of an intermediate
phase as either a phase-coexistence region or a hexatic
phase. However, there is no reason to believe that the finite-
size scaling of a phase-coexistence region would match the
predictions of KTHNY theory.

Thus, while many past studies have investigated the melting
behavior of the Lennard-Jones system, there has been no
consensus. Many of the more recent investigations have
favored KTHNY theory.15–18 The most thorough of these
studies, however, are still at least one decade old, and because
of the fact that the computational resource constraints of
today are significantly better, a more thorough study should be
possible.

In the present paper, we study the nature of melting
of a two-dimensional Lennard-Jones solid using large-scale
Monte Carlo simulation. We use systems of up to 102 400
particles to capture the decay of the correlation functions
associated with translational as well as the bond-orientational
order. We find that to carry out thorough investigations
beyond these sizes, calculations using the Metropolis local
update become impractical using today’s high performance
computing because of the long relaxation time scales. Further
technical details of our simulation are described in the next
section, and the remainder of the paper is organized as follows.
In Sec. III, we discuss the role of defects in the KTHNY
theory of melting and present the results of a geometric defect
analysis. In Sec. IV, we show the temperature dependence
of both order parameters �G and �6 as well as their second
moments �2

G and �2
6 . The system-size dependence of �2

G

and �2
6 can be used to determine the critical exponents η and

η6, as shown in Sec. V. In the same section, the KTHNY
values of the critical exponents at melting η(Tm) and η6(Ti)
are used to estimate the transition temperatures Tm and Ti .
Next, in Sec. VI, we present our results on the correlation
function associated with bond-orientational order above Ti

and determine the temperature-dependent correlation length
ξ6(T ). In the same section, we demonstrate finite-size scaling
of �2

6 . A similar presentation is given in Sec. VII for the pair
distribution function and the correlation length of translational

order ξ (T ). In addition, we present our findings for the scaling
behavior of the second moment of �2

G in this same section.
Section VIII presents an analysis of the melting transition
using Binder’s cumulant ratio20 for each order parameter, and
also includes a discussion of finite-size scaling theory in the
presence of multiple correlation lengths. Finally, in Sec. IX,
we give a brief summary of our main findings and conclusions.

II. SIMULATION DETAILS

In the Lennard-Jones potential, for two particles separated
by a distance r ,

V (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]

, (1)

an attractive inverse 6th-power tail is combined with a
repulsive inverse 12th-power hard core, such that there are
only two parameters: ε, the potential well depth, and σ , the
hard-core diameter. However, our results can be inferred for
any particular value of these parameters (for a specific real
system) since, in our calculations, distance is measured in
units of σ and temperature in units of ε/kB .

In our calculations we have truncated the Lennard-Jones
potential at a distance of 3σ , and shifted the value of the
potential within this cutoff distance by a constant so that
the resulting potential approaches zero at 3σ (matching the
values beyond 3σ ). This truncation is justified because the
Lennard-Jones potential is already quite small (−0.005ε) at
this distance, and is not expected to significantly affect the
accuracy of our simulations. Additionally, by using a cutoff
distance, we are able to use a cell list structure in our algorithms
so that our computations scale as O(N ) instead of the O(N2)
scaling without a cutoff distance (N is the number of particles
in our simulation cell).

We have collected data for systems of 1600, 6400, and
25 600 particles over a wide temperature range at a density of
0.873. Additionally, we have simulated a system of 102 400
particles for three temperature values at the same density in
order to verify our results for the smaller system sizes. To
accommodate the expected low-temperature triangular solid
phase, a periodic simulation cell of proportion 2:

√
3 is used.

We have performed our calculations on the Florida State Uni-
versity shared High-Performance Computing facility, which
contains several thousand computer nodes. The processors on
these nodes range in speed from 2.3 to 2.8 GHz, and it takes
about 34 hours to perform 1 000 000 Monte Carlo sweeps
for N = 25 600 particles, including calculating observables
every 100 Monte Carlo sweeps (MCS). We have found that,
except for the N = 102 400 particle system, 1 000 000 MCS
are sufficient to reach equilibrium, even near the critical
points. The data presented here are obtained over one million
MCS, after a period of one (for N = 102 400) or two (for
N = 1600, 6400, and 25 600) million MCS of equilibration.

To take advantage of our computational resources, we
utilized a trivially parallel Monte Carlo implementation of 100
threads, each with a unique random number seed and initial
configuration. Simulations begin from an initial near-ordered
configuration (particles are placed in a triangular lattice,
with 5% lattice spacing random fluctuations). Statistics for
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thermodynamic variables are collected by generating averages
on each of the 100 parallel threads; then, by using the central
limit theorem, we obtain the total average, as we have 100
independent means.

Although in our preliminary studies we have computed
thermodynamic quantities for a range of densities and temper-
atures, the effects of critical slowing down near the melting
transition and our desire to study the largest possible systems
have led us to focus on a single density 0.873 (all densities
are in units of particles per σ−2). This density was chosen
for several reasons. This is a density that could be readily
compared to prior numerical simulations of Lennard-Jones
melting.15 Also, we wanted a density that is relatively low, but
large enough to avoid the solid-vapor coexistence phase at low
temperatures. Strictly speaking, there is a solid phase in the
zero temperature limit only at densities of 0.9165 (the density
at which the spacing of the triangular lattice is the same as the
position of the Lennard-Jones potential minimum) and above.
Below this density, there is a solid-vapor coexistence phase.
However, the triple point density is roughly 0.82, so at higher
densities the system will in general become solid before the
onset of melting occurs.8

III. ROLE OF DEFECTS

A. Defect types

In two dimensions, the densest packing of particles of
uniform size is achieved in a triangular lattice. In such a
configuration, each particle has exactly six nearest neighbors.
Thermal fluctuations will lead to distortions in the lattice,
or even destroy it completely. To quantify this, we use the
Delaunay triangulation to determine the nearest-neighbor
network of our particle configurations. The nearest-neighbor
network tells us the number of nearest neighbors, or coor-
dination number, of each particle. For a system of particles
in a periodic plane, the average coordination number is
always six.21 Particles in a triangularly ordered region will
be 6-coordinated, while disruptions in the lattice will lead to
particles with coordination numbers greater than or less than
six. A defect is defined as any coordination number other
than six. These non-6-coordinated atoms may be thought of
as disclinations of charge n, with their coordination number
being 6 + n.

The most common type of disruption, or defect, is a
5- or 7-coordinated particle. These may be interpreted as
disclinations of charge plus or minus one. Two oppositely
charged disclinations may be thought of as a dislocation. More
complex arrangements of disclinations are possible, such as
dislocation pairs and grain boundary loops, but in our analysis
we have only considered individual defects. The defect fraction
fd = 1 − N6/N is defined as the fraction of particles that do
not have six neighbors, where N is the number of particles in
the system, and N6 is the number of 6-coordinated particles in
the system. Remembering that dislocations are made of two
bound disclinations of opposite charge, and that dislocations
become unbound above the melting point, we can expect the
defect fraction to experience a jump at the melting point.21

Additionally, at low temperatures, we can expect an energy
gap to occur, which is the energy cost to create a dislocation
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FIG. 1. (Color online) The Delaunay triangulation for N = 1600
particles at T = 0.70. Defects are shown in red.

pair. Because the overall disclinicity of the system must be
zero, as well as the net Burgers vector of any dislocations, the
lowest-energy defect excitation is a dislocation pair of opposite
Burgers vectors. In practice, this is usually two pairs of 5- and
7-coordinated particles. This leads to an exponential behavior
in the defect fraction fd = e−β�, where � is the lowest energy
for a defect-type excitation of the system.

B. Unbinding of defects

In Figs. 1, 2, and 3, the Delaunay triangulated configuration
of a 1600 particle system is shown at temperatures 0.7, 0.9,
and 1.1, respectively. The defects are shown in red. At low
temperature as demonstrated in Fig. 1, we see that defects
occur in quadruplets consisting of two 5-coordinated and
two 7-coordinated particles. As the temperature is raised to
0.9 (Fig. 2) ,we can see isolated dislocations (one 5-fold-
coordinated atom bound to a 7-fold-coordinated atom). At
yet higher temperature, such as 1.1 (Fig. 3), we can observe
isolated disclinations.

This can also be seen in the pair distribution functions
g77(r), g55(r), and g57(r) for pairs of 7-coordinated particles,

 0

 5

 10

 15

 20

 25

 30

 35

 0  5  10  15  20  25  30  35  40  45

FIG. 2. (Color online) The Delaunay triangulation for N = 1600
particles at T = 0.90. Defects are shown in red.
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FIG. 3. (Color online) The Delaunay triangulation for N = 1600
particles at T = 1.10. Defects are shown in red.

pairs of 5-fold-coordinated atoms, and for (5-fold–7-fold)–
coordinated atoms, respectively. In Fig. 4, a sharp peak in
g77(r) is observed at low temperatures (T = 0.70), indicating
that dislocations are tightly bound. At higher temperatures
(T = 0.90 and 1.10), the peak in g77(r) is greatly diminished,
and dislocations become first weakly bound (T = 0.90)
and then completely unbound (T = 1.10). g55(r), while not
shown, behaves qualitatively similar to g77(r), as both are
representative of the pair distribution of dislocations.

The pair distribution function for disclinations g57(r) is
shown in Fig. 5. While the sharp peak at low (T = 0.70)
and intermediate (T = 0.90) temperature is expected, the
peak at T = 1.10, while quite lower, is still very substantial.
This indicates that disclinations have not become completely
unbound, and indeed it is difficult to find isolated disclinations
in the snapshot configurations presented in Fig. 3. When
isolated disclinations do occur, they are still next-nearest
neighbors with at least one other disclination of opposite
charge.
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FIG. 4. (Color online) The pair distribution function for 7-
coordinated particles g77(r). The peak for T = 0.70 extends to ∼ 50.
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FIG. 5. (Color online) The pair distribution function for pairs
consisting of one 5-coordinated particle and one 7-coordinated
particle g57(r). The peak for T = 0.70 extends to ∼ 150.

C. Defect fraction

According to the KTHNY theory, disclinations remain
very tightly bound below Tm. Above Tm, the disclinations are
screened from one another by the presence of free dislocations
yet remain bound, albeit by a weaker logarithmic binding.3

Thus, we expect a proliferation of defects to occur around Tm,
and to continue growing until somewhere above Ti , where a
saturation should occur. In Fig. 6, we show the average defect
fraction as a function of temperature. At low temperature,
there are very few defects, while at high temperature, there
is a considerable fraction of the system that is defected. In
between, there is a region of rapidly increasing defect fraction,
from T = 0.8 to 1.0. This can be quantitatively verified by
calculating the temperature derivative of the defect fraction,
which is indeed found to have a broad peak in this temperature
region. The overall shape of dfd (T )/dT is very similar to that
of the specific heat capacity, to be shown next. Additionally,
we can see some size dependence in the region 0.6 < T < 1.0,
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T
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N=25600
N=102400

FIG. 6. (Color online) Fraction of defects fd as defined by the
fraction of non-6-coordinated particles in the Delaunay triangulation
fd = 1 − N6/N . The rapid rise in fd from near zero to almost 25%
is a possible sign that dislocation and/or disclination unbinding is
occurring.
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FIG. 7. (Color online) The presence of a peak in the specific heat
is indicative of a phase transition. Interestingly, the peak near T = 0.9
appears to lessen in magnitude as the system size is increased.

although this seems to be an issue mostly for comparisons of
the smallest system size (N = 1600) to the larger system sizes.

The specific heat per particle at constant volume cV can be
calculated from the energy fluctuations

cV = 1

N

〈E2〉 − 〈E〉2

kBT 2
, (2)

where E is the total energy of an N -particle system. We
have calculated the specific heat and show it as a function of
temperature in Fig. 7. One can see a broad peak in the specific
heat per particle. According to the KTHNY theory, there
should be an essential singularity in the specific heat at both
Tm and Ti

3. However, it is not clear whether this will be visible
above background contributions to the specific heat. Either
way, the peak in specific heat points to a rearrangement of
order in the systems studied. Also, if we look at the distribution
function (Fig. 8), we see ordering at low temperatures and fluid
behavior at high temperatures. Overall, it is clear that there is
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FIG. 8. The distribution function shows ordering at low temper-
atures, as shown above for T = 0.50, while at higher temperatures,
such as T = 2.00 shown above, there is a loss of order over moderate
length scales.

TABLE I. Defect activation energy for various system sizes and
temperatures, as computed using the Arrhenius law. The numbers in
parentheses are the uncertainty of the trailing digits.

Temperature N = 1600 N = 6400 N = 25 600

0.50 1.499 46(30) 1.4919(19) 1.4873(14)
0.55 1.502 67(85) 1.4884(31) 1.4778(22)
0.60 1.4996(14) 1.4635(43) 1.4252(31)
0.65 1.4872(26) 1.3908(59) 1.3480(29)
0.70 1.4543(30) 1.2795(49) 1.2835(15)
0.75 1.3640(54) 1.2027(19) 1.2390(26)

a phase transition occurring, with a disordered fluid state at
high temperatures and an ordered state at low temperatures.

D. Defect excitation energy

In the KTHNY theory, dislocations are bound at low
temperatures, and there is a defect core energy associated with
their creation. This leads to an energy gap, and thus using the
Arrhenius law, we expect fd = e−2Ec/kBT , where we have used
2Ec because dislocation pairs are the lowest energy excitation
(isolated dislocations are forbidden). In Table I, we show the
defect activation energy as calculated by the Arrhenius law at
low temperatures. Taking the low-temperature limit, we find
Ec = 1.49 ± 0.01.

IV. ORDER PARAMETERS

A. Definition and temperature dependence

Let us define a global order parameter of translational order

� �G = 1

N

N∑
j=1

exp(i �G · �rj ), (3)

where �G is a reciprocal lattice vector and �rj is the position
vector of particle j . If there is translational ordering in a
system, then clearly � �G will be nonzero if �G is a reciprocal
lattice vector of the appropriate lattice geometry. Due to
the shape of our simulational cell, at low temperatures this
will be a triangular lattice with nearest neighbors in the
x direction. At high temperatures, no translational ordering
is present, and all possible values of �G should give the same
(qualitative) result. However, at intermediate temperatures, it
may be possible for there to be some degree of translational
ordering that is not strictly commensurate with our simulation
cell. Indeed, we have observed “canted” solid phases at
intermediate temperatures, where we find partial triangular
order with nearest neighbors in a direction titled from the
x axis by a small angle. In this case, if �G for the triangular
order commensurate with our simulation cell is used, � �G will
be found to be zero. However, if we use an appropriate �G for the
order present, � �G will be found to be nonzero. For this reason,
we define the true translational order to be the maximum value
of � �G for all �G. In practice, it is not possible to perform this
optimization for each Monte Carlo configuration, so we make
the following assumptions. First, due to the nature of ordering
in two dimensions, we assume any lattice will be triangular.
Second, because the density of particles is fixed, we assume
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the lattice spacing in said triangular solid to be the same as that
for the commensurate cell. Thus, we keep the magnitude of �G
constant, and simply determine the direction of solid ordering
for each configuration by looking at the average bond direction
between nearest-neighbor particles. This turns out to be a good
estimate of the true translational order for a system, but it must
be remembered that it is strictly speaking a lower bound. This
measured lower bound will be referred to as �G, where the
lack of a vector sign on G indicates that this value is not based
on any single direction of the reciprocal lattice vector �G.

The local order parameter that measures the degree of
6-fold-orientational ordering is defined as

ψ6(�ri) = 1

n(i)

n(i)∑
j=1

ei6θij , (4)

where θij is the angle of the bond between particles i and j

and the sum over j extends over all n(i) nearest-neighboring
atoms found by the Delaunay triangulation. The global order
parameter associated with bond-orientational order is obtained
as an average over all particles

�6 = 1

N

N∑
i=1

ψ6(�ri). (5)

In a perfectly bond-ordered triangular solid, we have that
n(i) = 6 and θij = π/3 for all j = 1, . . . ,6. In such a case,
|〈�6〉| = 1. In the low-temperature phase, there is bond-
orientational order, so 〈�6〉 should be a point on the perimeter
of a circle with a radius approaching unity as T → 0. In the
hexatic phase, there is quasi-long-range bond-orientational
order, which implies that the distribution of 〈�6〉 should
become a ring in the imaginary plane. In the isotropic phase,
both 〈�6〉 and 〈� �G〉 should be distributed around zero value.

In the top panel of Fig. 9, we show the second moment
of the translational order parameter �2

G. There appears to
be a transition from a translationally ordered phase at low
temperatures to a disordered phase at higher temperatures. In
the ordered phase, there is a clear relation between �2

G and
system size. We will explore this relation in a later section, but
for now let us point out that this finite-size scaling relation
begins to break down above T = 0.60. This is expected
within the KTHNY theory of melting due to the unbinding of
dislocations. However, on closer inspection, the behavior of the
curves for N = 6400 and 25 600 in the region 0.6 < T < 0.8
is not a smooth connection of the data at higher and lower
temperature. This is due to our measured quantity �G being a
lower bound of translational order.

Also shown in Fig. 9 is the second moment of the
bond-orientational order parameter �2

6 (bottom panel). At
low temperatures, there is substantial bond-orientational order.
Below T = 0.70, there is very little dependence of �2

6 on
system size. As the temperature is increased, �2

6 begins to
show a marked dependence on system size as well as a
steep decline in value as we approach the high-temperature
disordered phase.
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FIG. 9. (Color online) The second moment of the translational
(top) and bond-orientational (bottom) order parameters.

B. Order parameter distribution

The main prediction of Halperin and Nelson2,3 and Young4

is that if two-dimensional melting is the result of dislocation
unbinding, as proposed by Kosterlitz and Thouless,1 then a
second unbinding transition (of disclinations) is required to
reach an isotropic fluid state. This implies the presence of a
hexatic fluid phase. In Fig. 10, we show an intensity plot of the
distribution of �G and of �6 on the complex plane for three
different temperatures.

At T = 0.70 (Fig. 10, top row), our calculation of the
distribution of the order parameters finds a ring of values
for �G, while �6 is localized in a small region away from
the origin (a very narrow peak showing as a “star” along the
positive real axis). This is consistent with the presence of long-
range bond-orientational order (|〈�6〉| > 0), while the ring
of �G values is expected for quasi-long-range translational
order. At T = 0.90 (Fig. 10, middle row), we note that �G

is clustered about the origin, indicating a lack of translational
order. Interestingly, �6 now shows a ring of values about the
origin, indicating quasi-long-range order. This is exactly what
is expected of the hexatic fluid phase. Finally, at T = 1.10
(Fig. 10, bottom row) we see that both order parameters are
distributed about the origin, indicating an isotropic fluid phase
of no order.
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FIG. 10. (Color online) Intensity plots of the probability of �G

(left column) and �6 (right column) on the complex plane for T =
0.70 (top row), T = 0.90 (middle row), and T = 1.10 (bottom row).

V. CRITICAL EXPONENTS

In the topological solid phase, the scaling form for
the second moment of the translational order parameter is
〈�2

G〉 ∼ L−η, where L is the (linear) system size and η is a
critical exponent. In the hexatic fluid phase, a similar relation
holds for bond-orientational order 〈�2

6 〉 ∼ L−η6 . According
to the KTHNY theory of melting, the critical exponents η

and η6 will have specific values at melting. The translational
critical exponent is bounded at lower melting temperature:
1/4 < η(Tm) < 1/3. Additionally, the bond-orientational crit-
ical exponent grows from zero at Tm to 1/4 at Ti , and is
related to the translational correlation length: η6(T ) ∼ ξ (T )−2

(Ref. 3).
By plotting 〈�2

G〉 (or 〈�2
6 〉) versus L on a log-log plot, we

can find η (or η6). To demonstrate the validity of this scaling
law and that our results are not limited by system size, in
Fig. 11 we plot 〈�2

6 〉 versus ln L for all system sizes at the
three temperatures where we have results for the N = 102 400
system. Results of linear least-squares fits to the three smallest
system sizes (used to generate the data for Fig. 12) are shown
as a dotted (blue) line (for data at T = 0.80), a dashed (red) line
(for data at T = 0.84), and a long-dashed (green) line (for data
at T = 0.92). For the highest temperature, the N = 102 400
data fall directly on this line, within error bars. At T = 0.80
and T = 0.84, however, the N = 102 400 data indicate that
smaller values for η6 may be necessary. This could either be
due to the (presumably) large translational correlation lengths
at this temperature, which would invalidate results for small
system sizes, or perhaps a very long relaxation time. Either
way, from our data it is clear that, by T = 0.92, the KTHNY
value of η6 at Ti has been well passed.

3 3.5 4 4.5 5 5.5 6
ln L

-2.5

-2

-1.5

-1

-0.5

ln
 <

Ψ
62 >

T=0.80
T=0.84
T=0.92

FIG. 11. (Color online) Scaling of < �2
6 > with system size

L, shown on a logarithmic plot. Results are shown at T = 0.80 (blue
circles), T = 0.84 (red squares), and T = 0.92 (green diamonds). The
data for the three smaller systems were fit to the equation ln < �2

6 >=
−η6 ln L + const, and the result is plotted as the dotted, dashed and
long-dashed lines (the solid line is the KTHNY value of η6 at Ti).
In all cases, the value of ln < �2

6 > of the largest system size (N =
102400) is reasonably close to the value expected from scaling.

In Fig. 12, we show the extracted values of η and η6,
the critical exponents of translational and bond-orientational
order. In both panels, we show our results as (red) circles. In the
top panel, we can see that η crosses the KTHNY melting value
in the temperature range 0.6 < T < 0.65. In the bottom panel,
we show the critical exponent of bond-orientational order η6.
This exponent crosses the KTHNY melting value (see dashed

0.5 0.6 0.7 0.8 0.9 1
T

0.1

0.2

0.3

0.4

0.5

0.6

η(
T

)

0.5 0.6 0.7 0.8 0.9 1
T

0

0.1

0.2

0.3

0.4

0.5

η 6(T
)

FIG. 12. (Color online) Anomalous dimensionality of (top) the
translational order parameter and (bottom) the bond-orientational
order parameter. Our current results are shown in both figures as
red circles. Shown for comparison are the results of Udink and van
der Elsken (Ref. 15) (blue triangles, both figures). In the top figure,
the dashed and dotted lines represent the lower and upper bounds of η

at Tm, according to KTHNY theory; in the bottom figure, the dashed
line represents the predicted value of η6 at Ti .
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line) at a temperature near 0.89, in close agreement with the
value for Ti derived from the divergence of the correlation
length ξ6 obtained in the next section. This value for Ti is
also in good agreement with the value reported in Ref. 22.
However, in Fig. 12, we also show the algebraic exponents
reported by Udink and van der Elsken.15 In both panels, we can
see that their values cross the KTHNY melting zone at higher
temperatures than our values. We believe this disagreement
may be due to insufficient thermalization time in their study,
as this could lead to artificially low values of the critical
exponents. We should sound a note of caution here in regard
to the scaling of 〈�2

G〉. Because our measurements for �2
G

are lower bounds, it is possible that the extracted exponents
η(T ) are not correct in the temperature regime where �G is no
longer commensurate with the simulation cell, as is the case
for T > 0.6.

VI. CORRELATION FUNCTIONS

The correlation function for bond-orientational order is
given by

C6(r) = 〈ψ6(r)ψ∗
6 (0)〉, (6)

where ψ6(�r) is the local bond-orientational order parameter
defined in Sec. IV. In the isotropic fluid phase, the asymptotic
form of C6(r) is ∼ exp(r/ξ6)3. At shorter distances, however, a
power-law decay comes into play such that as ξ6 diverges as Ti

is approached from above, then the asymptotic form becomes
C6(r) ∼ r−η6 at Ti and below, with η6(Ti) = 1/4. Additionally,
we observe oscillations in C6(r) that seem to decay with an
exponential envelope. Thus, we used the following fitting form
for the bond-orientational correlation function for distances r

much less than the system size L:

C6(r) = A
e−r/ξ6

rη6
+ B sin(kr + δ)

e−r/ξ

rη
. (7)

We have used a particle-centric definition of the bond-
orientational correlation function, so in our calculations of
C6(r) there will be an influence from g(r), the pair distribution
function. In the limit of perfect bond-orientational ordering
(ψ6 = 1 everywhere), C6(r) and g(r) will be equivalent.
We approximate the oscillatory portion of C6(r), which is
due to the translational atomic arrangement using a damped
oscillator. The periodic form is captured by using sin(kr + δ),
where k is expected to be near the first reciprocal lattice vector
in magnitude (∼ 6) and δ is just a phase-shift parameter. The
size of the oscillations is expected to decay exponentially in the
fluid phase, and algebraically in the hexatic phase, so we add
also a power law, ending up with a term sin(kr + δ)r−ηe−r/ξ .
An example fit is shown in Fig. 13. Note that the fitting
procedure returns parameters much more precise than the error
bars in Fig. 13 would indicate are possible. This is due to
the high degree of correlation between neighboring points of
C6(r). In fact, up to a separation of 3, the values of C6(r) are
still 99% correlated! This simply means that the relative form
(including the rate of decay) of C6(r) is consistent between our
various calculations, remembering that we average the values
of 100 independent parallel Monte Carlo simulations.

We wish to note that we observe an upturn in C6(r) as
r approaches L/2. At temperatures closer to melting (larger

32 34 36 38 40 42 44 46 48
r

0.03

0.035

0.04

0.045

0.05

0.055

C
6(r

)

FIG. 13. (Color online) Example of fitting the bond-orientational
correlation function C6 to the form shown in Eq. (7). The data are
for N = 25 600 particles at T = 0.97. The critical exponents are
fixed at their maximum values η = 0.33 and η6 = 0.25. The extracted
correlation lengths are ξ = 7.40 ± 0.19 and ξ6 = 32.6 ± 0.7.

correlation lengths), the upturn occurs further from L/2. Next,
we would like to determine a characteristic distance R for a
given finite system of linear dimension L so as to stay away
from this upturn due to finite-size effects. Namely, we wish to
limit the range of r in our fit of the correlation function to the
form given by Eq. (7) in the range ξ6 < r < R. Let us assume
a periodic form for the correlation function

C6(r) = A

(
exp(−r/ξ6)

rη6
+ exp[−(L − r)/ξ6]

(L − r)η6

)
. (8)

Neglecting the power-law term, the upturn is expected to occur
when the L − r terms are a significant fraction of the r terms.
Thus,

R = L

2
+ ξ6

2
ln(x), (9)

where R is the distance at which the L − r terms are a fraction
x of the r terms. Using x = 0.05 or 5%, this leads to

R = L

2
− 3ξ6

2
. (10)

In Fig. 14, we show ξ6(T ) as determined by fitting C6(r) in
the range ξ6 < r < R. These values were fit to the KTHNY
form of the expected divergence of ξ6 as Ti is approached
from above: ξ6(T ) = A exp(b/tν), where t = (T − Ti)/Ti and
ν = 1/2. This fit gives a value for Ti near 0.89.

Using the calculated correlation length and critical ex-
ponent η6, in Fig. 15 we plot the dimensionless quantity
Lη6〈�2

6 〉 as a function of the dimensionless ratio ln(L/ξ6) for
all size lattices considered here. Notice that the data collapse
onto the same scaling function using the same values of the
parameters for our fit to ξ6(T ) shown in Fig. 14, and also
setting η6 = η6(Ti) = 1/4. This provides additional support
for the theory.
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FIG. 14. (Color online) Correlation lengths of the bond-
orientational order parameter as determined by fitting the bond-
orientational correlation function to the form mentioned in the text.

VII. DISTRIBUTION FUNCTIONS

In the disordered phase (T > Ti), the distribution function
can be obtained as an angular average of the bond-orientational
correlation function C �G(�r) as

g(r) = 1 + 1

2π

∫ 2π

0
ei �G·�rC �G(�r)dφ. (11)

The integration of ei �G·�r will give us a zeroth-order Bessel func-
tion of the first kind, J0(Gr), and by using the KTHNY form of
the translational correlation function C �G(�r) ∼ exp(−r/ξ )r−η,
we wind up with the following form for the radial pair
distribution function (in the high temperature limit):

g(r → ∞) = 1 + AJ0(Gr)e−r/ξ r−η, (12)

where A is some amplitude.
The �G that we use here is the same as in the definition

of the translational order parameter, namely, we use the first
reciprocal lattice vector of the idealized triangular lattice that

-8 -6 -4 -2 0 2 4
ln L - bt

-ν

0

0.2

0.4

0.6

0.8

L
η

<
Ψ

62 >

N=1600
N=6400
N=25600
N=102400

b=1.27619

T
i
=0.887682

η6=0.25

ν=0.5

FIG. 15. (Color online) Demonstration of finite-size scaling by
plotting the dimensionless quantity Lη6 〈�2

6 〉 versus ln(L/ξ6), i.e., the
logarithm of the ratio of the finite system size to the correlation length,
for various size systems.

16 18 20 22 24 26 28 30 32
r

0.98

0.99

1

1.01
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g(
r)

FIG. 16. (Color online) Example of fitting the pair distribution
function g(r) to the form shown in Eq. (13). The data are for
N = 25 600 particles at T = 0.97. The critical exponent η is fixed
at its maximum value 1/3. The extracted correlation length is ξ =
8.09 ± 0.04.

is commensurate with our simulation cell. For the density
considered (ρσ 2 = 0.873), this means G 
 6.3 σ−2. Thus,
Gr is quite large for moderate values of r , and we can
use the asymptotic expansion of J0, namely, J0(x → ∞) =√

2/πx cos(x − π/4). Thus, in practice, we fit g(r) in the
disordered phase to the form

g(r → ∞) = 1 + A cos(kr + δ)
e−r/ξ

rη+1/2
. (13)

An example fit is shown in Fig. 16. In Fig. 17, we show the
correlation length of translational order as calculated by fitting
g(r) to the above form. Results are shown for the N = 25 600
and 102 400 particle systems. Clearly, ξ remains finite even as
the orientational correlation length diverges. However, there
are some discrepancies in our values of ξ . At T = 0.92, the
value of ξ extracted from the N = 25 600 particle system does
not agree with the value for N = 102 400 particles.

We believe that some of this difference may be attributable
to finite-size effects. Additionally, there is also the possibility
that the N = 102 400 particle system has not fully thermalized.
While we have tried to ensure that the data for this largest
system are completely thermalized, it can be very difficult
to distinguish between stable and metastable states. In either
case, we can not consistently fit all the data to the KTHNY
form ξ = A exp(b/tν), so instead we have made the fit for
only the N = 25 600 data. The result of a fit with Tm = 0.61,
A = 0.003 11, and B = 6.62 using ν = 0.369 63 is shown in
Fig. 17 as the red curve. In addition, a few other curves are also
shown for different values of these parameters with the same
value of Tm = 0.61, the significance of which is discussed
next.

In Fig. 18, we show the approximate validity of finite-size
scaling by plotting the dimensionless quantity Lη〈�2

G〉 versus
ln(L/ξ ), i.e., the logarithm of the ratio of the finite system
size to the measured correlation length, for two different size
systems using the lower bound of η = 0.25 according to the
KTHNY theory, namely, 1/4 < η < 1/3. The best collapse
is obtained for the parameters A = 0.021 92, B = 4.89, and
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FIG. 17. (Color online) Correlation lengths of the translational
order parameter as determined by fitting the pair distribution function
to the form mentioned in the text. The range of the fit is from 2ξ to
4ξ , with η fixed at its maximum value of 1/3. At T = 0.80, the fitting
range is from ξ to 2ξ . The solid lines are obtained from the KTHNY
form ξ = A exp(b/tν), using ν = 0.369 63 and various values of the
other parameters. Our best fit corresponds to the red curve.

Tm = 0.61 shown as the top curve in Fig. 18. (Note that
we have used the constraint Tm > 0.6 as indicated by the
behavior of the critical exponent η.) By using the values of
the parameters obtained for this “best” collapse, we obtain the
curve for ξ (T ) shown as a green line in Fig. 17. The collapse
obtained by using the parameters obtained by the best fit to the
correlation length (corresponding to the red curve in Fig. 17)
is shown as the graph at the bottom. We have also included two
more fits of both types of data, obtained by using parameter
values between the above two extremes. We can observe that,
while we do not obtain the best fit of both sets of data
[i.e., collapse of Lη〈�2

G〉 versus ln(L/ξ ) (Fig. 18)], and the
temperature dependence of ξ (T ) (Fig. 17) for the same values
of these parameters, we see that the values of Tm and b are
close, only the prefactor A can not be accurately determined.
We feel that the overall quality of fit is reasonable given the
fact that we had the difficulty discussed above in determining
the correlation length associated with translational order.

Several experimental investigations23,24 have used the
decay of the envelope of g(r) to extract ξ . The resulting values
of ξ appear not to diverge across the melting transition, so
perhaps there is some shortfall in using g(r) to get ξ at low
temperature. For instance, Murray and Van Winkle observe a
finite peak in ξ , while for ξ6 a divergence is seen to occur.23

Regardless of these differences, if we plot the results for
ξ (T ) on the same plot with the results for ξ6(T ) as shown in
Fig. 19, we see clearly that these two correlation lengths are
very different and the differences between these various fitting
forms for ξ are not significant on this scale.

VIII. BINDER RATIOS

A central concept in finite-size scaling theory is that any
dimensionless quantity should be a function of dimensionless
ratios of the finite-size length (L) of the system to the
correlation length ξ (T ), which emerges naturally and it

diverges near the critical point.25 Therefore, close enough to
the critical point, a dimensionless quantity becomes a scaling
function f (L/ξ ). At precisely the critical point, where the
correlation length diverges, all dimensionless quantities are
expected to be independent of the system size.

A straightforward way to construct a dimensionless variable
is to take the ratio of cumulants. A simple nontrivial ratio
is the so-called Binder ratio20 of the fourth and second
cumulants, U (x) = 1 − 〈x4〉/(3〈x2〉2). As mentioned above,
this (dimensionless) variable is expected to be system size
independent at a critical point. Hence, if the values of U (x) for
several system sizes are plotted across a continuous phase
transition, they should cross at the critical point. This is
the standard way of estimating, for example, the critical
temperature of a thermal phase transition using the method
of Binder ratios.

In the case of melting in two dimensions, however, we have
seen that there are two correlation lengths: one for translational
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FIG. 18. (Color online) Demonstration of finite-size scaling by
plotting the dimensionless quantity Lη〈�2

G〉 versus ln(L/ξ ), i.e.,
the logarithm of the ratio of the finite system size to the measured
correlation length, for the two size systems, using η = 1/4 and for
various parameters. Due to our calculation of 〈�2

G〉 being a lower
bound translational order, only data for T > 0.8 are shown.
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FIG. 19. (Color online) Correlation lengths of the translational
order parameter are compared to ξ6(T ).

order and another for bond-orientational order. Clearly, if we
approach very close to either Ti or Ti , only one of these two
correlation lengths dominates. For example, if we approach
Tm sufficiently close from above, ξ becomes very large and
ξ6 is infinite. Thus, there is only one finite correlation length.
When we approach Ti from above, both ξ6 and ξ are finite,
but if we are sufficiently close to Ti , ξ6 � ξ , we can neglect
the influence of ξ . In practice, however, because ξ6 grows
very rapidly as the temperature Ti is approached and we can
only study finite-size systems, the size of ξ is not necessarily
negligible as compared to the size of ξ6. This implies that the
scaling function becomes f (L/ξ,L/ξ6). As we have shown in
the previous section, ξ is still finite when ξ6 diverges at the
upper critical temperature Ti . Thus, the Binder ratio would only
be expected to have a crossing at Ti if ξ � L, which is not the
case for the system sizes we have considered [ξ (Ti) ≈ 20, half
the length of the smallest system size]. However, depending
on the exact form of the scaling function, there may still be a
crossing in the vicinity of Ti .
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FIG. 20. (Color online) Binder ratio of the bond-orientational
order parameter (lines are guides for the eye). The inset shows U (�6)
near the crossing temperature Tc.

Looking at the Binder ratio in Fig. 20, we can see that
there is an apparent crossing of U (�6) at Tc = 0.92 ± 0.01.
Although our statistical uncertainty is too great to identify
the system-size dependence of the Binder ratio crossing
(see inset), the finite-size scaling theory outlined above
indicates that Tc should approach Ti when ξ � L. Thus,
while we could use the value of Tc as an estimate of Ti , the
method obtained earlier for critical exponents is expected to
yield more accurate results to the system sizes considered
here.

While we have also calculated U (�G), the shortfalls of
our estimator for translational order in the temperature region
0.6 � T � 0.8 lead to an inconclusive analysis of the Binder
crossing.

Lastly, let us point out that the finite-size scaling theory
discussed in this section should be applicable to any dimen-
sionless parameter. In Sec. VI, we demonstrated the scaling
collapse of the quantity Lη6〈�2

6 〉 when plotted as a function
of L/ξ6. In light of the analysis above, it is clear that we have
neglected the ξ dependence of this dimensionless quantity.
In Fig. 17, we can see that, for T > 0.95, ξ is more or
less constant (ξ ≈ 8). But as Ti is approached, ξ increases
more rapidly, such that ξ (Ti) ≈ 20. This could explain the
scatter seen in the scaling collapse of Lη6〈�2

6 〉 shown in
Fig. 15.

IX. CONCLUSIONS

We have shown that several key predictions from the
KTHNY theory of two-stage continuous melting are seen in the
classical system of Lennard-Jones particles in two dimensions.

First, by using Delaunay triangulation, we can define
disclinations and dislocations and this allows us to investigate
the role of defects in the 2D melting process. We can
clearly observe at low temperature that disclinations of 5-fold-
coordinated atoms and disclinations of 7-fold-coordinated
atoms are bound into dislocations which themselves are
bound into dislocation pairs. Near Tm we begin to see
unbound dislocations and, at a higher temperature, we begin
to observe unbinding of disclinations. The derivative with
respect to temperature of the total defect fraction exhibits a
broad peak near T ∼ 0.9 very similar to the specific heat
peak. Near this temperature we find that the short-range
peak (main peak) of the pair distribution function of the
5-fold-coordinated atoms and that of the 7-fold-coordinated
atoms greatly diminishes. The pair distribution function of
(5-fold–7-fold)–coordinated particles also decreases greatly
at roughly the same temperature.

We calculated the distribution of the order parameters
�G and �6 on the complex plane. Below Tm, we see
the characteristic “Mexican hat”-like circularly symmetric
distribution for �G, i.e., while the magnitude of �G is finite
below Tm, its phase fluctuates, causing the system to lose
its translational order. The orientational order parameter �6,
however, remains frozen to a particular direction below Tm

because the system is large enough to allow, for all practical
purposes, for such a spontaneous symmetry breaking. In
the temperature range Tm < T < Ti , the Mexican-hat-like
distribution of �G collapses to a distribution around zero,
while the distribution of �6 becomes Mexican-hat-like. This
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could serve as a textbook description of the hexatic order. For
T > Ti , the distribution of both �G and �6 are centered around
zero value.

We also calculated the temperature dependence of the
second moment of the above two order parameters for various
size systems and, from the size dependence of the results,
we have extracted the anomalous dimensions, i.e., the critical
exponents η and η6.

Furthermore, we calculated the correlation functions CG(�r)
and C6(�r) of the order parameters �G and �6, respectively. We
find that both are controlled by two characteristic correlation
lengths, one is ξ (T ), which characterizes the decay of the
correlation of the atomic positions and the other is ξ6(T ),
which provides the decay of the bond-orientation correlations.
We demonstrate that we can accurately extract both ξ (T )
and ξ6(T ).

We find that the two correlation lengths ξ6(T ) and ξ (T )
have very different temperature dependence, each diverging
as we lower the temperature at two different characteristic
critical temperatures Ti and Tm, respectively, obtained by
fitting the calculated correlation length to the forms suggested
by KTHNY theory. Furthermore, by using the calculated
correlation length and critical exponent η6, we find that
the dimensionless quantity Lη6〈�2

6 〉 as a function of the
dimensionless ratio ln(L/ξ6) for all size lattices considered

here collapse onto the same scaling function. A similar
conclusion is also reached for the finite-size scaling of the
corresponding quantities related to the translational order, i.e.,
Lη〈�2

G〉 versus ln(L/ξ ). This provides additional support for
the KTHNY theory.

Some criticisms can be raised against our results and
conclusions obtained by a computer simulation, such as the
possible unknown role of finite-size effects as well as the
presence of very large equilibration time scales in these types
of simulations. In order to minimize this type of critique as
much as possible, our calculations, which took over a year
of collecting data on a high performance cluster discussed in
Sec. II, were tested using various equilibration criteria as well
as various different finite-size scaling techniques. Finite-size
scaling of different observables led to data collapse using the
same critical exponents and critical temperatures, and the val-
ues of the scaling forms and critical exponents are in agreement
with the KTHNY theory of two-stage melting. In addition, we
have shown that the distribution of the order parameters �G

and �6 on the complex plane (Fig. 10) provides “textbook”
evidence for the existence of the hexatic phase. The present
calculation can not rule out a first-order phase transition at
higher densities, namely, that the Lennard-Jones system might
have a phase diagram such as the schematic drawing in Fig. 3 of
Ref. 3.
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