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We present a comprehensive list of the ground-state energies and the spin gaps of finite Kagomé clusters with
up to 42 spins obtained using large-scale exact diagonalization techniques. This represents the current limit of
this exact approach. For a fixed number of spins N , we study several cluster shapes under periodic boundary
conditions in both directions resulting in a toroidal geometry. The clusters are characterized by their side length
and diagonal as well as the shortest “Manhattan” diameter of the torii. A finite-size scaling analysis of the
ground-state energy as well as the spin gap is then performed in terms of the shortest toroidal diameter as well
as the shortest “Manhattan” diameter. The structure of the spin-spin correlations further supports the importance
of short loops wrapping around the torii.
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The quest for magnetic materials and model systems
exhibiting quantum spin liquid behavior is of considerable
current experimental and theoretical interest. Among such
systems, the Kagomé S = 1/2 antiferromagnet stands out as a
prototypical highly frustrated quantum magnet in two spatial
dimensions1 that potentially could exhibit spin liquid behavior.
However, a complete understanding of this deceptively simple
model given by

H = J
∑

〈i,j〉
Si · Sj , (1)

has proven surprisingly difficult and exact diagonalization
(ED) results on this model, despite their limitation to very
modest system sizes, have become crucial for both theoretical
developments and nonexact numerical techniques.

Several ED simulations were carried out to explore
puzzling facets of the Kagomé antiferromagnet.2–14 ED
established some of its remarkable properties, such as
the absence of magnetic order and the enormously high
number of singlet excitations below the lowest spinful
excitation. Complementary computational techniques have
also been applied to the Kagomé-Heisenberg antiferro-
magnet including series expansions,15–17 quantum Monte
Carlo,18 diagonalizations in the nearest-neighbor valence bond
basis and variants thereof,19–21 contractor renormalization
(CORE),22,23 multi-scale entanglement renormalization ansatz
(MERA),24 and the density matrix renormalization group
(DMRG).25,26

In this work, we report on large scale ED results for
the ground-state energy and the spin gap of the Heisenberg
S = 1/2 antiferromagnet on various Kagomé samples con-
sisting of up to N = 42 spins. This considerable increase in
system sizes (and Hilbert space size) was made possible by
a distributed memory parallelization of our ED codes. We
provide a finite size scaling of the ground-state energy and
the spin gap as a function of the shortest diameter of the torii,
which seems to capture the finite size dependence in a more
systematic way than a simple 1/N scaling used previously.7,8,14

I. THE CLUSTERS

The list of the clusters used in this study along with their
properties is given in Table I. For a given number of spins, N ,
we list several clusters in most of the cases. For a given N ,
there are many such clusters and the ones we list are chosen to
be close to optimal, where optimal refers to a cluster that would
have the length of both sides as well as the shortest diagonal all
equal. This is considered optimal since such a cluster would
be more likely to have the full point group symmetry of the
infinite Kagomé lattice. Of the clusters, we consider only 12,
27b, and 36d to have the full symmetry of the Kagomé plane
and they are therefore shown in bold. The basis vectors a,b of
all clusters are given in terms of the vectors a1,a2 shown in
Fig. 1 where the two largest clusters 42a and 42b are shown. We
also list the shortest Manhattan diameter, dM , of each cluster.
This measure can be visualized by tiling the plane with the
cluster and finding the shortest path between two equivalent
sites walking along the bonds of the lattice. Then, dM is simply
equal to the number of bonds traversed. We also define the
shortest geometrical diameter, this is simply Min(|a|,|b|). We
also list the number of elements of the symmetry group, |G|, for
nearest-neighbor interactions on the cluster. Note that clusters
18b, 21, 24, 27b have larger symmetry groups than expected
based on the applicable symmetries of the infinite Kagomé
lattice.

II. ED ON DISTRIBUTED SYSTEMS

Typically, an ED study of a cluster would involve a complete
symmetry analysis of the cluster and resulting spectra. Then,
one could write the Hamiltonian matrix restricted to a given
symmetry sector to a file that would be read into memory for
diagonalization. Using shared memory systems, this has been
achieved in the past for a specific quantum number sector
for 42 spins on the star lattice.27 However, this approach
becomes impossible for the larger system sizes and symmetry
sectors included in this study, because writing or storing the
Hamiltonian becomes prohibitively slow and matrix elements
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TABLE I. Cluster studied in this work. Listed are the number of spins N ; the basis vectors a,b in terms of a1 and a2 (each of length 2a); the
length of the basis vectors, (|a|,|b|), in units of 2a along with the length of the diagonal d = min(|a − b|,|a + b|); the Manhattan length, dM ,
the length of the shortest loop wrapping around the torus; the number of elements of the symmetry group |G|; the total ground-state energy, E;
the energy per site, E/N ; and the value of the spin gap, �, between the S = 0 ground state and the lowest S = 1 state for even samples or the
gap from the S = 1/2 ground state to the lowest S = 3/2 state for odd samples. Results shown in bold are for clusters with the full symmetry
of the Kagomé plane.

N a,b |a| |b| d dM |G| Total E (J ) E/N �

12 (2,0), (0,2) 2 2 2 4 48 –5.444 875 216 –0.453 740 0.382 668 366

15 (2,–1), (–1,3)
√

3
√

7
√

7 4 20 –6.589 143 829 –0.439 276 0.418 800 403

18 a (2,–1), (0,3)
√

3 3
√

12 4 24 –8.064 482 605 –0.448 027 0.270 115 263
18 b (2,–2), (–2,–1) 2

√
7 3 4 48 –8.048 270 773 –0.447 126 0.284 567 177

21 (2,1), (–1,3)
√

7
√

7
√

7 6 336 –9.172 279 619 –0.436 775 0.278 637 026

24 (1,2), (–3,2)
√

7
√

7
√

12 6 96 –10.589 965 547 –0.441 249 0.207 828 742

27 a (2,1), (–3,3)
√

7 3
√

13 6 18 –11.793 996 213 –0.436 815 0.275 413 255
27 b (3,0), (0,3) 3 3 3 6 216 –11.779 504 985 –0.436 278 0.268 776 803

30 (2,1), (–2,4)
√

7
√

12
√

13 6 20 –13.154 318 948 –0.438 477 0.152 855 536

33 (1,2), (4,–3)
√

7
√

13
√

19 6 22 –14.410 195 048 –0.436 673 0.229 455 039

36 a (–2,3), (4,0)
√

7 4
√

19 6 24 –15.787 874 847 –0.438 552 0.144 945 554
36 b (3,0), (–3,4) 3

√
12

√
21 6 48 –15.806 927 756 –0.439 081 0.170 275 671

36 c (3,0), (–1,4) 3
√

13 4 6 24 –15.814 334 002 –0.439 287 0.184 874 846
36 d (4,–2), (–2,4)

√
12

√
12

√
12 8 144 –15.781 555 119 –0.438 377 0.164 189 901

39 a (–1,3), (5,–2)
√

7
√

19
√

21 6 26 –17.038 187 797 –0.436 877 0.199 163 545
39 b (1,3), (–3,4)

√
13

√
13

√
13 8 78 –17.020 192 866 –0.436 415 0.222 433 924

42 a (–1,3), (5,–1)
√

7
√

21
√

28 6 28 –18.395 959 984 –0.437 999 0.120 425
42 b (–2,4), (4,–1)

√
12

√
13

√
19 8 28 –18.401 988 921 –0.438 143 0.149 092 139

have to be calculated on-the-fly. Furthermore, the largest
sectors do not fit into accessible shared memory machines
anymore, such that these large system sizes are only treatable
on distributed memory systems where each computational
node only has a relatively small addressable memory space,
typically a few giga bytes (or less). In general, it is much
easier and cheaper to scale a distributed system to a large
combined memory space than a shared memory system and

FIG. 1. (Color online) The two 42-site Kagomé clusters used in
this study. The shortest Manhattan diameters, dM , are shown as thick
dashed lines.

future large ED studies will likely have to be performed
on distributed systems. Due to the physical constraints of
a distributed memory system some peculiarities remain: A
Lanczos diagonalization proceeds by iteratively performing,
Nit , matrix vector multiplications on vectors of length, M . If
treating one element of the vector requires a time t , the full cpu
time for the calculation is roughly, NitMt . Due to the memory
constraints of distributed systems the application of a nontrivial
symmetry that would reduce M by a factor of K almost always
will increase t by a factor larger than K , even when the number
of cpu’s used is the same. The result is that it is slower to
diagonalize the smaller symmetry reduced Hamiltonian than
the full one. For the largest clusters we therefore only use
very few simple symmetries. For the 42-site clusters when no
lattice symmetries were used the resulting maximal Hilbert
space dimension is then

(42
21

)
/2 = 269′128′937′220.

III. RESULTS

Our main result is Table I listing the ground-state energy
and the spin gap of the samples considered in this work. Some
of the smaller samples have already been studied in the past
and energies were quoted for 12, 15, 18b, and 21 in Refs. 3
and 528 for 27b in Refs. 5 and 7 and for 36d in Refs. 5 and 8. An
approximate ground-state energy and spin gap of the sample
36c have been obtained by DMRG in Ref. 25.

We plot the ground-state energies as a function of the inverse
geometrical diameter, which in our convention corresponds to
1/|a| and display the result in Fig. 2. This presentation seems
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FIG. 2. (Color online) Ground-state energy per site plotted as a
function of the inverse shortest geometrical diameter. Remarkably
good agreement with recent DMRG results26 on long cylinders with
the same diameter is observed. For comparison, we also display the
MERA upper bound,24 series expansion results for the Marston–Zeng
valence bond crystal,16,17 as well as the DMRG upper bound.26

to capture the finite size effects in a more systematic way
than the previously used 1/N scaling, as the data seem to
behave consistently upon increasing the system size, while
keeping the diameter constant. Furthermore, we observe good
agreement with recent DMRG data26 on long cylinders with the
same diameter, thus corroborating the accuracy of the DMRG
simulations.

Next, we plot the spin gap data in Fig. 3 in the same
way. For each diameter, we observe that the spin gap is
monotonously decreasing with system size (for even and odd
samples separately). While it is difficult to extrapolate the ED
spin gap for constant diameter due to a lack of system sizes
for large diameters, the qualitative agreement with DMRG
results on long cylinders suggests that it is indeed the diameter
which controls the finite size effects upon moving toward the
two-dimensional bulk limit.
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FIG. 3. (Color online) Spin gap of even and odd Kagomé samples
obtained by ED and plotted as a function of the inverse shortest
geometrical diameter. For comparison, recent DMRG data26 obtained
on long cylinders with the same diameter are shown.

36d
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FIG. 4. (Color online) Magnified spin-spin correlations in the
ground state of the 30 and 36d Kagomé samples. The 30-site cluster
with its low symmetry requires three distinct reference sites to be con-
sidered. The diameter of the circle is proportional to the magnitude of
the spin-spin correlation with the reference site (black filled square).
Dark blue (light red) color denotes positive (negative) correlations.
The nearest-neighbor correlations (all antiferromagnetic) have been
dropped for clarity. One observes pronounced staggered spin-spin
correlations along selected loops wrapping around the torus in the
left two panels and the lower right panel.

Complementary evidence for the important role played
by short loops wrapping around the torus is provided by a
magnified view on the spin-spin correlations in the ground
state of several even samples displayed in Fig. 4 (see Ref. 5 for
tabulated values of sample 36d). In a spin liquid with a very
short correlation length, one would expect spin correlations
between distant sites to be very weak and also not to depend
significantly on the sample geometry. Indeed, in Fig. 4,
most spin-spin correlations are quite weak, but pronounced
staggered spin-spin correlations along selected loops wrapping
around the sample are revealed. We expect these resonances
to disappear once the samples are sufficiently wide.

IV. CONCLUSIONS

We have presented a systematic study of the ground-state
energies and the spin gaps of many Kagomé clusters. In
particular, we have presented results for N = 39,42 obtained
on distributed memory parallel clusters. Future quantum
numbered resolved ED studies on the largest samples should
allow to check the appearance of the topological degeneracy
required for the Z2 spin liquid advocated in Ref. 26.
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