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Polaron formation as a genuine nonequilibrium phenomenon
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Solitons and polarons occurring in nonequilibrium steady states are investigated in the spinless Takayama
Lin-Liu Maki (TLM) model. We propose the possibility of a new type of polarons in a nonequilibrium steady
state. This is a genuine nonequilibrium phenomenon, since there is a threshold current below which they do not
exist. It is considered to be an example of microscopic dissipative structure.
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Nearly 30 years ago, nonmetal-metal transition by doping
halogens in polyacetylene was discovered.1 The Su, Schrieffer,
Heeger (SSH) model2 and its continuous counterpart, the
Takayama Lin-Liu Maki (TLM) model,3 are known to describe
many experimental results. Using these models, defects in
polymers such as solitons and polarons have been extensively
studied.4–6 Subsequently, transport properties have been stud-
ied both experimentally and theoretically,7 and it is known
that charge-localized excitations such as solitons and polarons
play an essential role in transport in polymers. In spite of these
developments, there still remain several important issues to be
settled.

Recently, the critical dopant concentration for the nonmetal-
metal transition was improved8 and the absence of the soliton
contribution to the current was proposed.9 However, the
energetically most preferable state among those with solitons,
polarons, bipolarons, and no localized excitations is not fully
understood.10,11

The stability of polarons under various perturbations, such
as an external electric field12–15 and thermal noise16,17 is still
intensively studied even now, as is the dependence of the
polaron velocity on the applied field14,18,19 and/or Coulomb
interaction.20 Thus far, these theoretical works show only
the destructive role of electric field and temperature on the
stability of polarons. In this paper, we propose a constructive
role for the current, namely, we show that current induces a
new class of polarons within the TLM model. This is a genuine
nonequilibrium property, since there exists a threshold current
below which the polarons do not exist.

At equilibrium, polarons are induced by breaking the
particle-hole symmetry, and they exist only for a spinful
system. Experimentally, such polarons have been created by
using photoinduced or doping techniques (see references of
Refs. 7 and 21). The polarons that we shall discuss in this
paper are induced by a different mechanism, and exist both
for the spinful and spinless systems. Although our discussions
are valid for both spinful and spinless systems, we discuss the
spinless TLM model to emphasize the role of the current.

The Hamiltonian H ≡ HS + V + HB is composed of HS

for the finite TLM chain, HB for the reservoirs, and V for their
interaction, which are given by

HS =
∫ �

0
dx�†(x)

[
−ih̄vσy

∂

∂x
+ �̂(x)σx

]
�(x)

+ 1

2πh̄vλ

∫ �

0
dx

[
�̂(x)2 + 1

ω2
0


̂(x)2

]

V =
∫

dk {h̄vke
†(0)akL + h̄vkd

†(�)akR + (h.c.)} (1)

HB =
∫

dk h̄(ωkLa
†
kLakR + ωkRa

†
kRakR),

where �(x) = (d(x),e(x))T is the two-component spinless
fermionic field satisfying the boundary condition d(0) = 0,
e(�) = 0; �̂(x) is the lattice distortion; 
̂(x) is the momen-
tum conjugate to �̂(x); akν (ν = L,R) are the annihilation
operators for reservoir fermions with wave number k; h̄ωkν

represents their energies measured from the zero-bias chemical
potential at absolute zero temperature; σx and σy are the Pauli
matrices; � is the length of the system; v is the Fermi velocity;
λ is the dimensionless coupling constant; and ω0 is the phonon
frequency. We assume that the coupling matrix elements vk as
well as the density of states of the reservoirs are independent
of energy;22 thus, the integral

1

i

∫
dk

|vk|2
ω − ωkν − i0

∼ π

∫
dk|vk|2δ(ω − ωkν),

(ν = L,R)

becomes a positive constant .
Next we describe the mean-field approximation, which

is considered to be valid if the number of polymer chains
is large.21,23,24 Since we are interested in nonequilibrium
steady states (NESS), the self-consistent condition is derived
from the Heisenberg equation of motion for the lattice
distortion,

∂2�̂(x,t)

∂t2
= −ω2

0{�̂(x,t) + πh̄vλ�†(x,t)σx�(x,t)}.

Namely, the self-consistent equation is written as

�(x) + πh̄vλ〈�†(x,t)σx�(x,t)〉MF
∞ = 0, (2)

where �(x) is the mean-field NESS average of �̂(x) and
〈· · ·〉MF

∞ represents the mean-field NESS average. The mean-
field NESS corresponds to the initial state where two reservoirs
are in equilibrium with different chemical potentials, and is
characterized by the scattering theory of the NESS proposed
by Ruelle.25–27 Namely, the NESS is characterized as a state
satisfying Wick’s theorem with respect to the incoming fields
αkν (ν = L,R) of the mean-field Hamiltonian, and having the
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two-point functions:28,29

〈α†
kναk′ν〉∞ = fν(h̄ωkν)δ(k − k′) , (ν = L,R) (3)

where fν(x) ≡ 1/(exp{(x − μν)/T } + 1) is the Fermi distri-
bution function with temperature T , and chemical potentials
μL = −eV/2 and μR = eV/2 (the Boltzmann constant is
set to be unity). To be more concrete, expectation values
of any observables at NESS can be calculated by rewriting
observables in terms of the incoming field αkν and then
applying the Wick theorem and Eq. (3). The second term
of Eq. (2) and the current Eq. (4) are calculated in such a
way. (One can find similar calculations in Refs. 29 and 30).
The current from the left to the right reservoir is calculated
by counting the variation in the number of electrons in either
reservoir, 〈 d

dt

∫
dk a

†
kνakν〉MF

∞ :

J = G0

e

∫
|�0|<|ε|<h̄ωc

dε

√
ε2 − �2

0

|ε| [fR(ε) − fL(ε)] , (4)

where G0 = e2v/{πh̄(v2 + 2)} is the conductance in the
normal phase. If there is sliding of the charge density wave
(CDW), then the current given by Eq. (4) is considered to be
the background current. (The possibility of sliding strongly
depends on commensurability, the amount of impurities, and
the electric field.)

We first briefly review our previous results29 on the uniform
solution �(x) = �0, in which the fermionic spectrum has a
gap 2|�0|, and �0 obeys the gap equation

∫ ωc

|�0|/h̄
dω

∑
ν=L,R

fν(−h̄ω) − fν(h̄ω)√
(h̄ω)2 − �2

0

= 2

h̄λ
, (5)

where ωc is the energy cutoff. This reduces to a well-known
expression3 at equilibrium in the absence of bias voltage. Equa-
tion (5) is valid when the chain length � is sufficiently long. As
is shown in Fig. 2, when T < T ∗ ∼ 0.5571 × Tc, we observe
negative differential conductivity (NDC), which comes from
the multivaluedness of the order parameter �0 with respect to
bias voltage. On the other hand, the order parameter is a single-
valued function with respect to current. Thus, temperature and
current are chosen as control parameters. The phase diagram
on the J–T plane and the current dependence of the average
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FIG. 1. (Color online) Phase diagram in the J -T plane.
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FIG. 2. (Color online) (Left) Current-voltage characteristics at
T = 0.05Tc. (Right) Current dependence of |�0| at T = 0.05Tc. In
these figures, the solid line is stable and the dashed line is stable only
at constant current. In the right figure, only the bold solid line admits
polarons.

lattice distortion are shown, respectively, in Fig. 1 and 2, for
λ−1 = 2.4.31

Among theoretical works, NDC was proposed in the field-
driven SSH model,32 as well as in the stochastically driven
XXZ and extended Hubbard models.33,34 Experimentally, both
the I-V characteristic and the current dependence of the
order parameter (Fig. 2) qualitatively agree with those of
BEDT-TTF (Refs. 35 and 36). (They observe a current-induced
suppression of the charge order. However, the mean-field
TLM model and the mean-field extended Hubbard model are
equivalent, and, as a consequence, our data qualitatively agree
with these experimental data).

Next we investigate solitons and polarons. It is easy to
verify that Eq. (2) admits a soliton solution30 similar to that
of the equilibrium case3,37:

�(x) = �0 tanh κs(x − a), κs = �0

(h̄v)
,

where the amplitude �0 is the solution of the gap equation (5)
for the uniformly dimerized phase, and a = O(�) represents
the center of the soliton. At the same time, a midgap state
appears with energy h̄ω = 0 in the fermionic spectrum.
Then, following Brazovskii-Kirova5 and Campbell-Bishop,6

we look for a static polaron solution of the following
form:

�(x) = �0 − h̄vκ0(t+ − t−)

t± ≡ tanh κ0(x − a ± x0), tanh 2κ0x0 = h̄vκ0

�0
,

where �0 and x0 are parameters that are determined
self-consistently, and a is the position of the polaron center of
the order of �. As in the equilibrium case, the corresponding
fermionic spectrum consists of continuum states with energy

h̄ω = ±
√

(h̄vk)2 + �2
0 (|k| < ωc/v), and midgap states with

energies h̄ω = ±
√

�2
0 − (h̄vκ0)2 ≡ ±h̄ωB . Even though the

coupling between the midgap states and the reservoirs is
exponentially small for long chain length �, it still controls
the occupation of the midgap states at NESS. Therefore, one
should carefully take a long chain limit of the self-consistent
Eq. (2), which will result in Eq. (6) (In the soliton case,30 this
exponentially small coupling was shown to give no contri-
butions. On the other hand, it gives finite contributions in the

212301-2



BRIEF REPORTS PHYSICAL REVIEW B 83, 212301 (2011)

polaron case, which makes a nonequilibrium polaron
possible.):

IB + IS = −�(x)

h̄vλ

IS ≡ −
∫ ωc

|�0|/h̄
dω

ω2�(x) − ω2
B�0

2h̄v2κ
(
ω2 − ω2

B

) sinh h̄βω

cosh h̄βω + cosh βeV

2

,

(6)
IB ≡ −πωB

4v
(t+ − t−)

sinh h̄βωB

cosh h̄βωB + cosh βeV

2

,

where β = 1/T , IS is a contribution from the continuum
states, and IB is a contribution from the midgap states with
energy |h̄ω| < |�0| (see Ref. 30). Comparing term by term,
the gap equation (5) is obtained, and the equation for energies
±h̄ωB of the midgap states are∫ ωc

|�0|/h̄

ωB dω√
ω2 − �2

0/h̄
2
(
ω2 − ω2

B

) sinh h̄βω

cosh h̄βω + cosh βeV

2

= π

2vκ0

sinh h̄βωB

cosh h̄βωB + cosh βeV

2

. (7)

In this paper, we study pinned solitons and polarons, for
which the current is still given by Eq. (4).

Equations (5) and (7) have a nontrivial solution only when
the current (or, equivalently, the bias voltage) lies between
the lower and upper threshold values J1(T ) < J < J2(T )
(V1(T ) < V < V2(T )), and the temperature is lower than T ∗,
below which the system shows NDC. As seen in Fig. 3,
the polarons’ width 2x0 and amplitude A ≡ 2(h̄vκ0)2/(|�0| +
h̄ωB) are decreasing functions of current. When the current (or
bias voltage) approaches the lower threshold J1(T ) (V1(T )),
the polarons’ width diverges and their amplitude approaches
the solitons’ amplitude 2|�0|. This indicates that the polarons
split into soliton-antisoliton pairs. On the other hand, when the
current (bias voltage) approaches the upper threshold J2(T )
(V2(T )), both the width and amplitude of the polarons vanish,
and the polaron solution reduces to the uniform solution.
Typical profiles of the polaron solution are shown in Fig. 3.

As mentioned above, |�0| is a multivalued function of bias
voltage and, for a given voltage, several uniform phases are
possible. Although this suggests the possibility that collective
local excitations can separate uniform domains with different
values of |�0|, there exist only those interpolating uniform
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FIG. 3. (Color online) (Left) Current dependence of the am-
plitude A (the solid lines) and the soliton size 2x0 (the dashed
lines) at T = 0.05 × Tc (thin lines) and T = 0.2 × Tc (bold lines).
2x0 is scaled by L = h̄v/�c. (Right) A typical lattice profile at
T = 0.05 × Tc. From top to bottom, J = 10−3Jc, 10−5Jc, 10−10Jc,
and 10−15Jc.

phases with the same |�0|, such as the solitons and polarons
having the expressions we discussed. This is because charge
conservation implies that the current J remains constant over
the chain, and �0 is a single-valued function of J . Also, it is
interesting to note that the existence of the polaron solution
is related to the linear stability studied previously.29 Indeed,
the polaron solution exists when the uniform phase with �0 is
stable both at constant current and constant bias voltage (the
solid curves in the right figure of Fig. 2), but it does not exist if
the uniform phase is unstable at constant voltage (the dashed
curve in the right figure of Fig. 2). Because of this property,
there is a one-to-one correspondence between current and
bias voltage intervals where the polaron solution is possible
[J1(T ) < J < J2(T ) and V1(T ) < V < V2(T ), respectively].
This aspect and the nonexistence of the polaron solution for
T > T ∗ deserve further investigation.

The possibility of the polaron solution at NESS can be
qualitatively understood as follows. Recall that polarons at
equilibrium are possible only in the spinful case. With the
corresponding fermionic state, the lower midgap state is
occupied by two fermions with opposite spins, and the upper
midgap state is occupied by an unpaired fermion. In the
half-filled spinless case at equilibrium, such an asymmetric
occupation is not possible. This seems to suggest that it is
necessary for the particle-hole symmetry to break for polaron
formation. In contrast, at NESS, the particle-hole symmetry
is broken by bias voltage even for the half-filled spinless
case. This is because the fermionic occupation is controlled by
(fL(ε) + fR(ε))/2, which is not symmetric under the exchange
of particles and holes.

It is interesting to note that, at low temperatures, the width
J2(T ) − J1(T ) of current interval that admits polaron solutions
increases with an increase in temperature, while the width
V2(T ) − V1(T ) of the voltage interval decreases. These behav-
iors of current and voltage are consistent, because the phases
admitting a polaron solution tend to become insulating phases
as T → 0, which implies limT →0 (J2(T ) − J1(T ))/(V2(T ) −
V1(T )) = 0; thus, the decrease of V2(T ) − V1(T ) with an in-
crease of T does not contradict the increase of J2(T ) − J1(T ).
Because of the discontinuity of the RHS of Eq. (7) at T = 0,
absolute zero temperature is a singular point if bias voltage is
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FIG. 4. (Color online) Current dependence of the positive-bound-
state energy h̄ωB at T = 0.05 × Tc (solid line) and T = 0.2 × Tc

(dashed line).
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chosen as a control parameter. Indeed, at T = 0, Eqs. (5) and
(7) admit a polaron solution with h̄ωB = (π2/16 + 1)−1/2�c

only when V = {(π2/16 + 1) cosh2 λ−1}−1/2 exp(λ−1)Vc and
J = 0.

Experimentally, one of the most widely used tools to verify
the existence of solitons and polarons has been spectroscopy,
which allows to observe the energies of the associated
midgap states.7,38,39 It is thus interesting to study the current
dependence of the energy of the midgap states. Figure 4 shows
the current dependence of the energy h̄ωB for the midgap state
at T = 0.05 × Tc,0.2 × Tc (< T ∗). As shown in the figure,
h̄ωB is a monotonically increasing function of current, and
it approaches 0 for J → J1(T ) and |�0| for J → J2(T ); this
reflects the change of the polarons’ profile. Polarons in a spinful
system possess the same properties, since the corresponding
self-consistent equation is obtained simply by replacing λ in
Eq. (5) with 2λ. Namely, the energies ±h̄ωB of the midgap
states associated with NESS polarons change from 0 to ±|�0|
as current increases, while those with equilibrium polarons
in a spinful system are fixed at ±h̄ωB = ±|�0|/

√
2. Such a

current-induced shift of energy spectra might be observed by
spectroscopic experiments.

In summary, we have studied solitons and polarons in
the open spinless TLM model, and specifically, we have
shown that the current-induced polarons are possible only
when currents above the critical value J1(T ) [equivalently,
a lower critical bias voltage V1(T )] are applied to the system,
and, thus, this polaron formation is a genuine nonequilibrium
phenomenon. This observation suggests that this class of
polaron is an example of microscopic dissipative structure.
Also, we have shown that the critical temperature for the
existence of a polaron solution is the same as the critical
temperature for the appearance of NDC, although polarons do
not appear with the currents of the NDC regime. The energies
of the midgap states associated with polarons are shown to
crucially depend on current, which might be observed by
spectroscopic experiments.
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