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Universality of the high-temperature viscosity limit of silicate liquids
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We investigate the high-temperature limit of liquid viscosity by analyzing measured viscosity curves for 946
silicate liquids and 31 other liquids including metallic, molecular, and ionic systems. Our results show no system-
atic dependence of the high-temperature viscosity limit on chemical composition for the studied liquids. Based on
the Mauro-Yue-Ellison-Gupta-Allan (MYEGA) model of liquid viscosity, the high-temperature viscosity limit of
silicate liquids is 10−2.93 Pa·s. Having established this value, there are only two independent parameters governing
the viscosity-temperature relation, namely, the glass transition temperature and fragility index.
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Shear viscosity is perhaps the single most important
property of glass-forming liquids, since adequate control of
flow behavior is essential for all steps of industrial glass
production. It is also critical for understanding the relaxation
characteristics of liquids, as in the well-known Angell plot1

where the logarithm of viscosity, log10 η, is plotted as a
function of the Tg-scaled inverse temperature, Tg/T. Here, Tg

is the glass transition temperature, defined as the temperature
at which the liquid viscosity equals 1012 Pa·s, and T is absolute
temperature. The slope of the Angell curve at Tg defines the
fragility index m,

m ≡ ∂ log10 η

∂(Tg

/
T )

∣∣∣∣∣
T =Tg

. (1)

Fragility is a common measure of the slowing down of liquid
dynamics upon cooling through the glass transition.

According to Angell,1 liquids can be classified as either
“strong” or “fragile” depending on whether they exhibit an
Arrhenius or super-Arrhenius scaling of viscosity with temper-
ature, respectively. The degree of non-Arrhenius scaling varies
greatly among different glass-forming liquids and reflects
the second derivative of the viscosity curve with respect to
inverse temperature. With the assumption of a universal high-
temperature limit of viscosity, η∞, Angell proposed that this
non-Arrhenius character is directly connected to the fragility
index, m, a first-derivative property of the viscosity curve at
Tg .2 However, the assumption of a universal high-temperature
limit of viscosity, which enables this direct connection between
first- and second-derivative properties, has not yet been
validated by a systematic analysis of experimental data.

In this Brief Report, we analyze viscosity-temperature
curves of 946 silicate liquids and 31 other liquids, including
water and silica, as well as borate, metallic, molecular, and
ionic liquids. Our results show that there is no systematic
dependence of η∞ on composition and point to a narrow
spread around η∞ = 10−2.93 Pa·s for silicate liquids. This
result implies the existence of a universal high-temperature
limit of viscosity, indicating that the fragility index m does
have a direct relationship to the non-Arrhenius scaling of
liquid viscosity (a measure of curvature), at least for silicate
liquids. Our results indicate that there are only two independent
parameters governing the viscosity of silicate liquids: Tg and m.

This simplifies the process for modeling the composition
dependence of liquid viscosity and is an indication of the
universal dynamics of silicate liquids at the high-temperature
limit.

To evaluate η∞, we analyze experimental viscosity data
using three of the most popular three-parameter equations
for liquid viscosity. First, we consider the Vogel-Fulcher-
Tammann (VFT) equation, which is historically the most
frequently applied model,

log10 η = log10 η∞ + A

T − T0
. (2)

Here, η∞, A, and T0 are fitting parameters. VFT works well
for most classical oxide liquids with low fragility, but it does
not apply well for higher fragility liquids.2 A major drawback
of VFT is that it breaks down at low temperatures due to
divergence at T = T0.3–6 Hence, it often overpredicts viscosity
values at low temperatures.

Avramov and Milchev (AM) proposed an alternative
three-parameter equation that describes the kinetics of the
molecular motion in undercooled melts using an atomic
hopping approach.7 The AM equation is

log10 η = log10 η∞ +
(

θ

T

)α

, (3)

where η∞, θ , and α are treated as fitting parameters. The
AM equation does not suffer from the problem of dynamic
divergence at finite temperature; however, this equation gives a
divergence of configurational entropy in the high-temperature
limit.8,9

Finally, based on energy landscape analysis and the
temperature-dependent constraint model for configura-
tional entropy,10–12 the recent Mauro-Yue-Ellison-Gupta-
Allan (MYEGA) equation9 was derived as

log10 η = log10 η∞ + K

T
exp

(
C

T

)
. (4)

This model provides a physically realistic and accurate de-
scription of liquid dynamics9,13–15 since it is the only approach
that accounts for a reasonable extrapolation of configurational
entropy in both the high- and low-temperature limits. It should
be mentioned that in the high-temperature limit, VFT can

212202-11098-0121/2011/83(21)/212202(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.212202


BRIEF REPORTS PHYSICAL REVIEW B 83, 212202 (2011)

be derived as a simple approximation to MYEGA through
a Taylor series expansion.13 This implies that VFT is a
reasonable approximation at high temperatures but becomes
less accurate as temperature is decreased.

All of the aforementioned models have the high-
temperature limit of viscosity, η∞, as a common parameter.
However, direct measurement of η∞ is not possible, so the
value of η∞ must be obtained either through extrapolation of
measured viscosity data or through a separate model designed
specifically for η∞. According to the viscous flow theories of
Frenkel16 and Eyring,17 the high-temperature viscosity limit
is η∞ = 103.5±1 Pa·s. However, this is a rough estimate since
they describe the temperature dependence of viscosity using
an Arrhenius equation, which does not account for liquid
fragility. The η∞ values of some glass-forming liquids were
also determined by Barrer,18 where the viscosity data are also
simply fitted by the Arrhenius equation. The obtained η∞
values are scattered over several orders of magnitude and
are nonphysically described as a function of temperature.
Kobeko19 showed a value equal to η∞ = 10−3±1.5 Pa·s for
all liquids. Russell et al.20 fitted the viscosity data of 333
silicate melts using the VFT and Adam-Gibbs (AG) models
and obtained a high-temperature limit as η∞ = 10−4.3±0.74

and 10−3.2±0.66 Pa·s, respectively. Recently, Giordano et al.21

obtained a common high-temperature viscosity limit for
silicate melts of η∞ = 10−4.6 Pa·s based on the VFT
equation. However, these previously obtained values of η∞
were obtained using a fairly limited range of compositions.

We begin our investigation by fitting the three viscosity
models (VFT, AM, and MYEGA) to measured viscosity
data for 946 different silicate liquids from Corning Incorpo-
rated, in addition to 6 borate,22 11 metallic,23 4 molecular,9

and 9 ionic liquids.24 The fitting was done using a con-
strained Monte Carlo algorithm to avoid becoming trapped
in local minima. The 946 Corning liquids cover a wide range
of composition space, from simple calcium aluminosilicate
ternaries through complex borosilicates with up to eleven
unique oxide components.25 Overall, the compositions cover a
range of fragility values from 25.9 to 73.8. Each composition
is represented by 6–13 data points in the range of 10 to 106

Pa·s, obtained via a rotating spindle method. Most are also
represented by data points at 106.6 Pa·s (the softening point,
obtained via parallel plate viscometry) and 1011 Pa·s (obtained
via beam bending viscometry). The measured isokom (i.e.,
constant viscosity) temperatures are accurate to within ±1 K.
Figure 1 shows the root mean square (RMS) error of the
viscosity fit to 946 Corning compositions as a function of each
composition, plotted from highest to lowest error. MYEGA
provides the best fit with the lowest root mean square (RMS)
error for the whole range of compositions, as compared to VFT
and AM, although the difference between MYEGA and VFT
models is subtle. The superior fitting quality of MYEGA is
due to its derivation from physically realistic considerations in
both the high- and low-temperature limits; hence, it is expected
to yield the most accurate value of η∞.9 In Fig. 1, we also
consider a recent viscosity model by Elmatad, Chandler, and
Garrahan (ECG), in which the viscosity curves are considered
to be parabolic in inverse temperature space.26 However, this
model provides a significantly worse fitting quality compared

FIG. 1. (Color online) Root mean square error of the viscosity
models when fitting measured data of 946 Corning compositions.

to the other three models, and due to its parabolic form, the
extrapolation of η∞ is not physically meaningful. Therefore,
we consider only the VFT, AM, and MYEGA models in the
remainder of our analysis.

Figure 2 shows the fitted values of log10 η∞ for the
Corning liquids. The straight lines in the figure represent the
average values of η∞ obtained from the three models. The
average value of log10 η∞ predicted by MYEGA is −2.93,
which is in line with previous estimates.19,20 AM produces
an unrealistically high value of η∞9 due to an unphysical
divergence of configurational entropy in the high-temperature
limit. In contrast, VFT produces comparatively low values of
η∞ as a by-product of its unphysical divergence of viscosity
at low temperatures. Our results show that the lowest standard
deviation of log10 η∞ for all the compositions occurs using
the MYEGA model (σ = 0.337, compared to 0.343 and
0.519 for VFT and AM, respectively). The difference among
these models reflects the fact that log10 η∞ is an extrapolated
quantity well beyond the range of measurements.20,27 Since
MYEGA produces the most accurate fits and is physically
derived, the value yielded by this equation is expected to be
reasonable.9

The next question is whether the scatter in Fig. 2 is due to
stochastic measurement error or if it is the result of an actual
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FIG. 2. Log10 η∞ values obtained by fitting three viscosity models
to 946 Corning compositions. The straight lines represent the average
log10 η∞ values, and σ is the standard deviation.
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FIG. 3. Log10 η∞ values of 946 Corning compositions
plotted as a function (a) SiO2, (b)

∑
RO–Al2O3, and

(c)
∑

RO–Al2O3–B2O3 content.
∑

RO represents the total concentra-
tion of alkaline earth oxide as measured through x-ray fluorescence.
The straight lines are the average values.

dependence of log10 η∞ on composition. In order to answer this
question, we analyze the fitted values of log10 η∞ as a function
of every composition variable. For example, Fig. 3 shows the
log10 η∞ values for different alkaline earth boroaluminosilicate
compositions as a function of alkaline earth concentration.
Within the error range of the data, there is no trend of η∞
with composition, and η∞ has a fairly narrow spread around
10−2.93 Pa·s. Similar results are obtained when plotting log10

η∞ versus any composition variable. These results suggest
that the value of η∞ is independent of composition and that
the scattering of the data is due to the experimental noise and
differences in the range of temperatures over which viscosity
is measured.

The range of liquid fragility values (m) of the 946 glass
compositions investigated is between 25.9 and 73.8. In order
to find out whether relatively strong liquids (i.e., with m
< 25) show similar η∞ values to 10−2.93 Pa·s, we also
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FIG. 4. (Color online) Log10 η∞ values obtained by fitting
MYEGA to several borate,22 metallic,23 molecular,9 and ionic24

liquids, and water.28 The abscissa represents an arbitrary composition
space.

analyze the viscosity data of silica, an archetypical strong
glass-former. Here, we obtain a value of η∞ = 10−2.46 Pa·s
for Corning code 8655 high-purity fused silica (HPFS). In
addition, we obtain the η∞ values of several fragile liquids with
m > 75, e.g., o-terphenyl (m = 99) and 4Ca(NO3)2-6KNO3

(m = 115), by fitting their viscosity data to the MYEGA
equation. We plot the η∞ values of the two liquids in
Fig. 4, along with those of other nonsilicate liquids, such
as borate,22 metallic,23 molecular,9 and ionic liquids24 and
water.28 Although there are significantly less statistics here
compared to the silicate compositions, we find that the values
of η∞ do indeed fall near 10−3 Pa·s for all of these liquids.
However, the viscosity data of more nonsilicate liquids need
to be analyzed to judge whether a universal η∞ value exists
for all the glass-forming liquids.

The narrow spread of η∞ points to a common underlying
physics of silicate liquids at the high-temperature limit. It
should be noted that the high-temperature limit refers to the
viscosity of a liquid at high temperature. In other words, it does
not involve the gaseous state, but rather a superheated liquid
state. In his early work, Angell suggests that the value of η∞
is determined by the liquid quasi-lattice vibration time (τ∞ ≈
10−14 s), which is the time between successive assaults on the
energy barrier for atomic rearrangements.1 Maxwell’s relation
(η∞ = G∞τ∞, where G∞ is the shear modulus at infinite
frequency at temperature above Tg, and τ∞ is the structural
relaxation time at infinite temperature) was used to calculate
the high-temperature viscosity limit from τ∞ ≈ 10−14 s20,21

For oxide liquids, G∞ varies only slightly with temperature
and was measured over a large range of temperatures above
Tg to be around 29 GPa.29 However, for some organic liquids,
both G∞ and τ∞ vary with composition and temperature.30–32

In our view, any explanation of η∞ based on vibrations is
not correct, since at infinite temperature, the system is not
really vibrating. Rather, it is exploring the upper region of
the energy landscape dominated by high entropy and low
activation barriers.33 Moreover, the atoms have an infinite
amount of thermal energy to overcome any barrier, so they
do not even see the activation barriers at all and hence cannot
be vibrating. Therefore, a more physically realistic explanation
of η∞ is needed.

For this explanation, we turn to the topological constraint
approach of Phillips and Thorpe,11,12 which states that the
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atomic structure of a glass-forming liquid may be treated as a
network of bond constraints. By comparing the average num-
ber of constraints per atom (n) to the network dimensionality
(d), the network can be floppy (underconstrained), isostatic
(optimally constrained), or stressed-rigid (overconstrained).
When n < d, the network is underconstrained and contains low-
frequency deformation modes (so-called “floppy modes”). The
network is optimally rigid when n = d, and it is stressed-rigid
when n > d. Based on this original work of Phillips and Thorpe,
Gupta and Mauro10 presented a topological modeling approach
incorporating a temperature dependence of constraints. At
infinitely high temperature, any constraint is easily broken
and hence does not contribute to the rigidity of the network.
In a three-dimensional space, the atomic degrees of freedom,
f = d – n, i.e., the number of low-frequency “floppy modes,”
is equal to d = 3 for any system. In other words, in the
infinite temperature limit, all three degrees of freedom are
floppy for each atom, so each atom has three continuous
modes of deformation, independent of atom type, and the
configurational entropy has achieved its maximal value.
Hence, all silicate liquids will exhibit the same flow behavior
in the high-temperature limit. We are in a three-dimensional
space; however, if we were operating in a different dimensional
space (i.e., d = 2 or d = 4), there would exist different values
of η∞. We thus argue that our result of a convergence of

η∞ values at 10−2.93 Pa·s for silicate liquids is physically
meaningful in terms of constraint theory. The narrow spread
of the high-temperature viscosity limit is an implication of the
universal dynamics of silicate liquids at the high-temperature
limit.

In summary, by analyzing 946 silicate liquids and 31
nonsilicate liquids, we find that there is a narrow spread
of high-temperature limit of viscosity around 10−3 Pa·s for
silicate liquids. This implies that silicate liquids have a
universal value of η∞. Thus, in accordance with the work
of Angell, the non-Arrhenius scaling of liquid viscosity can be
quantified through the fragility index m of the liquid. Moreover,
by defining the high-temperature viscosity limit as a fixed
value, i.e., log10 η∞ = −3, the MYEGA model contains only
two fitting parameters. This result simplifies the modeling
process of the compositional dependence of viscosity and
indicates a common underlying physics of silicate liquids at
the high-temperature limit.

We express our sincere thanks to the Advanced Materials
Processing Laboratory at Corning Incorporated for their
tireless work in sample preparation and to the Characterization
Sciences and Services Directorate at Corning for their care in
obtaining reliable viscosity data.

*Corresponding authors: mauroj@corning.com, yy@bio.aau.dk
1C. A. Angell, J. Non-Cryst. Solids 73, 1 (1985).
2C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan, and
S. W. Martin, J. Appl. Phys. 88, 3113 (2000).

3G. W. Scherer, J. Am. Ceram. Soc. 67, 504 (1984).
4H. Tanaka, Phys. Rev. Lett. 90, 055701 (2003).
5F. Sciortino, W. Kob, and P. Tartaglia, Phys. Rev. Lett. 83, 3214
(1999).

6F. Stickel, E. W. Fischer, and R. Richert, J. Chem. Phys. 102, 6251
(1995).

7I. Avramov and A. Milchev, J. Non-Cryst. Solids 104, 253 (1988).
8I. Avramov, J. Non-Cryst. Solids 351, 3163 (2005).
9J. C. Mauro, Y. Z. Yue, A. J. Ellison, P. F. Gupta, and D. C. Allan,
Proc. Natl. Acad. Sci. USA 106, 19780 (2009).

10P. K. Gupta and J. C. Mauro, J. Chem. Phys. 130, 094503 (2009).
11J. C. Phillips, J. Non-Cryst. Solids 34, 153 (1979).
12J. C. Phillips and M. F. Thorpe, Solid State Commun. 53, 699

(1985).
13M. M. Smedskjaer, J. C. Mauro, and Y. Z. Yue, J. Chem. Phys. 131,

244514 (2009).
14P. Lunkenheimer, S. Kastner, M. Köhler, and A. Loidl, Phys. Rev.
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