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Light-induced current in molecular junctions: Local field and non-Markov effects
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We consider a two-level system coupled to contacts as a model for a charge pump under external laser pulse. The
model represents a charge-transfer molecule in a junction and is a generalization of previously published results
[B. D. Fainberg, M. Jouravlev, and A. Nitzan, Phys. Rev. B 76, 245329 (2007)]. Effects of local field for realistic
junction geometries and non-Markov response of the molecule are taken into account within finite-difference
time-domain and on-the-contour equation-of-motion formulations, respectively. We find that contrary to the
symmetric behavior of the pump relative to the chirp sign, the duration of the corresponding local-field pulse
does depend on the chirp sign, which results in an asymmetric charge pumping. The most effective charge-pump
regime is found at positive bias, contrary to Markov consideration of the previous study.
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I. INTRODUCTION

Driven transport and coherent control at the nanoscale
are well-established areas of research. Quantum ratchets,1,2

molecular charge,3 spin4,5 and heat pumps,6,7 and nano-
plasmonics8 are just several examples of areas of recent de-
velopment. Advances in optical techniques, in particular near-
field optical microscopy, allow single-molecule manipulation9

and induction of bond-specific chemistry.10 Combined with
molecular junction fabrication techniques,11 optical spec-
troscopy methods are becoming an important observation and
diagnostic tool in molecular electronics.12–14

Experimental developments led to a surge of theoretical
activity in the field of optically assisted transport15–18 and
optical response of molecular junctions.19–25

In particular, Ref. 16 considered molecular junctions
composed of molecules with a strong charge-transfer transition
into their excited state26–28 as a possible constituent for light-
induced molecular charge pump when change of molecular
dipole occurs along the junction axis. The consideration was
done within a two-level (HOMO-LUMO) model with the
ground (HOMO) and excited (LUMO) states of the molecule
strongly coupled to different contacts. In the junction setup,
optical excitations bring electrons from occupied ground to
empty excited states and the asymmetry in coupling to contacts
assures appearance of a current. The model was treated
within the nonequilibrium Green function approach, and the
perturbation theory was employed in relation to the laser field
coupling.

Later, Ref. 29 generalized the consideration of Ref. 16
to strong laser fields. The pumping optical field was treated
as a classical driving force and a closed set of equations of
motion (EOM) for observables (i.e., electronic populations and
coherences of the levels, and single-time exciton correlation
function) was formulated. One of the most important advances
in Ref. 29 was a consideration of chirped laser pulses, which
allowed for a formulation of the charge-transfer process be-
tween ground and excited states in terms of the Landau-Zener
problem. Chirped laser pulses enable to produce a complete
population inversion in molecular systems (such as a molecular
bridge) where the well-known π -pulse excitation30 fails.

In realistic molecular junctions, the optical field driving the
molecule is a local field formed by both the incident radiation
and the scattered response of the system (mostly plasmonic
response of metallic contacts). Another feature of molecular
junctions is the hybridization of states of a molecule with
those of contacts. The latter leads to non-Markov effects in the
response of the junction.

In this paper we generalize the studies reported in
Ref. 29 by incorporating the aforementioned effects into our
consideration. The dynamics of local electromagnetic fields
is simulated within the finite-difference time-domain (FDTD)
technique for a realistic geometry of a molecular junction,
similar to our previous publication.23 Non-Markov effects of
the junction response are introduced within a nonequilibrium-
Green-function equation-of-motion (NEGF-EOM)
approach.

The structure of the paper is the following. After in-
troducing the model in Sec. II, we describe the junction
geometry and the numerical approach used in our calcula-
tions of local electromagnetic fields in Sec. III. Section IV
discusses our calculations of the local-field-induced electron
flux through the junction, and Sec. V introduces a set of
NEGF equations of motion. The numerical results and related
discussion are given in Sec. VI. Section VII summarizes our
findings.

II. MODEL

A model junction consists of a molecule coupled to two
metallic contacts driven by an external radiation field. The
radiation is a time-dependent local electromagnetic field, E(t),
calculated within the FDTD technique for bowtie geometry
of the contacts (see Sec. III for details). The molecule is
represented by a two-level system, |1〉 and |2〉 (HOMO and
LUMO or ground and excited states), and is placed in a “hot
spot” of the local field. The contacts L and R are assumed to be
free-charge-carrier reservoirs, each at its own equilibrium. The
difference in their electrochemical potentials defines the bias
applied to the junction, eV = μL − μR . Following Refs. 16
and 29, we consider two types of coupling between the
molecule and the contacts: charge and energy transfer. The
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Hamiltonian of the junction is

Ĥ (t) = Ĥ0(t) + V̂ , (1)

Ĥ0(t) =
∑

m=1,2

εmn̂m +
∑

k∈{L,R}
εkn̂k (2)

−μE(t)(D̂12 + D̂
†
12),

V̂ =
∑

m=1,2

∑
k∈{L,R}

(Vkmĉ
†
kd̂m + H.c.)

+
∑

k1 �=k2∈{L,R}

(
V en

k1k2
ĉ
†
k1

ĉk2D̂12 + H.c.
)
, (3)

Here, d̂
†
m (d̂m) and ĉ

†
k (ĉk) are creation (annihilation) operators

of an electron in a level m of the molecule and in a state
k in the contact(s), respectively. n̂m = d̂

†
md̂m is the operator

of electronic population in a level m, D̂12 ≡ d̂
†
1 d̂2 is the

operator of molecular de-excitation (D̂21 ≡ D̂
†
12), and μ is

the molecular transition dipole moment. The terms on the
right-hand side of Eq. (2) represent the molecular structure
(a two-level system), the contacts, and the coupling to the
driving field. The right-hand side of Eq. (3) introduces electron
and energy transfer between the molecule and the contact(s).
Here, Vkm is the matrix element of electron tunneling from
a molecular level m into a state k in the contact and V en

k1k2
is

the matrix element of exciton transfer from the molecule to
the contact(s). The latter is caused by the dipolar interaction
between molecular excitation and electron-hole pairs in the
metal.

Eqs. (1)–(3) introduce the model of Ref. 29, but with
the rotating-wave approximation relaxed and with the driving
force treated as a local electromagnetic field.

To simulate molecules with strong charge-transfer transi-
tions with the dipole moment oriented along the junction axis,
below we assume that the ground state (or HOMO), |1〉, is
coupled strongly to the left contact, L, while the excited state
(or LUMO) is strongly coupled to the right contact, R. Such
setup works as a local-field-driven charge pump (see Fig. 1).
Note that a similar selective coupling can also be obtained for
a bridge made of quantum dots as discussed in Refs. 31–33.

RL
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FIG. 1. (Color online) A sketch of local field-driven-molecular-
charge pump.

III. LOCAL FIELD SIMULATIONS

Calculations of the local-electromagnetic-field dynamics
are carried out utilizing the FDTD technique.34 Following
Ref. 29 we assume that the incident field, Einc(t), has the
form of a linear chirped pulse

Einc(t) = Re

[
E0 exp

(
− (δ2 − iμ̄)t2

2
− iω0t

)]
, (4)

where E0 is the incident peak amplitude, ω0 is the incident
frequency, and the parameters δ and μ̄ describing an incident
chirped pulse are given by

δ2 = 2τ 2
0

τ 4
0 + 4�′′2(ω0)

, (5)

μ̄ = − 4�′′(ω0)

τ 4
0 + 4�′′2(ω0)

, (6)

with τ0 ≡ tp0/
√

2 log 2 (the value of the pulse duration, tp0,
of the corresponding transform-limited pulse used in our
simulations is 9.34 fs) and �′′(ω0) is the chirp rate in the
frequency domain. Throughout the simulations the incident
field is taken in the form of Eq. (4) and is normalized to
preserve the total energy of a laser pulse at different chirp
rates according to∫ +∞

−∞
dtE2

inc(t) = const. (7)

The geometry considered is depicted in the inset of Fig. 2(a)
showing the top view of the bowtie antenna. To investigate
the influence of chirped incident pulses on plasmon dynamics
we choose an incident field in the form of Eq. (4) and vary
�′′(ν0) = 4π2�′′(ω0). Below we shall write �′′ having in
mind �′′(ν0). We further presume that the incident pulse is
x-polarized and propagates along the z axis with the incident
frequency at the plasmon resonance [see the inset of Fig. 2(a)].
The material dispersion of silver is taken in the Drude form
with other numerical parameters as in Ref. 23. For a given set
of material and geometric parameters, the local-electric-field
enhancement exhibits a well-pronounced plasmon resonance
as seen in Fig. 2(a) reaching the value of 2800 near
2 eV.

Our goal is to take plasmonic effects (i.e., local-field
enhancement and phase accumulation) directly into account
and investigate how such crafted local fields affect trans-
port properties of molecular junctions placed in the gap of
bowtie antennas. However, it is informative first to examine
general features of chirped pulses interacting with plasmonic
materials. It has been noted in several papers35–38 that the
local-field enhancement depends sensitively on the sign of
chirped excitation pulses. Moreover, careful examination of
spatiotemporal dependence of local fields on chirp rates38

revealed a complex dynamics of plasmon wave packets that
are noticeably influenced by chirped laser pulses—one may
find different local points for a given plasmonic system where
positive chirps lead to higher local fields, and the other way
around.

Generally speaking, plasmonic materials can be considered
as pulse shapers39 due to the high material dispersion near
plasmon resonances, which induces a phase in the frequency
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FIG. 2. (Color online) Results of FDTD simulations for chirped pulses exciting the bowtie antenna schematically depicted in the inset of
panel (a). Panel (a) shows the enhancement of the local intensity | 	E|2 detected in the gap of the bowtie antenna as a function of the incident
frequency. Panel (b) presents a local field component of the electric field along the axis of symmetry of the structure, Ex , as a function of time for
two chirp rates at the plasmon resonance, ω0 = 2.057 eV: black solid line for �′′(ν0) = −3000 fs2 and red dashed line for �′′(ν0) = 3000 fs2.
Panel (c) shows the amplitude of the local field in the frequency domain (note that it is independent of the phase rate). Panel (d) represents
the phase of the local field in the frequency domain at two chirped rates: black solid line for �′′(ν0) = −3000 fs2 and red dashed line for
�′′(ν0) = 3000 fs2.

domain resulting in a shaping of the total electromagnetic
field in the time domain. This is illustrated in Figs. 2(b)–
2(d), where one can clearly see that the positive chirp leads to
the compression of the local field [Fig. 2(b)] and hence to a
stronger field enhancement. While the field amplitude in the
frequency domain is not affected by the chirp sign [Fig. 2(c)],
obviously the phase of the field is significantly different for
positive and negative chirp as shown in Fig. 2(d). We note
that one can not recover data obtained for a negative chirp,
for instance, by simply flipping the sign of the phase for the
positive chirp. The additional phase induced by the plasmonic
system, which depends on the sign of the chirp rate, makes
this problem time irreversible.35

IV. CURRENT THROUGH THE JUNCTION

The time-dependent current through the junction under
external driving is23,40

IK (t) = − e

h̄

(
tr[	K ρ(t)] + 1

π
Im

∫ +∞

−∞
dE fK(E)

× tr[	K Gr (t,E)]

)
. (8)

Here, the trace is taken over the molecular subspace, 	K is
the matrix of electronic decoherence due to coupling to a
contact K

	K
mm′ ≡ 2π

∑
k∈K

Vmk Vkm′ δ(E − εk), (9)

which is energy independent in the wide-band approximation,
fK (E) is the Fermi-Dirac thermal distribution in the contacts,
ρ(t) ≡ −iG<(t,t) is the nonequilibrium-reduced density ma-
trix of molecular subsystem, Gr,<(t,t ′) are matrices of retarded
and lesser projections of the single-electron Green function in
the molecular subspace,

Gmm′(τ,τ ′) ≡ −i〈Tc d̂m(τ ) d̂
†
m′ (τ ′)〉, (10)

where Tc is a contour-ordering operator, and Gr (t,E) is the
right-side Fourier transform of the retarded Green function,

Gr (t,E) =
∫ +∞

−∞
dt ′ eiE(t−t ′) Gr (t,t ′). (11)

We are interested mostly in the effectiveness of the device
as a charge pump, i.e., we will calculate the excess charge
transferred through the system during the laser pulse,

QK (t) =
∫ t

−∞
dt ′

[
IK (t ′) − I dc

K

]
, (12)
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where IK (t) is defined in Eq. (8) and I dc
K is the current at

bias-induced steady-state conditions, i.e., in the absence of
radiation, E(t) = 0.

V. EQUATIONS OF MOTION

Markov approximation, employed in Ref. 29, comes from
a consideration of time-local quantities only. This approach is
sufficient when one can neglect the broadening of molecular
states induced by hybridization with states in the contacts.
In realistic molecular junctions such a hybridization is non-
negligible, since molecules are usually chemisorbed on at
least one of the contacts. Here, in addition to the local field
formation, we are going to explore how non-Markovian effects
influence the characteristics of laser-pulse-induced charge
pumping.

To keep non-Markov effects we use the single-particle
Green function of Eq. (10) (a time-nonlocal quantity) in our
considerations. We employ a Keldysh-contour-based EOM ap-
proach, similar to the one employed in our earlier publication41

(see Appendix A for a derivation):

i
∂

∂τ
Gmm′ (τ,τ ′)

= δm,m′δ(τ,τ ′) + εmGmm′ (τ,τ ′) − μE(t)Gm̄m′(τ,τ ′)

+
∑
m1

∫
c

dτ1�mm1 (τ,τ1)Gm1m′(τ1,τ
′) − i

∑
k1 �=k2

∑
m1

∣∣V en
k1k2

∣∣2

×
∫

c

dτ1gk2 (τ,τ1)gk1 (τ1,τ )Gm̄m̄1,m′m1 (τ,τ1; τ ′,τ1+).

(13)

Here, m̄ is a molecular level other than m (e.g., for m = 1,
m̄ = 2), gk(τ,τ ′) is the single-particle Green function of free
electrons in the contacts

gk(τ,τ ′) ≡ −i〈Tc ĉk(τ ) ĉ
†
k(τ ′)〉. (14)

�mm′(τ,τ ′) ≡ ∑
K=L,R �K

mm′(τ,τ ′) is the self-energy due to
coupling to contacts with

�K
mm′(τ,τ ′) ≡

∑
k∈K

Vmkgk(τ,τ ′)Vkm′ (15)

and G is the molecular-subspace two-particle Green function
(GF)

Gm1m2,m3m4 (τ1,τ2; τ3,τ4)

≡ −〈
Tc d̂m1 (τ1) d̂m2 (τ2) d̂†

m4
(τ4)d̂†

m3
(τ3)

〉
. (16)

Note that when deriving Eq. (13), we treated the energy-
transfer term, given by Eq. (3), in the second-order perturbation
theory. Non-Markov effects are preserved in this derivation.

The presence of many-body interactions does not allow
us to close the hierarchy (which, in general, is infinite) of
equations exactly. To make the problem tractable, we employ
the Markov approximation in treating energy transfer, the last
term on the right in Eq. (13), and in writing EOM for the
two-particle GF (see below). The physics of this approximation
comes from the assumption that all the excitons have the same
energy, 
ε = ε2 − ε1, which is justified when 
ε � 	mm

(m = 1,2). The latter is a reasonable approximation for the

parameters used in our calculations. These approximations are
similar to those introduced previously in Refs. 20 and 29.

The molecule-contact coupling in Eq. (13) is treated exactly
thus introducing non-Markov effects into the description.
This leads to a system of equations (see Appendix A for a
derivation):

i
∂

∂t
Gr

mm′ (t,E)

= δm,m′ + (εm − E)Gr
mm′ (t,E) − μE(t)Gr

m̄m′(t,E)

− i

2

∑
m1=1,2

	mm1G
r
m1m′ (t,E) (17)

d

dt
nm(t)

= 2(−1)mμE(t)Im[p(t)] −	mmnm(t) − 	mm̄Re[p(t)]

+ 2Re
∑
m1

∫ +∞

−∞

dE

2π
Gr

mm1
(t,E)�<

m1m
(E)

− (−1)m(B(ε21)NM (t) − B(ε12)[n1(t) − n2(t) + NM (t)])

(18)

d

dt
p(t) = −iμE(t)(n2(t) − n1(t)) − i(ε2 + ε1)p(t)

− 	21

2
(n1(t) + n2(t)) − 	11 + 	22

2
p(t)

+
∑

m1=1,2

∫ +∞

−∞

dE

2π

(
Gr

2m1
(t,E)�<

m11(E)

−�<
2m1

(E)
∗
Gr

1m1
(t,E)

) − i
∑
m1

B(εm1m̄1 )Im[p(t),]

(19)

d

dt
NM (t) = 2μE(t)Im[p(t)] − i�<

22(ε2)n1(t)

+ i�>
11(ε1)n2(t) − 2i]�>

12(ε1) + �<
12(ε2)]Re[p(t)]

− [	11 + 	22 + B(ε21)]NM (t)

+B(ε12)[n1(t) − n2(t) +NM (t)] (20)

Here, εmm̄ ≡ εm − εm̄, nm(t) ≡ ρmm(t) (m = 1,2) are pop-
ulations of molecular levels, p(t) ≡ ρ21(t) is molec-
ular coherence, NM (t) ≡ 〈D̂†(t)D̂(t)〉 ≡ G12,12(t + ,t ; t,t+)
is the molecular excitation correlation function, 	mm′ ≡∑

K=L,R 	K
mm′ is the matrix of electronic decoherence due

to electron transfer between the molecule and the contacts,
with 	K

mm′ defined in Eq. (9), �
>,<
mm′ (E) = ∑

K=L,R �
K>,<
mm′ (E)

greater (lesser) projections of self-energy due to coupling to
contacts with

�K<
mm′(E) ≡ i	K

mm′fK (E), (21)

�K>
mm′(E) ≡ −i	K

mm′ [1 − fK (E)], (22)

and B(E) is the dissipation rate due to energy transfer,

B(E) ≡ 2π
∑

K=L,R

∑
k1 �=k2∈K

∣∣V en
k1k2

∣∣2
δ
(
εk1 − εk2 + E

)

× fK

(
εk1

)[
1 − fK

(
εk2

)]
. (23)
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Note that in Eq. (17) we omitted the term coming from energy
transfer, since the contribution to the total retarded self-energy,
�r , from the molecule-contacts electron transfer, which is
∼	, is much bigger than the corresponding contribution from
energy transfer, which is ∼B(ε21)n2 [∼B(ε21)(1 − n1)] for
m = 1 (m = 2) in a reasonable parameter range.16,20 The
equations of motion [Eqs. (17)–(20)] form a closed set of
time-dependent equations to be solved simultaneously on
an energy grid starting from a steady-state initial condition
corresponding to a biased junction before the laser is switched
on. The density matrix, ρ(t), and retarded GF, Gr (t,E),
obtained as a solution, are used in Eqs. (8) and (12) to calculate
the time-dependent current and excess charge pumped through
the junction, respectively.

In the limit of weak molecule-contact coupling, 	 → 0,
neglecting local-field and non-Markov effects, disregarding
off-diagonal terms in the spectral function, and assuming
rotating-wave approximation, reduces Eqs. (17)–(20) to the
results of Ref. 29 (see Appendix B for details).

VI. RESULTS AND DISCUSSION

Here, we present results of numerical simulations for a
model, see Eqs. (1)–(3), with local-field formation and non-
Markov effects taken into account as described above. The
time-dependent local electromagnetic field is calculated by
solving the Maxwell’s equations on a grid (see Sec. III) for
metallic contacts of a bowtie geometry. The molecule is placed
in a “hot spot” situated between the contacts and a local field
plays the role of an external driving force in the electronic
calculations (as described in Sec. V).

The parameters of our calculations are chosen to represent
a usual molecular-junction situation. Their values are esti-
mated from experimental data as discussed in our previous
publication.23 Unless stated otherwise, the parameters of the
electronic simulations are the following: the temperature is
300 K, the molecular electronic-level positions are ε1 =
−1 eV and ε2 = 1 eV, the elements of the electronic-
decoherence matrix are 	L

11 = 	R
22 = 0.1 eV, 	L

22 = 	R
11 =

0.01 eV, 	
L,R
12 = 	

L,R
21 = 0, and the coupling to the external

field is μE0 = 0.008 eV (after normalization of Eq. (7) for
�′′ = 2000 fs2; also below, the coupling to the external field
is given renormalized according to Eq. (7) for a particular
�′′). The Fermi energy is taken as the origin, EF = 0, and
the bias is applied symmetrically: μL,R = EF ± |e|Vsd/2. All
calculations below, except those presented in Fig. 6, are done at
equilibrium, Vsd = 0. Only the processes of energy relaxation
on the molecule are taken into account with B(ε12) = 0 and
B(ε21) = 0.1 eV. The time grid is taken from the external-
driving-field simulations. The energy grid spans a region from
−20 to 20 eV with a 0.001 eV step. Other parameters are
introduced separately for each calculation.

Figure 3 demonstrates pumped-charge buildup during the
laser-pulse excitation. One sees that the local-field formation
leads to asymmetry in pumped charge for opposite chirp
rates. A negatively chirped incoming field creates a longer
local pulse [see Fig. 2(b)], which results in an increase in
the total charge pumped through the junction. The role of
electron-hole excitations in the contacts on the charge buildup
is shown in Fig. 3(a). Since the processes of escaping from
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FIG. 3. (Color online) Time dependence of charge pumped
through the junction, Q(t), see Eq. (12) for several chirp rates. Shown
are results for (a) �′′ = 2000 and −2000 fs2 without energy transfer,
B(ε21) = 0 (red solid line and blue dashed line, respectively), and
taking into account energy transfer term, B(ε21) = 0.1 eV (red dash-
dotted line and blue dotted line, respectively) and (b) �′′ = 10 000 and
−10 000 fs2 for B(ε21) = 0.1 eV and μE0 = 0.03 (red solid line and
blue dashed line, respectively) and μE0 = 0.003 eV (red dash-dotted
line and blue dotted line, respectively).

LUMO into the right contact and energy relaxation on the
molecule compete for the excited-state population, the current
(and, consequently, the pumped charge) decreases with an
increase of coupling to the electron-hole excitations in the
contacts. Figure 3(b) shows the effect of intensity of the
incoming pulse on the transferred charge buildup. For higher
intensity, the buildup demonstrates a saturation in the middle
of the pulse. The reason for this behavior is the competition
between timescales related to Rabi oscillations induced by
the local field between molecular levels and the electronic
escape rate from the molecule into the contacts (which is
∼1/	). On one hand, both negatively and positively chirped
pulses in the middle have a frequency approximately at the
resonance with the HOMO-LUMO transition, ω ≈ ε2 − ε1,
which is a prerequisite for effective electron transfer and thus
an increase in pumped charge. On the other hand, at resonance
Rabi oscillations42 at high enough intensities compete with
the electron escape rate, thus effectively blocking current
through the junction. Depending on parameters, this may lead
either to the most effective charge transfer in the middle
of the pulse [dash-dotted and dotted lines in Fig. 3(b)] or
to a suppression of charge transfer at this point [solid and
dashed lines in Fig. 3(b)]. Note that the effect is not related
to a non-Markov relaxation, i.e., this behavior is observed
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FIG. 4. (Color online) Charge pumped through the junction
during a pulse vs. chirp rate: (a) total charge, i.e., the integral of Q(t),
see Eq. (12), over the local-field-pulse duration and (b) asymmetry in
charge transfer between positively and negatively chirped incoming
laser pulses, 
Q ≡ Q(|�′′|) − Q(−|�′′|). Shown are results with
B(ε21) = 0.1 eV, blue dashed line with triangles, and without energy
transfer, B(ε21) = 0, red solid line with circles.

also in the absence of hybridization between the molecule
and the contact(s) states and its relation to the Landau-Zener
problem,43 in terms of total charge pumped across the junction,
was discussed in Ref. 29. Note also, that with positively chirped
pulse changing frequency from lower to higher values, the
transferred-charge buildup is more effective at the start of
the pulse (at lower frequencies), while for negatively chirped
pulse, a more effective buildup takes place at the end of
the pulse [compare solid and dashed lines in Figs. 3(b) and
5(b)]. Contrary to the buildup suppression in the middle of the
pulse, this effect is due to the molecule-contact hybridization.
The latter leads to a broadening of molecular levels and
the effectiveness of HOMO-LUMO charge transfer depends
(among other conditions) on the integral of occupied states at
the HOMO and empty states at the LUMO separated by the
frequency of incident light,

∫
dEG<

11(E)G>
22(E + ω). Clearly,

at frequencies below the resonance the latter is greater than at
frequencies above it.

The local-field asymmetry relative to the sign of the chirp
rate in the frequency domain leads to asymmetry in charge
pumping contrary to the symmetric situation presented in
Ref. 29, as demonstrated in Fig. 4(a). One can see that the
pumped charge is almost symmetric at high rates with an
asymmetry confined to the low-rate region. The difference
between the charge pumped through the junction at positive
and negative chirp rates is shown in Fig. 4(b). As discussed
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FIG. 5. (Color online) Dependence of charge pumping on the
molecule-contact states hybridization at μE0 = 0.03 eV. Shown are
(a) charge pumped through the junction during a pulse vs. electronic
escape rate for chirp rate �′′ = 10 000 fs2 (red solid line) and
−10 000 fs2 (blue dashed line) and (b) normalized transferred charge
buildup (i.e., charge normalized to the total charge transferred during a
pulse) vs. time for chirp rate �′′ = 10 000 fs2 and 	L

11 = 	R
22 = 0.1 eV

(red solid line) and 1 eV (blue dashed line). The red line in panel (b)
is the same as the solid red line in Fig. 3(b).

above, the duration of the local field due to positively chirped
incoming pulse is shorter than the one due to negatively chirped
analog. This compression is the cause of less charge being
pumped through the system in the former case, which results in
a decrease in 
Q ≡ Q(�′′) − Q(−�′′) in the region of �′′(ν0)
from 0 to 3000 fs2. Indeed, at the very low-rate frequency the
pulse does not change much, so the asymmetry is solely due
to the difference in the pulse length. At the higher rates an
additional factor appears; the most effective contribution to
charge transfer takes place at a particular region of frequencies
(at and just below the resonance, as is discussed above). This
region is passed faster in the positively chirped local pulse,
and in the region up to 3000 fs2 this results in an increase of
asymmetry, since negatively chirped pulse spends more time
in its effective-frequencies zone. Further increase of chirp rate
leads to decrease and almost disappearance of the asymmetry.
The reason is the decrease of ratio of the pulses difference to
the overall local-pulse duration.

The coupling to electron-hole excitations not only di-
minishes the pumped charge [compare solid and dashed
lines in Fig. 4(a)], but also decreases the asymmetry [see
Fig. 4(b)]. The latter results from the fact that the rate for
molecular energy relaxation (LUMO → HOMO transition
due to coupling to excitations in the contacts) is proportional
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FIG. 6. (Color online) Dependence of charge pumping on bias.
(a) Total excess charge pumped through the junction during a pulse vs.
bias for chirp rate �′′ = 10 000 fs2 (red solid line) and −10 000 fs2

(blue dashed line). (b) Excess charge buildup (normalized to the
total excess charge transferred during a pulse) vs. time at chirp rate
�′′ = 10 000 fs2 for Vsd = −1 V (blue dashed line), 0 V (red solid
line), and 1 V (black dotted line). Here, 	L

11 = 	R
22 = 0.5 eV. The red

line in panel (b) is the same as the solid red line in Fig. 3(b).

to the population in the LUMO (see discussion in Ref. 20).
So for higher currents, the energy relaxation also will be more
efficient, thus effectively compensating for the difference.

The importance of non-Markov behavior for a charge pump
is demonstrated in Fig. 5. Figure 5(a) shows pumped charge
as a function of the level width (for two opposite choices of
chirp rate). The increase in the total charge pumped through
the junction with the increase in hybridization saturates at
high strengths of coupling between the molecule and the
contacts. Such behavior is expected; at low hybridization there
is only one frequency corresponding to a resonance, where
pumping is most effective, so only an “instant” of chirped pulse
contributes to the charge transfer. As the molecule-contact
coupling grows the condition of resonance transition becomes
less and less strict. Eventually, any frequency within the
chirped pulse has roughly the same effectiveness—this is the
reason for the saturation. Also, stronger coupling means more
effective molecule-contact electron transfer, which competes
more effectively with the intramolecular Rabi oscillations at
the resonance. This competition is demonstrated in Fig. 5(b),
where the middle-of-the-pulse saturation (see discussion of
Fig. 3) disappears for stronger molecule-contact couplings.

Finally, in Fig. 6 we discuss the influence of bias on
charge pumping. Here, we define the optically pumped charge
(or excess charge) as a difference between charge pumped

through the junction with and without a laser field. Figure 6(a)
demonstrates total excess-pumped charge during a laser pulse
for opposite choices of chirp rate as a function of bias. The
application of bias has two effects on the pumping process: (1)
it depletes (populates) the HOMO (the LUMO) and (2) it
may block or release channels for electron transfer from
LUMO to contact R. This leads to a situation when the most
effective optical pumping does not correspond to the zero bias,
rather we see a shallow peak at V ∼ 1 V. The explanation
is related to the fact that the broadened molecular levels
are, essentially, a set of scattering channels with different
transmission probabilities; high-conducting channels are in
the center of the Lorentzian, while channels on the sides of the
distribution are poor conductors. An optical process takes an
electron from an occupied ground state and puts it in one empty
excited state. The effectiveness of the charge pump is defined
by the increase or decrease of current through the junction
under an optical pulse (see discussion in Ref. 23). In particular,
negative bias decreases the effectiveness of the pump mostly
due to blocking part of LUMO-R escape routes. Positive bias
opens additional escape routes at the tail of LUMO Lorentzian
facilitating increase in pump efficiency. However, an additional
effect of depleting HOMO and populating LUMO partially
blocks optically induced HOMO-LUMO electron transfer thus
reducing overall the effectiveness of optical pumping. The
competition between the two processes reveals itself as a
shallow peak at ∼1 V.

The time-resolved charge buildup is presented in Fig. 6(b).
The middle-of-the-pulse saturation observed previously at the
equilibrium [solid line, same as in Fig. 3(b)] is enhanced at
negative (dashed line) and disappears at positive bias (dotted
line). The reason is similar to the competition between the
Rabi frequency and the escape rate discussed above. Indeed,
with negative bias partially blocking fast escape route for
the electron from an excited state into the right contact,
Rabi oscillations play an important role at the quasiresonant
situation in the middle of the pulse. Positive bias, by opening
additional routes, makes the Rabi oscillations less effective.

VII. CONCLUSIONS

We consider a two-level (HOMO-LUMO) model for an
optically-driven molecular charge pump. Such a pump may be
realized as a junction formed by a molecule with strong charge-
transfer transitions between its ground and excited states. The
junction is driven by both an applied bias and a laser pulse.
The latter is treated as a classical external driving force.

Our consideration is a generalization of the previous
study,29 which takes into account effects of local field (“hot-
spot” formation) and hybridization between the states of the
molecule and the contact(s) (i.e., non-Markov effects). We
formulate an approximate closed set of equations of motion
for single- and two-particle GFs. The electron transfer in the
former is treated exactly. To close the set of equations, the
latter is considered within the Markov approximation. Our
equations of motion are reduced to the set of equations derived
in Ref. 29, under several simplifying assumptions: weak
molecule-contact coupling (i.e., neglect of hybridization),
neglect of the nondiagonal terms in the molecular spectral
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function, and an equations-of-motion set within the rotating-
wave approximation.

The incoming laser pulse is assumed to be linearly chirped.
The local field is calculated within FDTD technique on a grid
with a bowtie antenna geometry used to represent junction
metallic contacts. We find that contrary to the symmetric
behavior of the pump relative to the sign of the chirp rate,
as reported previously,29 the duration of the corresponding
local-field pulse depends on the sign of incoming chirp,
which results in an asymmetric operation of the pump. The
asymmetry depends on the incoming pulse chirp rate in a
nonmonotonic manner. We find that the junction response to
optical driving is symmetric to both low and high chirp rates
going through a maximum between the two extremes. This
behavior is caused by the correspondence between the pulse
duration of the local field and the detuning of its frequency at
the end of the pulse from the energy difference between the
molecular states, (ε2 − ε1).

We note that at a quasiresonance the charge pump becomes
ineffective due to the competition between intramolecular
Rabi oscillations induced by a pulse with electron transfer
from the molecule to the contact. Increase of the molecule-
contact-coupling strength increases the electron escape rate
thus reducing the ineffectiveness of the pump due to Rabi
oscillations. This indicates a necessity of taking into account
the broadening of molecular states, which requires a treatment
beyond the Markov approximation of Ref. 29. The most
effective charge-pump regime is found at finite positive bias
rather than at the equilibrium as one might have expected
from the Markov consideration of Ref. 29. The effect comes
from optically assisted charge redistribution between low- and
high-conducting scattering channels in broadened molecular
states (see our previous publication23 for a detailed discussion).
Within the model, negative bias reduces (and positive in-
creases) excess-charge pumping due to blocking (facilitating)
outgoing scattering channels in the excited molecular state
and thus increasing (decreasing) the role of intramolecular
Rabi oscillations.

Finally, we note that the direct electron-hole excitation in
the contacts, heating, and inelastic effects are examples of
effects beyond the current consideration, which may also have
a significant impact on the properties of a molecular charge
pump.
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APPENDIX A : DERIVATION OF EQ. (13)

EOM for Eq. (13) in a contour variable, τ , starts from
writing the Heisenberg equation for d̂m(τ )

i
∂

∂τ
Gmm′ (τ,τ ′) = δm,m′δ(τ,τ ′) + εmGmm′ (τ,τ ′)

−μE(t)Gm̄m′ (τ,τ ′) +
∑

k

VmkGkm′(τ,τ ′)

+
∑
k1 �=k2

V en
k1k2

Gm̄k2,m′k1 (τ − ,τ ; τ ′,τ+) (A1)

Here, τ+ (τ−) indicates a variable immediately after (before)
τ on the contour. The last two terms on the right come from
the electron- and energy-transfer terms in Eq. (3). Treating the
two within the noncrossing approximation allows us to find the
first exactly within a standard procedure,44

Gkm′(τ,τ ′) =
∑
m1

∫
c

dτ1gk(τ,τ1)Vkm1Gm1m′(τ1,τ
′). (A2)

The two-particle Green function in the second term is treated
(still keeping noncrossing approximation in mind) within the
first-order perturbation theory in energy transfer,

Gm̄k2,m′k1 (τ,τ ; τ ′,τ ) = −iV en
k2k1

∑
m1

∫
c

dτ1gk2 (τ,τ1)gk1 (τ1,τ )

×Gm̄m̄1,m′m1 (τ,τ1; τ ′,τ1+) (A3)

Substituting (A2) and (A3) into (A1) yields Eq. (13).
Equation (17) is the retarded projection of Eq. (13) with

omitted energy transfer term. The approximation is based
on an estimate that, in a usual situation, the electron escape
rate should be much bigger than the corresponding energy
transfer.16

Equations (18) and (19) are lesser projections of Eq. (13)
taken at equal times, −iG<(t,t). Note that Eq. (19) is exact,
while in Eq. (18) we employ the Markov approximation for
the derivation of the energy-transfer term, similar to previous
publications,20,29 for example,

∑
k1 �=k2

∑
m1

∫ t

−∞
dt1g

>
k2

(t − t1)g<
k1

(t1 − t)
〈
d̂†

m(t)d̂m̄(t)d̂†
m1

(t1)d̂m̄1 (t1)
〉

≈
∫ t

−∞
dt1g

>
k2

(t − t1)g<
k1

(t1 − t)ei(εm1 −εm̄1 )(t1−t)

× 〈
d̂†

m(t)d̂m̄(t)d̂†
m1

(t)d̂m̄1 (t)
〉

≈ [
1 − nk2

]
nk1πδ

(
εk2 − εk1 + εm1 − εm̄1

)
× 〈

d̂†
m(t)d̂m̄(t)d̂†

m1
(t)d̂m̄1 (t)

〉
. (A4)

Using Eq. (A4) and similar expressions for other parts of
the Keldysh contour, which is deformed in accordance with
Langreth rules,44 in the energy-transfer term of a lesser
projection of the diagonal element of Eq. (13), and utilizing
Eq. (23), leads to Eq. (18).

Finally, Eq. (20) is treated with the Markov approximation
[see Eq. (A4) above] applied to both electron- and energy-
transfer terms. Then the derivation goes along the lines
presented in Ref. 29.

APPENDIX B : MARKOV LIMIT OF EQS. (17)– (20)

The equations of motion derived in Ref. 29 are the
Markov limit of Eqs. (18)– (20) within a static quasiparticle
approximation assumed for the molecular states. The latter
implies disregarding Eq. (17) and assuming instead

i
[
Gr

mm′ (t,E) − Ga
mm′ (t,E)

] = 2πδm,m′δ(E − εm). (B1)
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Then, disregarding the level mixing due to coupling to
contacts, 	K

12 = 	K
21 = 0, Eqs. (18) and (19) are reduced to the

Eqs. (33) and (34)45 of Ref. 29. After omitting the nondiagonal
elements of self-energy in Eq. (20) one gets Eq. (35) of Ref. 29.
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