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Kondo screening regimes of a quantum dot with a single Mn ion
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We study the Kondo and transport properties of a quantum dot with a single magnetic Mn ion connected
to metallic leads. By employing a numerical renormalization group technique we show that depending on the
value of ferromagnetic coupling strength between the local electronic spin and the magnetic moment of the
Mn, two distinct Kondo regimes exist. In the weak-coupling limit, the system can be found in a completely
screened Kondo state describing a local magnetic moment decoupled from the rest of the system. In contrast,
in the strong-coupling regime the quantum dot spin and the local magnetic moment form a single large-spin
entity partially Kondo screened. A crossover between these two regimes can be suitably tuned by varying the
tunnel coupling between the quantum dot and the leads. The model investigated here is also suitable to study
magnetic molecules adsorbed on a metallic surface. The rich phenomenology of these systems is reflected in the
conductance across the system.
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I. INTRODUCTION

Spin manipulation of localized impurities is of great interest
in spintronics and quantum computation.1 In this context,
diluted magnetic semiconductor quantum dots (DMSQDs)
could play a prominent role as they allow the control of the
spins of the magnetic ions.2–4 In general, DMSQDs are grown
in II-VI semiconductor composites with a few Mn atoms
in each quantum dot (QD).5 In these systems, the coupling
between the spins of the electrons in the QD and those of the
manganese arises from the sp-d exchange interaction.

More recently, the successful fabrication of QDs doped
with a single Mn2+ ion6–8 has stimulated many optical and
transport measurements,9–11 demanding a great deal of theo-
retical efforts.12–15 Recent investigations of these systems have
uncovered many interesting physical phenomena.6,8–11,16–19

For instance, the exchange interaction makes single photon
emitters active at six different frequencies, thus serving as
the basic framework for the six-state qubit.13 In this context,
a very exotic system composed of an “impurity” with spin
degrees of freedom coupled to a QD containing electrons (the
impurity is outside the QD) has been proposed and studied
recently.18 Fewer theoretical works, however, have addressed
the transport properties in these systems.20

In this paper we investigate the low-temperature properties
of a QD with a single magnetic Mn ion connected to leads. The
study could be applied as well to analyze magnetic molecules21

containing sites with correlated electrons, adsorbed on a
metallic surface or connected to independent leads. Although
the ideas have this general scope, to be concrete, we restrict
our discussion to a system composed of a Mn2+ ion in a
small QD, coupled to two metallic (source and drain) leads,
schematically represented in Fig. 1. It is well known that a QD
connected to leads possesses a Kondo ground state similarly
to what happens in magnetic impurities embedded in metals
under temperature below the characteristic Kondo temperature
(TK ).22–24 Simultaneously, the electrons in the QD couple to

the Mn2+ magnetic moment by a ferromagnetic exchange
interaction J that can be optically or electrically tuned.15,16 The
antiferromagnetic case will be discussed in detail elsewhere.25

In our case, TK can be modified by tuning the hopping matrix
element V that connects the localized and the lead states, while
J in turn can be tailored by properly choosing the size of the
QD.19

Based on a numerical renormalization group (NRG)
technique,26,29 our theoretical study shows two-distinct Kondo
regimes: (i) TK/|J | � 1, where the QD spin is completely
screened by the conduction spins comprising a Kondo state
and the Mn2+ is decoupled from the rest of the system and
(ii) TK/|J | � 1, in which the spins of the electrons in the QD
strongly couples to the Mn2+ spin, forming a large-spin local
magnetic impurity that is partially screened by the conduction
electrons: the underscreened Kondo state. Although this partic-
ular regime has been studied before with other models,27,28 we
focus our attention to the crossover between the two regimes
that can be analyzed in a controllable way, modifying the
Kondo temperature by suitably tuning the parameters of the
system. Moreover, we present a discussion of the underlying
physics and show that the conductance30 is the appropriate
physical quantity to be studied since it clearly reflects the
properties of the two regimes and the crossover region.

This paper is organized in the following way: In Sec. II we
describe the model and briefly discuss the numerical method.

FIG. 1. (Color online) Schematic representation of a single-level
quantum dot with a Mn ion. The large arrow ( �M) represents the spin of
the Mn2+ while the small arrow (�s) represents the spin of an electron
in the dot. The matrix element V allows for electrons to hop in and
off the quantum dot.
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The numerical results are shown in Sec. III. Finally, in Sec. IV
we present our concluding remarks.

II. HAMILTONIAN MODEL AND METHOD

Our system is described by the Hamiltonian H = Himp +
Hbands + HT , where

Himp =
∑

σ

εdσ c
†
dσ cdσ + Und↑nd↓ + JM · s (1)

corresponds to the single-level QD and the Mn2+ ion, in which
the operator c

†
dσ (cdσ ) creates (annihilates) an electron of spin

σ with energy εd , U is the local Coulomb repulsion, and M
and s are the spin operators of the Mn2+ ion and of an electron
in the QD, respectively. The Hamiltonian

Hbands =
∑
�kσ

ε�kc
†
�kσ c�kσ (2)

describes the conduction band, where c
†
�kσ (c�kσ ) creates

(annihilates) an electron with momentum k, energy ε�k , and
spin projection σ in the �th lead (� = L,R). The conduction
bands are characterized by a constant density of states given by
ρ0(ω) = (1/2D)�(D − |ω|), where D is the half bandwidth
and �(x) is the Heaviside function. Finally,

HT =
∑
�kσ

V�c
†
dσ c�kσ + H.c. (3)

describes the coupling between electrons in the QD and
reservoirs.

Within the NRG framework we are able to calculate the
relevant physical quantities, such as the entropy, the local
magnetic moment, and the local retarded Green’s function at
the QD site. The latter is necessary to calculate the zero-bias
conductance.

Here we mainly focus on investigating the particle-hole
symmetric case (εd = −U/2) and normal leads. We take
D as the energy unity. In order to illustrate the underlying
physics, we start off by briefly discussing a simplified model,
i.e., an isolated impurity (V = 0 in our model). In a single-
electron QD, the spin is s = 1/2. Due to the vanishing
angular momentum, there is no direct influence of the crystal
field on the ground state of the Mn ion. Thus, the ground
state of the Mn is sixfold spin degenerate. The coupling
of the spin of the QD electron with the spin of the Mn2+
leads to a total spin momentum L = M + s, with a total
momentum quantum number, l = |M − s|, . . . ,|M + s|. For
the electron-Mn2+ complex, the possible values of l are 2 and
3. Assuming a ferromagnetic coupling J < 0, the ground state
has l = 3 with degeneracy 2l + 1 = 7, corresponding to the
projections of the total angular momentum L along the z axis,
lz = −3, − 2, . . . ,2,3.

III. NUMERICAL RESULTS

We start our numerical analysis by studying the impu-
rity contribution to the entropy and the magnetic moment,
defined, respectively, as S(T ) = St (T ) − S0(T ) and μ2(T ) =
kBT [χt (T ) − χ0(T )], where χ is the magnetic susceptibility.
The subscripts t and 0 refer to the quantities calculated for the
entire system and in the contribution of the conduction band
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FIG. 2. (Color online) Entropy (a), magnetic moment (b), and
spin-spin correlation (c) as function of temperature for various values
of TK/|J |, keeping J = −2.0 × 10−5. In the dashed (green) curve
we use J = 0 and TK = 2.41 × 10−4 and serves as a reference (for
which we have scaled the temperature by 2.0 × 10−5 as in the other
curves). (d) shows the spin-spin correlation as function of J/TK for
various values of TK .

alone, respectively. We calculate these quantities within the
usual NRG methodology.31 Similarly, we calculate the spin-
spin correlation 〈M · s〉 an important quantity to characterize
the system regime.

In this paper we assume U = 0.5 and set kB = μB = h̄ = 1.
In Figs. 2(a) and 2(b) we show, respectively, the effects of
the ferromagnetic exchange interaction and temperature on
the magnetic moment and entropy for J = −2.0 × 10−5 and
various values of V . The Kondo temperature TK , evaluated in
the absence of ferromagnetic exchange interaction, is strongly
dependent on V, and can be tuned by changing V . As a
reference, the J = 0 curve is also depicted (dashed green
lines).

A. No exchange interaction

Notice in Fig. 2(a) that at high temperature T > U S →
1.77 log(6) ≈ log(24), which indicates that there are 6 × 4 =
24 individual states, six from the Mn spin and four from the dot
(spin and charge degrees of freedom), that can be thermally
activated at that temperature. As the temperature decreases,
the entropy presents a plateau at log(12), indicating that for
T � U/2 the dot charge degrees of freedom are frozen. When
the temperature decreases below TK , the entropy for J = 0
tends to log(6) [Fig. 2(a)], indicating that the six degenerate
spin states of Mn are the only contribution to the entropy
because the QD electron and conduction electrons are locked
into a Kondo singlet.

B. Finite ferromagnetic J case

Here the competition between the exchange interaction
energy J and TK determines the ground state of the system.
The ground state is a Kondo singlet (KS) for |J | � TK with
an uncoupled Mn ion and it becomes a local ferromagnetic
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state (LFS) as |J | � TK due to the Mn-dot spin coupling that
creates a large spin underscreened by the conduction electrons.
Here we use the expression TK = √

	U exp [−πU/8	] to
estimate the Kondo temperature of the system in the absence
of the Mn atom (or J = 0), with 	 = πV 2/D being the
hybridization constant. In the intermediary case (TK ∼ J )
the system presents a crossover region between the regimes
mentioned above. In the following we analyze in detail these
several regimes.

1. Small- J regime—|J| � TK

In the regime of very weak exchange interaction, when
T � TK , the regular full screened KS state emerges. When
T < TK , as the temperature decreases, the KS ground state is
formed by the strongly coupled dot and conduction electron
spins. The characteristic of this regime is clearly illustrated
in the curve for TK/|J | = 102 � symbol in Fig. 2(a), where
almost no plateau at S = log(7) is observed. The entropy
goes directly to the S = log(6) plateau. The screening of
the QD-electron spin by the conduction electrons leaves the
Mn-ion free. Hence the magnetic moment of the system is
only due to the sixfold degenerate state of the Mn atom, which
at T = 0 gives μ2 = 2[(−5/2)2 + (−3/2)2 + (−1/2)2]/6 =
35/12 ≈ 2.92, as clearly seen in Fig. 2(b) (� curve). In order
to confirm this observation, in Fig. 2(c) we show the spin-spin
correlation 〈M · s〉 as a function of the temperature using
the same parameters as in Fig. 2(a). Notice that for a given
TK/|J |, as the temperature decreases, the correlation rapidly
increases, becoming constant for T � |J |, indicating the
formation of a large effective localized spin. For TK/|J | = 102

the correlation remains close to zero, thus indicating that
the Mn ion is almost fully decoupled from the rest of the
system.

2. Large- J regime—|J| � TK

In Figs. 2(a) and 2(b) this regime is better represented by
the curve for TK/|J | = 10−2. In Fig. 2(a) we observe that
the entropy drops to a new plateau ∼log(7) for temperatures
below |J | (=2 × 10−5 for this case). This new value results
from the ferromagnetic coupling between the s and M. As
we have discussed above, the enhancement of the magnetic
moment corresponds to an unstable fixed point, characterized
by a sevenfold degenerate state, corresponding to a total
angular momentum l = 3. In this regime the QD and the Mn2+
ion together comprise a large local magnetic moment. This
magnetic moment is, for sufficiently low temperature, partially
screened by the single-channel conduction electron spins. This
can be clearly seen in Fig. 2(b), where the magnetic moment is
shown as a function of T. In this regime, |J | � TK , the μ2 is
suppressed by decreasing the temperature. The local magnetic
moment is only partially screened because there is only one
conduction electron channel to screen the total spin. In the limit
T → 0 the system goes into the underscreened Kondo regime,
independently of the ratio TK/|J |. This is reflected in the
values μ2 → 2.92, S → log(6), and 〈M · s〉 ≈ 1, indicating
a clear ferromagnetic correlation between the Mn and the
dot spins. The characteristic crossover temperature T ∗, below
which the system can be considered to be in the underscreened
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K
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FIG. 3. (Color online) Crossover temperature T ∗ as function
of |J |/TK showing the exponential dependence with |J |/TK as
in Eq. (4). Symbols correspond to T ∗ extracted from μ2 curves
of Fig. 2(a) (see text), while the (red) solid line results from a
linear regression for a linearized version of expression (4), which
gives γ = 4.75.

regime, is shown to have a power-law dependence on |J |/TK

as

T ∗ ∼ (|J |/TK )−γ , (4)

where γ is a positive real number. In Fig. 3 we show ln T ∗
as function of ln(|J |/TK ), where T ∗ is extracted from the
magnetic moment curves of Fig. 2(b) with the condition
μ2(T ∗) = d, where d is a parameter that has been taken to
be 3.4. Although the parameter d is to some extent arbitrary
(3 < d < 3.9), Eq. (4) does not depend significantly upon its
precise value. A similar function could have been obtained
from the entropy [Fig. 2(a)]. The linear behavior of ln T ∗ in
Fig. 3 clearly shows the power-law dependence of T ∗ upon J

(with γ = 4.75), as written in Eq. (4). This behavior shows that
T ∗ vanishes in the limit J → ∞. Expression (4) is expected to
be valid only in the underscreened regime (|J | � TK ), since in
the other limit the system is dominated by the regular screened
Kondo regime.

3. Intermediate regime—|J| ∼ TK

In this case the system is in a crossover region between
the two previous analyzed regimes. The amplitude of this
region can be seen very clearly from Fig. 2(d), where we
show 〈M · s〉 vs. |J |/TK for three different values of TK .
Notice that the correlation rapidly increases for |J |/TK � 1
and saturates slowly for larger values of |J |/TK , achieving
the value 5/4 for J/|TK | → ∞. The region where the
correlation changes rapidly corresponds in the parameter
space to the crossover region. An inspection of the figure
permits to conclude that the relevant parameter that controls
the moment correlations is the quantity J/TK as we obtain
the same universal function for the different values of TK

taken.
The QD density of states, ρd (ω) = −π−1 Im[Gr

dd (ω)],
where Gr

dd (ω) is the Fourier transform of the double-time
retarded Green’s function, is calculated adopting standard
NRG procedures. Within the same framework the zero-bias
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FIG. 4. (Color online) Spectral function vs ω near the Fermi
level for various values of TK/|J | (fixing J = −2 × 10−5 and varying
Tk) showing how the Kondo peak is affected due to changes in the
coupling J . The line corresponds to J = 0 and the same TK as in the
dashed (black) line. The inset shows in a logarithmic scale the finite
width of the sharp peak around the Fermi level.

conductance G across the QD is calculated using the Green’s
function formalism with the Landauer-type formula32

G = 2e2

h
	

∫ ∞

−∞
Im[Gr

dd (ω)] [−∂f (ω)/∂ω] dω, (5)

where f (ω) is the Fermi function.
In Fig. 4 we show ρd (ω) for various values of TK/|J |

near the Fermi level (for J = −2 × 10−5 and various Tk).
Notice that even for the TK > |J | (e.g., TK/|J | = 12.1) line
the Kondo peak split into a three-peak structure due to the
coupling J (see the two satellite peaks around the Fermi
level and a very sharp peak precisely at the Fermi level.
The zero-frequency peak is better noticed in a logarithmic
scale, as shown in the inset of the figure). The characteristic
energy of this regime is given by the width of the complete
three-peak structure. When compared to the solid curve for
J = 0, we see that the change in the density of states is
restricted to the Kondo peak (∼TK ) region and there is a
clear collapse of the two curves for |ω| � TK . As TK/|J |
decreases we see a dramatic distortion in the Kondo peak:
The three-peak structure tends to disappear and essentially the
density of states is dominated by the central sharp peak at the
Fermi level. It is interesting to observe that, despite the strong
modification of the spectral function, the height of the peak
at the Fermi level remains 1/π	, as predicted by the Friedel
sum rule. As a result, no effect would be expected for the
conductance at T = 0. However, as we discuss below, the pres-
ence of this central peak has essential consequences on the
interesting behavior of the conductance as the temperature is
increased.

In Fig. 5 we show the conductance as function of temper-
ature for various values of J . We notice two distinct regimes:
(i) For J � TK the conductance drops at T ∼ TK , where the
effect of the temperature is to take the system out of the
standard Kondo regime and (ii) for |J | � TK the conductance
drops for much lower temperature. For intermediate values
of J , such as in |J | = 7 × 10−5 < TK , we observe that
the behavior corresponding to the two regimes is contained
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FIG. 5. (Color online) Conductance as function of temperature
for various values of J and at a fixed TK = 2.41 × 10−4. The
vertical dashed lines indicate the position of the various |J | along the
x axis, showing a good coincidence with the spikes observed in the
conductance.

in the same curve. The shape of the conductance differs
completely whether T < |J | or T > |J |. The appearance
of these two regimes with temperature can be understood
as follows: By decreasing T , in the interval |J | < T < TK ,
the system restores the behavior of the completely screened
Kondo state at that temperature, as thermal excitations destroy
the dot-magnetic atom spin-spin correlation [see Fig. 2(c)].
However, reducing T , after a crossover region, when T < J ,
the dot-magnetic atom spin degrees of freedom are coupled
and the system enters an underscreened Kondo state, charac-
terized by a conductance that is significantly dependent upon
temperature.

IV. SUMMARY

We have investigated the Kondo regime of a system
composed of a single Mn2+ ion in a QD coupled to metallic
leads. Our numerical approach shows two distinct low-
temperature regimes, depending on how the ferromagnetic
exchange interaction J between the electrons in the QD
and the magnetic moment of the Mn2+ compares with TK .
In the weak regime (TK � |J |), the QD is locked in a
Kondo state singlet while the magnetic moment of the Mn2+
decouples from the rest of the system. In the strong-coupling
regime (TK � J ), the QD and the Mn2+ forms a spin l = 3
impurity that couples to the conduction band. In this case,
the impurity is underscreened by the Kondo correlation with
the conduction-band electrons. From the experimental point
of view, Fig. 5 shows that the nature of the Kondo regime
is reflected very significantly on the conductance permitting,
through a transport measurement, to fully characterize the spin
configuration of the system with very interesting quantum
information implications. The values of temperature necessary
to access the two Kondo regimes depend strongly on the
parameters of the system, such as TK and J . Although the
very low values of temperature shown in Fig. 5 are out of
experimental range, the conductance has a more interesting
temperature dependence, which includes the crossover region,
in the experimentally reachable region T/TK > 10−2. We
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expect that our results will stimulate experimental stud-
ies of these systems and contribute to the understanding
of the Kondo effect and transport in magnetic quantum
dots.
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27R. Žitko, J. Phys. Condens. Matter 22, 026002 (2010).
28W. Koller, A. C. Hewson, and D. Meyer, Phys. Rev. B 72, 045117

(2005).
29H. R. Krishna-murthy, J. W. Wilkins, and K. G. Wilson, Phys. Rev.

B 21, 1003 (1980); R. Bulla, T. A. Costi, and T. Pruschke, Rev.
Mod. Phys. 80, 395 (2008).

30A. C Seridonio, M. Yoshida M, and L. N. Oliveira, Europhys. Lett.
86, 67006 (2009).

31We use a NRG discretization parameter  = 2.5 and keep 2000
states at each iteration, before accounting for the degeneracies.

32Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

205422-5

http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1103/RevModPhys.76.323
http://dx.doi.org/10.1126/science.270.5234.255
http://dx.doi.org/10.1063/1.2825423
http://dx.doi.org/10.1063/1.2825423
http://dx.doi.org/10.1103/PhysRevB.62.R7767
http://dx.doi.org/10.1103/PhysRevB.72.075320
http://dx.doi.org/10.1103/PhysRevB.72.075320
http://dx.doi.org/10.1103/PhysRevLett.93.207403
http://dx.doi.org/10.1063/1.2387116
http://dx.doi.org/10.1103/PhysRevLett.99.247209
http://dx.doi.org/10.1103/PhysRevLett.102.177403
http://dx.doi.org/10.1103/PhysRevLett.102.177403
http://dx.doi.org/10.1103/PhysRevLett.103.087401
http://dx.doi.org/10.1103/PhysRevLett.102.127402
http://dx.doi.org/10.1103/PhysRevB.70.035321
http://dx.doi.org/10.1103/PhysRevB.71.035338
http://dx.doi.org/10.1103/PhysRevB.71.035338
http://dx.doi.org/10.1103/PhysRevLett.101.076602
http://dx.doi.org/10.1103/PhysRevLett.95.047403
http://dx.doi.org/10.1103/PhysRevLett.95.217206
http://dx.doi.org/10.1103/PhysRevLett.95.217206
http://dx.doi.org/10.1103/PhysRevLett.94.086602
http://dx.doi.org/10.1103/PhysRevLett.94.086602
http://dx.doi.org/10.1103/PhysRevB.80.035318
http://dx.doi.org/10.1063/1.2354585
http://dx.doi.org/10.1063/1.2354585
http://dx.doi.org/10.1103/PhysRevB.74.245308
http://dx.doi.org/10.1103/PhysRevLett.106.126602
http://dx.doi.org/10.1103/PhysRevLett.106.126602
http://dx.doi.org/10.1209/0295-5075/93/47005
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/34373
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1038/35000508
http://dx.doi.org/10.1103/RevModPhys.47.773
http://dx.doi.org/10.1103/PhysRevB.64.045103
http://dx.doi.org/10.1088/0953-8984/22/2/026002
http://dx.doi.org/10.1103/PhysRevB.72.045117
http://dx.doi.org/10.1103/PhysRevB.72.045117
http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/PhysRevB.21.1003
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1103/RevModPhys.80.395
http://dx.doi.org/10.1209/0295-5075/86/67006
http://dx.doi.org/10.1209/0295-5075/86/67006
http://dx.doi.org/10.1103/PhysRevLett.68.2512

