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Conductance and thermopower of ballistic Andreev cavities
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When coupling a superconductor to a normal conducting region the physical properties of the system are highly
affected by the superconductor. We investigate the effect of one or two superconductors on the conductance of
a ballistic chaotic quantum dot to leading order in the total channel number using trajectory-based semiclassics.
The results show that the effect of one superconductor on the conductance is of the order of the number of
channels and that the sign of the quantum correction from the Drude conductance depends on the particular
ratios of the numbers of channels of the superconducting and normal conducting leads. In the case of two
superconductors with the same chemical potential, we additionally study how the conductance and the sign of
quantum corrections are affected by their phase difference. As far as random matrix theory results exist these are
reproduced by our calculations. Furthermore, in the case that the chemical potential of the superconductors is the
same as that of one of the two normal leads the conductance shows, under certain conditions, similar effects as
a normal metal-superconductor junction. The semiclassical framework is also able to treat the thermopower of
chaotic Andreev billiards consisting of one chaotic dot, two normal leads, and two superconducting islands and
shows it to be antisymmetric in the phase difference of the superconductors.
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I. INTRODUCTION

Transport problems have always attracted a lot of attention
in condensed-matter physics. While the Landauer-Büttiker
formalism which connects the electrical current to the quantum
transmission probabilities of a conductor is of key importance
for transport through nanosystems, similar formulas have
also been derived for hybrid structures consisting of normal
conducting (N) regions connected to superconductors (S)1–3

in which Andreev reflection4 plays a crucial role.
Andreev reflection4 can occur whenever a normal metal

region is coupled to a superconductor. If an electron hits
the normal metal-superconductor (N-S) interface with an
energy closely above the Fermi energy, an additional electron-
hole pair can be created, and the two electrons enter the
superconductor forming a Cooper pair. The hole, however,
has to compensate the momentum of the original electron;
therefore, it retraces the electron path. Moreover, the hole
picks up a phase equal to the phase of the macroscopic
superconducting wave function.

The early theoretical and experimental investigations of
transport properties focused on the current through the inter-
face of normal metal-superconductor, normal metal-insulator-
superconductor (N-I-S), and S-N-S junctions.5 For these the
Blonder-Tinkham-Klapwijk (BTK) theory1 applies, which is
based on the Landauer-type equation,

I = 2e

h
�

∫ ∞

−∞
dε[1 − R0 + RA][f (ε − eV ) − f (ε)], (1)

where I is the current through the N-S interface with an applied
voltage V and � a measure of the area of the junction. In (1) R0

is the probability for normal reflection, RA is the probability
for Andreev reflection, and f is the Fermi function. The BTK
theory predicts for N-S junctions with sufficiently large barrier
strengths at the N-S interface that the differential conductance
dI/dV vanishes for voltages smaller than the superconducting
gap �/e. In this regime the conductance is doubled compared

to the conductance of the same normal conducting region with
a normal conducting lead instead of the superconducting one:
an indication of the proximity effect.6,7 When increasing the
voltage the differential conductance has a peak at eV ≈ � and
finally approaches the conductance of the normal conducting
region without the superconductor. However, the total value of
the current for high voltages exceeds that of a metallic junction
by the so-called excess current. The early experiments on N-
I-S junctions were in agreement with BTK theory. However,
later experiments8,9 found an enhancement of the differential
conductance at V = 0, later known as the zero-bias anomaly.

Recently, Whitney and Jacquod10 considered a somewhat
different type of setup. They considered a ballistic normal
conducting region with a boundary giving rise to classically
chaotic dynamics. Andreev reflection and interference be-
tween quasiparticles with slightly different paths lead to a hard
gap in the density of states of such chaotic ballistic conductors
coupled to a superconductor.11–13 In Ref. 10 such a chaotic
Andreev quantum dot is coupled to two normal conducting
and one superconducting lead and its transport characteristics
was studied. Using a trajectory-based semiclassical method
they calculated the average conductance between the two
normal leads of such chaotic Andreev billiards up to second
order in the ratio NS/NN, where NS is the total number of
superconducting channels and NN = N1 + N2 the sum of the
number of channels in the normal leads. If the superconducting
chemical potential is the same as that of one of the two normal
conducting leads [abbreviated to “superconducting lead” and
depicted in Fig. 1(d)] they found that the correction to the
classical conductance was huge (of order of N = NN + NS)
compared to usual weak localization effects; in particular, it
was shown that the quantum correction may become negative
or positive depending on the ratio N1/N2. A similar change in
the sign of the quantum correction to the conductance may be
caused by a change in the transparencies of the leads.14

Using the same approach Whitney and Jacquod15 showed
furthermore that to leading order in NS/NN the thermopower
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FIG. 1. (Color online) Schema of various Andreev billiards con-
sidered here: (a) Andreev interferometer with two superconducters,
(b) double-dot setup, (c) chaotic quantum dot coupled to one
superconducting island, (d) the case of a superconducting lead with
the same chemical potential as the right lead, (e) the so-called
“symmetric house,” (f) the “asymmetric house,” where at lead 1 a
neck is additionally inserted compared to (e).

of a chaotically shaped normal metal quantum dot with two
normal leads and two superconducting islands [called a “sym-
metric house” and depicted in Fig. 1(e)] is antisymmetric in
the phase difference of the superconductors. They also argued
that the thermopower vanishes if the two superconductors
carry the same amount of channels as long as no symmetry
breaking neck is inserted at one of the two superconductors
[cf. Fig. 1(f)].

Here we combine the trajectory based semiclassical ap-
proaches of Refs. 10,12,13, and 16 and provide a comprehen-
sive calculation of the conductance and the thermopower of
Andreev billiards. In Refs. 12 and 13 a method was developed
for the systematic evaluation of multiple sums over electron-
and hole-type orbits arising in a semiclassical approach to
the proximity effect on the density of states of Andreev
billiards. Here we further extend this recent approach to the
conductance. To this end a diagonal backbone is introduced
which is given by a path and its complex conjugated partner.
The quantum correction in leading order in 1/N is then
obtained by attaching an even number of so-called trees (or
complex-conjugated trees) as those used in Ref. 16. In this
diagrammatical language, in Ref. 10 the authors restricted
themselves to at most two trees consisting of just one path
pair. Therefore, their results are valid only for small NS/NN

and the validity of their results for larger NS is not known.
Unlike the results in Ref. 17, where the authors considered
the distribution of the conductance of chaotic quantum dots
with one open channel per lead, our results are valid for large
numbers of channels in the normal leads.

We derive the conductance of the two setups in Ref. 10—
namely, the setup with a superconducting island [see 1(c)]
and the one with a superconducting lead (see 1(d)]—to
all orders in NS/NN. To this end we start in Secs. II—
IV by considering the semiclassical diagrams and their
contribution to the transmission probabilities and thus to the
conductance to leading order in 1/N . In Sec. V we apply this
approach to the setup with a superconducting island. We show
that our semiclassical result for the conductance coincides
with previous random matrix theory results18 existing for
zero magnetic field and temperature (though still with a
phase difference φ = φ1 − φ2 between the superconductors).
We furthermore consider the magnetic field and temperature
dependence of the conductance of the setup in 1(c).

For the other setup of an Andreev billiard coupled to one or
two separate superconducting leads [1(d)], we show as a main
result in Sec. VI that the quantum correction to the classical
value of the conductance changes its sign not only with the
ratio of the number of channels in the two normal conducting
leads N1/N2 but also by tuning the ratio x = NS/NN. This
sign change was not anticipated in Ref. 10, since it requires
an analysis to higher orders in x. This conductance correction
is also shown to oscillate with the phase difference φ between
the two superconducting leads with period 2π . Finally, we
study the dependence of the conductance on an applied
magnetic field and temperature. The effects we observe for
some combinations of the ratios x and N1/N2 turn out to be
fairly similar to those found in the structures containing only
one normal conducting lead.

In Sec. VII we show how the methods derived before can
be extended to calculate the transmission coefficients of two
dots connected to each other by a neck where each dot has
one further normal and one superconducting lead [see 1(b)].
The conductance of this setup is shown to also be symmetric
in the phase difference. The sign of the quantum correction
depends on the ratios x and n = Nn/(N1 + N2), where Nn is
the channel number of the neck.

In Sec. VIII we finally apply our calculations to the
thermopower of the setup shown in Fig. 1(e) with both equal
and different numbers of channels as well as to the setup
shown in 1(f). We find that for the symmetric house with
different channel numbers and for the antisymmetric house
the thermopower is antisymmetric in the phase difference.

II. CONTRIBUTING DIAGRAMS

We evaluate the quantum transmission between two normal
conducting leads coupled to a classically chaotic, ballistic
quantum dot which is additionally connected to superconduct-
ing leads such as depicted in Fig. 1. In a trajectory-based
semiclassical approach the transmission probabilities may be
written as19–21

Tij = 1

TH

Ni∑
b=1

Nj∑
a=1

∑
ζ,ζ ′

√
Aζ A

∗
ζ ′ei(Sζ −Sζ ′ )/h̄, (2)

where the ∗ denotes complex conjugation. Here, a and b label
the channels in lead i ∈ {1,2} and j ∈ {1,2}, respectively. ζ

and ζ ′ are classical trajectories starting at channel a and ending
at channel b. The amplitudes Aζ contain the stability of the
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FIG. 2. (Color online) The diagonal diagrams contributing to the
conductance up to third order in the number NS of channels of the
superconductor. Here, e and h denote electron-type and hole-type
quasiparticles and the asterisk denotes that the path enters the
calculations with the complex-conjugated factors.

trajectory ζ and Sζ is its classical action. Moreover, TH is the
Heisenberg time, the time dual to the mean level spacing.

We are interested in the conductance averaged over the
shape of the quantum dot or an energy range small compared to
the Fermi energy but large enough to smooth out fluctuations.
Moreover, we take the semiclassical limit h̄ → 0. Therefore,
the energy-dependent action difference in (2) causes fluctua-
tions canceled on average unless it is on the order of h̄. Thus,
we have to pair the trajectories in such a way that their action
difference becomes sufficiently small. The easiest way to do
this is to require that ζ = ζ ′, which is known as the diagonal
approximation.22 In Fig. 2 the trajectory pairs contributing to
the diagonal approximation are drawn schematically for up to
three Andreev reflections. The contributions of the diagonal
pairs to the conductance provide the classical conductance,10

gcl = N1N2

N1 + N2
, (3)

if the superconductors are isolated and

gcl = N1(N2 + 2NS)

N1 + N2 + 2NS
(4)

in the case of the superconducting leads. However, as shown
semiclassically in Ref. 12 for the density of states and Ref. 10
for the conductance of Andreev quantum dots, one has to
go beyond the diagonal approximation to fully account for

quantum effects. The nondiagonal trajectory pairs contributing
to the conductance of normal junctions in the limit h̄ → 0
have been first considered in Ref. 23 and generalized to higher
orders in 1/N in Ref. 24: There are small regions in which
an arbitrary even number—say 2l—of trajectory stretches
come close to each other. l of these trajectory stretches
“cross” each other in this region while the remaining l ones
avoid crossing. The difference between a trajectory ζ and its
partner ζ ′ then leads to a small action difference as long as
these stretches are close enough to each other. Such a region
with l crossing trajectory stretches and l trajectory stretches
“avoiding crossing” are referred to as an l-encounter. Between
these l-encounters two different trajectory stretches retrace
each other, forming a path pair with vanishing action difference
which is also referred to as a link.

In what follows we identify the relevant trajectory pairs
contributing to the conductance beyond the diagonal ap-
proximation in leading order in the inverse channel number
1/N . The diagrams with two Andreev reflections may be
found in Ref. 10. However, we want to go beyond second
order in x = NS/NN. The trajectories contributing in third
order in x, that is, trajectories with three Andreev reflections,
are shown in Fig. 3. The first task is to find a structure in the
diagrams contributing at leading order in the channel number.
To facilitate this we can redraw our semiclassical diagrams in
a skeleton form and represent encounters and path pairs by
nodes and lines. For example, the diagrams contributing to
third order in x, shown in Fig. 3, can be redrawn as in Fig. 4.

We first consider how to read of the channel number
dependence from a given diagram; that is, we use the
diagrammatic rules used in Ref. 24 disregarding an energy and
magnetic field dependence and any signs for the moment. A
path pair hitting lead j contributes a factor of channel number
Nj . The path pair, or link, itself, however, contributes a factor
1/N while each encounter contributes a factor N . From the
trajectory pairs shown in Fig. 3 we see that if we cut off all
e-h and e∗-h∗ pairs we again get a diagonal-like contribution
as depicted in Fig. 5. For example, if we cut the e-h pair at
the very left of ee3I we get the diagonal contribution to second
order in x in Fig. 2 since there are two Andreev reflections
and if we cut the “off-diagonal” parts in, say, ee3III we get a
diagonal contribution to first order in x.
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FIG. 3. (Color online) Pairs of paths contributing to the third-order term in x = NS/NN of the transmission. The electron paths are shown
in blue and labeled with an e while the hole paths are shown in green and labeled with an h. The solid (dashed) lines belong to γ (γ ′). A
trajectory pair entering from the left and exiting to the right can connect the two normal conducting leads while a trajectory pair entering and
exiting at the same side can only contribute if the incoming and outgoing channels both belong to the same lead.
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ee3I ee3II ee3III he3I he3II

he3III he3IV he3V he3VI he3VII

FIG. 4. Diagrams corresponding to the trajectory pairs shown in Fig. 3. The solid circles denote encounters while the open circles denote
Andreev reflections. Note that an encounter touching the superconductor is marked as Andreev reflection. An encounter touching a normal
conducting lead is shown as an open square. The solid (dashed) line represents ζ (ζ ′).

Staying at leading order in 1/N implies that the off-diagonal
path pairs cannot consist of one ζ and one ζ ′ stretch since
each of those path pairs has to be traversed by ζ and ζ ′ in
the same direction. Thus, in order to come back from the
off-diagonal part starting with a ζ -ζ ′ pair we have to connect
this off-diagonal part to the diagonal “backbone” by a second
ζ -ζ ′ path pair, thus forming a loop as indicated in Fig. 6(a).
This loop, however, adds a link, thus giving a factor 1/N

compared to the same diagram without the loop, and therefore
decreases the number of Andreev reflections by at least one
and therefore the contribution to the conductance is suppressed
by a factor of the order 1/NS such that it would contribute to
subleading order in the inverse channel number. Therefore, the
off-diagonal parts may only consist of e-h or e∗-h∗ pairs. In
the same way we may neglect loops formed by e-h or e∗-h∗
path pairs as the one in Fig. 6(b).

In terms of graphs, the off-diagonal parts again become
rooted plane trees as in Refs. 13 and 16. These trees start with
a link (root) which connects an encounter to the diagonal-like
backbone. From this encounter several further links emerge, all
ending again at an encounter or at a superconducting channel.
In contrast to the trees in Refs. 13 and 16, the trees here—we
call “side-trees”—start at the “diagonal encounter” such that
their roots do not touch a channel but the diagonal backbone
instead. Note that we draw the diagrams such that the non-
complex-conjugated side trees are at the upper side of the
diagonal backbone while the complex-conjugated ones are on
the lower side of the diagonal backbone.

The fact that the path pairs along the backbone are
composed only of ζ -ζ ′ pairs is again due to neglecting loops:
The two trajectories ζ and ζ ′ must both start at lead j and
end at lead i. Therefore, the path pairs hitting the normal leads
have to be ζ -ζ ′ pairs and so, if there is a diagonal encounter
entered by a ζ -ζ ′ pair and left only by e-h and e∗-h∗ pairs,
there must be a corresponding encounter entered only by e-h

SuperconductorSuperconductor

e e*
e

e*
e

h

h*
h

h*
h

FIG. 5. (Color online) If the e-h path pairs are cut off, a diagonal-
type diagram remains.

and e∗-h∗ pairs and left by a ζ -ζ ′ pair. Therefore, we again
would get a loop essentially formed by one e-h and one e∗-h∗
pair, as shown in 6(c).

All told, the diagrams have to consist of a diagonal-type
backbone consisting of ζ -ζ ′ path pairs and encounters (which
may also touch the superconductor) and ζ and ζ ′ side trees
emerging from these diagonal encounters. Note that when
pairing a ζ with a ζ ′ stretch these stretches have to be traversed
by the same kind of quasiparticle; that is, it has to be an e-e∗
or a h-h∗ pair. This is related to the fact that each encounter
has an even number of entering and exiting path pairs.

However, there is still one possibility left we have not
mentioned yet but that needs a special treatment. If the diagonal
part consists of only two path pairs and one 2-encounter with
one ζ side tree (a side tree formed by ζ ) and one ζ ′ side tree
this encounter can be moved into one of the normal conducting
leads, say lead i. An example for a 2-encounter touching the
incoming lead is the trajectory labeled by he3IV in Figs. 3
and 4, which arises from the trajectory labeled by he3VII
by moving the encounter into the lead. However, this is only
possible if the trajectory connects lead i to itself and thus if
the electron is coherently backscattered. In this case we have
only one side tree and one complex-conjugated side tree but
no diagonal part.

Since we know the structure of the trajectory pairs con-
tributing at leading order in the inverse channel number,
we can start evaluating them. Because the contributions
of the encounters and the stretches are multiplicative24 we
may factorize the contribution of a given diagram into the
contributions of side trees starting at the first encounter with
an α-type quasiparticle, P α(ε,x), the first encounter itself, and
the diagram remaining when cutting the diagram after the first
encounter as in Fig. 8. We first evaluate the contribution arising
from the summation over a possible side tree.

III. SIDE TREE CONTRIBUTIONS

We restrict ourselves to sufficiently low temperatures such
that only energies εET (measured with respect to the Fermi
energy and in units of the Thouless energy ET = h̄/2τD,
where τD is the mean dwell time) much smaller than the
superconducting gap � have to be taken into account εET �
�. This allows us to approximate exp[−i arccos(ε/�)] ≈ −i
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(a) (b) (c)

FIG. 6. Diagrams we neglect in leading order in 1/N due to the formation of loops. (a) A nondiagonal ζ -ζ ′ pair causes the formation of a
loop. (b) A loop formed by an off-diagonal e-h path pair. (c) A loop formed due to the lack of a diagonal-type ζ -ζ ′ path pair.

such that the scattering matrix of Andreev reflection becomes
independent of the energy.25 Thus, the diagrammatic rules for
the ζ side trees read13,24

(i) an e-h path pair contributes [N (1 + iε + b2)]−1,
(ii) an l-encounter contributes −N (1 + ilε + l2b2),

(iii) an e-h path pair hitting the superconductor Sj con-
tributes NSj

,
(iv) an l-encounter touching the superconductor Sj con-

tributes NSj
,

(v) each Andreev reflection at the superconducting lead j

converting an electron into a hole contributes −ie−iφj ,
(vi) Each Andreev reflection at the superconducting lead j

converting a hole into an electron contributes −ieiφj ,
with b ∝ B/h̄ where B is the magnetic field applied to the
system. The proportionality factor depends on the actual
system.24 These diagrammatic rules have to be complex
conjugated for a ζ ′ side tree and imply that when exchanging
electrons and holes we just have to replace φ ↔ −φ. Thus, a
side tree starting with a hole gives the same contribution of
a side tree starting with an electron but with negative phase.
Therefore, we only need to evaluate side trees starting with
electrons.

The evaluation of the side trees then follows essentially
those in Refs. 16, 13, and 26. However, here the root of the
tree does not hit any channel and therefore can not touch the
superconductor which simplifies the calculation. Moreover,
from the rules above for a path pair hitting a channel in the
superconductor S1 we get a factor −ie−iφ/2NS1 if an electron
hits the channel and −ieiφ/2NS1 if a hole hits the channel, rather
than just a factor of the numbers of channels, and equivalently
for a path pair hitting S2.

Similar to Ref. 13 as long as the phase difference φ is zero
and no encounter touches the superconductor the contribution
of a side tree with characteristic v—which is the vector where
the lth entry is the number of l-encounters of the tree–but
without the contribution of the path pairs hitting one of the
superconductors is

(1 + iε + b2)−1
V (v)∏
α=1

(
1 + ilαε + l2

αb2
)

(1 + iε + b2)2lα−1

= (1 + iε + b2)−n

V (v)∏
α=1

(
1 + ilαε + l2

αb2
)

(1 + iε + b2)lα
. (5)

Here the encounters have been labeled by α and we used that
the side tree has to satisfy16 n = L(v) − V (v) + 1, where n

is the number of links touching the superconductor, V (v) =

∑
l�2 vl is the total number of encounters of the tree and

L(v) = ∑
l�2 lvl . This is because every l-encounter creates

2l − 1 additional path pairs and each path pair has to end
either in an encounter or at the superconductor.

We then enumerate the number of l-encounters by xl and
the number of l-encounters touching the superconductor Si at
an odd-numbered channel by z

(i)
o,l . An l-encounter touching the

superconductor means that the l incoming trajectory stretches
hit the superconductor at one and the same channel. We look at
the generating function f (x,z(1)

o ,z(2)
o ) which counts the number

of possible side trees and their encounter types and derive
a recursion relation for it by cutting the side tree at its top
encounter. If the top encounter is traversed by 2l stretches
and does not touch the superconductor the tree then has the
contribution of the top encounter times that of all 2l − 1
subtrees giving xlf

lf̂ l−1, where f̂ is the same as f but with
φ replaced with −φ accounting for the fact that each even
numbered subtree starts with a hole instead of an electron. If
the top encounter, however, is an encounter traversed by 2l

stretches touching Si its contribution is z
(i)
o,l f̂

l−1. In total we
therefore have

f = −i
NS1

N
e−iφ/2 − i

NS2

N
eiφ/2

+
∞∑
l=2

[
xlf

lf̂ l−1 + (
z

(1)
o,l + z

(2)
o,l

)
f̂ l−1

]
, (6a)

f̂ = −i
NS1

N
eiφ/2 − i

NS2

N
e−iφ/2

+
∞∑
l=2

[
xlf̂

lf l−1 + (
ẑ

(1)
o,l + ẑ

(2)
o,l

)
f l−1

]
, (6b)

where the first two terms account for empty side trees which
consist of one link and one Andreev reflection at S1 or S2 and
ẑ

(i)
o,l is the same as z

(i)
o,l but with φ replaced with −φ.

Due to the fact that the links of the side trees are
traversed by one electron at energy +εh̄/2τD and one hole
at energy −εh̄/2τD in opposite directions an l-encounter
consists of l electron stretches traversing the encounter
in the same direction and l hole stretches traversing the
encounter in the opposite direction. Thus, we have xl =
−(1 + ilε + l2b2)/(1 + iε + b2)l r̃ l−1 in line with (5). The
powers of r̃ are included in order to keep track of the
order of the trees. Now consider an l-encounter touching
S1. According to the diagrammatic rules after extracting
the factor (1 + iε + b2)−n as in (5) the contribution of the
encounter and the link connecting the top encounter to the
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FIG. 7. If the odd-numbered subtrees have zero characteristic and
hit the same superconductor the top encounter may be slid into the
superconductor.

backbone is NS1/N . However, we have to include the phase
factors contributed by the Andreev reflections. To evaluate
this phase factor we look at the l-encounter touching the
superconductor as arising from an l-encounter inside the dot
by sliding it into the superconductor, as indicated in Fig. 7.
This is only possible if the odd-numbered subtrees have zero
characteristic and hit the same superconductor. By sliding the
encounter into the superconductor the total number of Andreev
reflections do not change such that the phase factor provided by
the encounter touching the superconductor is the same as
the phase factor provided by the odd-numbered side trees
we start from. For a side tree starting with an electron
the odd-numbered subtrees with zero characteristic provide
one Andreev reflection converting an electron into a hole.
Since from an l-encounter l odd-numbered subtrees emerge
the phase factor of an l-encounter touching Si is −ie−ilφi .

z
(1)
o,l = (−i)l

NS1

N
e−ilφ/2r̃ l−1, (7a)

z
(2)
o,l = (−i)l

NS2

N
eilφ/2r̃ l−1. (7b)

The total power of a tree with 2n − 1 Andreev reflections is
again

∑
l(l − 1)vl = L − V = n − 1. Thus, in order to get the

required prefactor of (1 + iε + b2)−n we can make the change
of variables

f = g(1 + iε + b2), r̃ = r
1 + iε + b2 . (8)

After making this change of variables and performing the
summations in (6a) and (6b) using geometric series we get in
view of Eqs. (7a) and 7(b)

(1 + iε + b2)g

1 − rgĝ
+ (2b2 + iε)rĝg2

(1 − rgĝ)2 + b2(1 + rgĝ)rĝg2

(1 − rgĝ)3

+ ix(1 + y)

2(1 + x)(eiφ/2 + irĝ)
+ ix(1 − y)

2(1 + x)(e−iφ/2 + irĝ)
= 0

(9)

and the same equation with ĝ and g exchanged and φ replaced
with −φ. Here we used NS/NN = x and introduced the differ-
ence of the numbers of channels of the two superconductors
y = (NS1 − NS2 )/NS such that y = 0 corresponds to the case
of equal numbers of channels and y = ±1 to the case of just
one superconductor.

In the case that the two superconductors provide the same
number of channels (y = 0) those two equations are the same,
implying ĝ = g and (9) is equivalent to an algebraic equation
of seventh order in g. This increase in the order of the equation
with respect to the same case for the density of states13 is due
to the fact that in the case of the density of states we had no
normal leads.

The contribution P e of the side trees starting with an elec-
tron is then obtained by giving all trees the same weight by set-
ting r = 1 in g. The contribution of the side trees starting with a
hole are then given by replacing φ with −φ in g or setting r = 1
in ĝ. After setting r = 1 and eliminating, say, P h the contri-
bution of the side trees starting with an electron P e is given
by a rather lengthy equation of in general 11th order which
factorizes in the case y = 0 such that P e = P h = P is given by

− P 7 + (2iβ + iβx)P 6

+ (−b2x + 3 + iε x − b2 + iε)P 5

+ (−iβx + 2ib2β + 2εβ + 2ib2βx + 2εβx − 4iβ)P 4

+ (−2iε − 3 − 2iεx)P 3

+ (2ib2β + 2ib2βx − 2εβx − 2εβ + 2iβ − iβx)P 2

+ (iεx + b2 + b2x + 1 + iε)P + iβx = 0. (10)

If no magnetic field is applied (b = 0) the equation may be
factorized, and one has to solve an equation whose order is
lowered by 2.

If the Andreev interferometer consists of two superconduc-
tors with the same numbers of channels (y = 0) the side tree
contributions only depend on β = cos(φ/2) rather than on φ

itself. Therefore, in this case the side tree contributions are
symmetric in φ and the contribution of a side tree starting
with a hole is the same as that of a side tree starting with an
electron. In the most simple case of the absence of a magnetic
field, zero temperature (i.e., ε = 0) and zero phase difference
(10) reduces to a second-order equation,

−P 2 + iP + iPx − x, (11)

yielding

P (0,x) = i

2
(1 + x −

√
1 + 6x + x2). (12)

Note that we take the solution satisfying P (0,0) = 0 since
when there is no superconductor the correction of leading
order in the channel number has to be zero.

IV. TRANSMISSION COEFFICIENTS

We now demonstrate how to calculate the transmission
coefficients T

αβ

ij for transmission from lead j to lead i while
converting an α-type quasiparticle in a β-type one, using T ee

ij

as an example, as the evaluation of the other transmission
coefficients will be similar.

We first order the sum over all diagrams contributing
in leading order in the channel number with respect to
the first encounter. Then the first summand is of course
the diagram corresponding to the upper left trajectory in
Fig. 2. Next there are all diagrams whose first encounter is
a 2-encounter followed by all diagrams whose first encounter
is a 3-encounter, etc. Note that we also allow for the first
encounter to touch the superconductor or (if the first encounter
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(a)

(b)

FIG. 8. (a) A diagram contributing to X4 is split right after the first 4-encounter and decomposes into two separate diagrams where the
second one contributes to T eh

ij . (b) To sum over all diagrams starting with an l-encounter we can remove a factor corresponding to the first
encounter (and its side trees) and a sum again over the transmission diagrams.

is a 2-encounter and i = j ) the normal lead. We denote
the contribution of the sum over all diagrams having an
l-encounter as their first encounter and contributing to T ee

ij

in leading order in the number of channels by Xl . We may
include the diagonal diagram without any encounter by setting
X1 = NiNj/N . The transmission coefficients are then given
by T ee

ij = ∑
l�1 Xl . Now we fix l � 2 and split all diagrams

contributing to Xl right after the first encounter into one part
consisting of the first path pair and the first encounter together
with its side trees and the remaining part such as indicated
in Fig. 8(b). Note that the diagonal-type path pair leaving the
first encounter is completely included in the second part. Since
the diagrammatic rules are multiplicative the contribution
of a diagram is given by the product of the two parts and
hence they all have a common factor which is given by the
first diagonal-type link, the first encounter and the side trees
emerging from it. To sum over all diagrams starting with an
l-encounter we pull out this factor and are left with a sum over
the transmission diagrams as depicted in Fig. 8(b). This sum
runs over all possible diagrams contributing to T ee

ij if the first
encounter is left by an electron and to T eh

ij if it is left by a
hole. However, in order to be able to fully identify the sum
over the second parts as the transmission we have to reassign
the contributed number of channels Nj contributed by the first
path pair leaving lead j to the second part. We can then split
the sum contained by Xl into two parts,

Xl = Ae
l T

ee
ij + Be

l T
eh
ij ,

where Ae
l is the contribution of the first e-e∗ pair and the

l-encounter the path pair enters together with all side trees and
with the entering and exiting quasiparticle being the same. Be

l

is the same but with the entering and exiting quasiparticles
being different.

The transmission coefficients may therefore be written as

T ee
ij = NiNj

N
+

∞∑
l=2

Ae
l T

ee
ij +

∞∑
l=2

Be
l T

eh
ij , (13a)

T eh
ij =

∞∑
l=2

Ah
l T

eh
ij +

∞∑
l=2

Bh
l T ee

ij . (13b)

Ah
l and Bh

l are the same as Ae
l and Be

l , respectively, but with
electrons and holes exchanged. Equation (13b) is obtained
in the same way as (13a) but with the additional condition
that there is no diagram without any Andreev reflection
contributing to it since converting an electron to a hole requires
at least one Andreev reflection and therefore one encounter.
The formulas for T hh

ij and T he
ij are the same but with e and h

exchanged.
The next task is to find out what causes the encounter which

is entered by an electron to be left by an electron or a hole.
The trajectories in Fig. 3 and their corresponding diagrams
in Fig. 4 indicate that, as long as the first encounter does not
touch the superconductor, an encounter entered by an electron
is left by an electron if the number of side trees on each side of
the diagonal backbone emerging from this encounter is even
(such as in the diagrams ee3II and he3V) and by a hole if it
is odd (such as in the diagrams ee3III and he3VII). If the first
encounter, however, touches the superconductor the encounter
is always left by a hole if it was entered by an electron. This is
also indicated in Fig. 9.

We now show that this indeed holds for all diagonal
encounters entered by a diagonal-type e-e∗ pair by starting
with considering encounters not touching the superconductor.
Since an l-encounter connects 2l links to each other, each

e*

ee

e*

h e

h* e*

h

h*h*

h

e h
eh

FIG. 9. (Color online) Simple examples for encounters touching
a superconductor. The electron paths are shown in blue while the hole
paths are shown in green. The solid lines belong to ζ while the dashed
ones belong to ζ ′. If the quasiparticles entering an encounter touch the
superconductor following a diagonal-type path pair the diagonal-type
path pairs leaving it are traversed by holes and vice versa.
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diagonal l-encounter, where two of the links belong to the
backbone, provides in total (2l − 2) side trees, implying that if
the number of ζ side trees is even the number of ζ ′ side trees
is even too, or they are both odd. Furthermore, each side tree
provides an odd number of Andreev reflection and therefore a
conversion of an electron into a hole or vice versa, since each
of its l-encounters is left by (2l − 1) additional path pairs and
each path pair increases the number of Andreev reflections by
one (this is closely related to the fact that we consider diagrams
contributing at leading order in the number of channels). Thus,
as long as the first encounter does not touch the superconductor,
the entering electron leaves the encounter as an electron if the
number of side trees p̃ built by ζ is even and as a hole if the
number of side trees built by ζ is odd.

However, if the first diagonal l-encounter touches the
superconductor the first side tree starts with a hole instead
of an electron and is therefore left by an electron. Since the
electron leaving the first side tree hits the superconductor the
second side tree again starts with a hole. If one proceeds
inductively one finds that every side tree starts with a hole
and is left by an electron which after that undergoes again an
Andreev reflection. Therefore, if the first encounter entered by
an electron touches the superconductor it is always left by a
hole and we can view it as arising from an l-encounter with
an odd number p̃ of ζ side trees slid into the superconductor,
as indicated in Fig. 10, and therefore contributes to Be

l . An
l-encounter may then touch the superconductor if the number
of ζ side trees p̃ is odd and the odd-numbered ζ side trees,
which are the side trees traversed by ζ after an odd number
of traversals of the encounter, as well as the odd-numbered
ζ ′ side trees have zero characteristic (i.e., consist of just one
link and one Andreev reflection). Moreover, the links of the
odd-numbered side trees have to hit the same superconductor
such that the channels can coincide. When sliding such an
encounter into the superconductor the channels at which the
odd-numbered side trees hit the superconductor coincide and
the links vanish. Therefore, beside the diagonal-type path pairs
from such a diagonal l-encounter touching the superconductor
p = (p̃ − 1)/2 even numbered ζ side trees starting with a hole
and [(2l − 2 − p̃) − 1]/2 = l − 2 − p even numbered ζ ′-side
trees, which also start with a hole emerge.

Thus, if we denote the contribution of the first α-α∗ pair
and of the first l-encounter inside the dot with p̃ ζ side trees by

xα
l,p̃ and the contribution of the Andreev reflections provided

by the first l-encounter touching the superconductor Sj created
by sliding an l-encounter with originally p̃ ζ side trees into
the superconductor Sj by zα

l,p̃,j , we find

Ae
l =

l−1∑
p=0

xe
l,2p(P e)p(P h)p[(P e)∗]l−1−p[(P h)∗]l−1−p, (14a)

Be
l =

l−2∑
p=0

[
xe

l,2p+1(P e)p+1(P h)p[(P e)∗]l−1−p((P h)∗)l−2−p

+
∑

j

ze
l,2p+1,j (P h)p[(P h)∗]l−2−p

]
, (14b)

Ah
l =

l−1∑
p=0

xh
l,2p(P h)p(P e)p[(P h)∗]l−1−p[(P e)∗]l−1−p,

(14c)

Bh
l =

l−2∑
p=0

[
xh

l,2p+1(P h)p+1(P e)p[(P h)∗]l−1−p[(P e)∗]l−2−p

+
∑

j

zh
l,2p+1,j (P e)p[(P e)∗]l−2−p

]
, (14d)

where p̃ has to be even for Aα
l and thus p̃ = 2p and odd for

Bα
l with p̃ = 2p + 1.

The next and final step is to find the contribution of the
encounters. For that we would like to recall the diagrammatic
rule for an l-encounter traversed by trajectories with energies
±ε and in presence of a magnetic field b from Ref. 24:

(i) An l-encounter inside the dot contributes a factor
−N (1 + ηiε + μ2b2).

Here η is the difference between the number of traversals
of e stretches and the number of traversals of e∗stretches and μ

is the difference between the number of ζ stretches traversed
in a certain direction and the number of ζ ′stretches traversed
in the same direction. Since every electron path of the side
tree is retraced by a hole every second stretch connected to
a ζ side tree is an e stretch and they are all traversed in the
same direction we choose arbitrarily as “positive.” Therefore,
if the number of ζ side trees is even the number of e stretches
traversed in positive direction is simply p̃/2. If p̃ is odd we
have to account for the fact that the first ζ side tree starts with an

(b)(a)

SjSi Si Sj

hh*

he

e*

e
h

h*

he

e
e*

FIG. 10. (Color online) (a) A 3-encounter may touch the superconductor Si if the odd-numbered side trees have zero characteristic and hit
the same superconductor. The number of Andreev reflections stays the same. If the encounter touches the superconductor an entering electron is
converted into a hole. (c) A more complicated diagram with two diagonal encounters that may touch the superconductor. Note that additionally
the fourth side tree may also touch the superconductor but this does not affect the diagonal encounter but is instead included in the side tree
recursion.
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electron and the last one also does. Thus, there are (p̃ + 1)/2
e stretches traversed in positive direction in the encounter.
In the same way one finds that the number of e∗ stretches
are (2l − 2 − p̃)/2 and [(2l − 2 − p̃) + 1]/2, respectively.
Since the diagonal path pair is traversed by ζ and ζ ′ in the
same direction the directions of the e∗ paths are also positive.
Since the holes retrace the electron paths their directions in
the encounters is negative. Thus, in both cases one finds that
η = μ = (p̃ − l + 1). So

xl,p̃ = −[1 + (p̃ − l + 1)iε + (p̃ − l + 1)2b2]. (15)

For the contribution z̃α
l,p,j which arises by sliding an

l-encounter into the superconductor,16 as shown in Fig. 10
we remember that the number p̃ of ζ side trees emerging from
it is odd and the odd-numbered ζ side trees as well as the
odd-numbered ζ ′ side trees consist of only one path pair and
one Andreev reflection (i.e., they have zero characteristic).
Moreover, the Andreev reflections of the odd-numbered
side trees have to be all at the same superconductor. The
contribution of the encounter itself and the first path pair is
then NSj

/N . However, we also include the factors contributed
by the Andreev reflections in zα

l,p̃,j , too, which are stated in
Sec. III. As for the side trees, these phase factors may be
determined by looking at the odd-numbered side trees before
sliding the encounter into the superconductor since the number
of Andreev reflections of the ζ and ζ ′ trajectory cannot change
when sliding the encounter into the superconductor. Consider
the p + 1 = (p̃ + 1)/2 odd-numbered side trees which have
zero characteristic and hit, say, Si : The Andreev reflections
provided by these side trees convert an electron into a hole
and thus the Andreev reflections each provide a factor −ie−iφi .
Hence, in total the Andreev reflections of the odd-numbered
ζ side trees provide a factor (−i)p+1e−i(p+1)φi . Analogously,
the Andreev reflections of the odd-numbered ζ ′ side trees
contribute a factor il−p−1ei(l−p−1)φi . Thus, in the case of
two superconductors with phases φ1 = −φ2 = φ/2 the phase
factor included in ze

l,p̃,1 is given by (−i)pil−p−2e−i(2p−l+2)φ/2.
We thus have

zl,p̃,1 = NS1

N
il−p̃−1e−i(p̃−l+1)φ/2. (16)

For ze
l,p̃,2 we have to exchange φ ↔ −φ and replace NS1 with

NS2 . Moreover, zh
l,p̃,j = ze

l,p̃,j |φ→−φ . Therefore, we have

Ae
l = −

l−1∑
p=0

[1 + i(2p − l + 1)ε + (2p − l + 1)2b2]

× (P e)p(P h)p[(P e)∗]l−p−1[(P h)∗]l−p−1 (17a)

Be
l = −

l−2∑
p=0

[
(1 + i(2p − l + 2)ε + (2p − l + 2)2b2)

× (P e)p+1(P h)p[(P e)∗]l−p−1[(P h)∗]l−p−2

−x(1 + y)e−i(2p−l+2)φ/2(−iP h)p(i(P h)∗)l−p−2

2(1 + x)

−x(1 − y)ei(2p−l+2)φ/2(−iP h)p(i(P h)∗)l−p−2

2(1 + x)

]
, (17b)

where we again used y = (NS1 − NS2 )/NS. The case NS1 =
NS2 is then obtained by setting y = 0 while the case of
just one superconducting lead corresponds to y = ±1. Since
exchanging electrons and holes corresponds to replacing φ

with −φ, Ah
l and Bh

l are obtained by the same formulas but
with φ replaced with −φ including an exchange P e ↔ P h.
The sums may be performed using geometric series and yield
our main result. Along with (13a) and (13b) it contains all
the diagrams, and their semiclassical contributions, generated
recursively.

Note that if the numbers of channels of the superconducting
leads are equal the symmetry of P toward the phase implies
that Aα

l and Bα
l are symmetric in φ yielding Ae

l = Ah
l and

Be
l = Bh

l and thus T ee
ij = T hh

ij and T he
ij = T eh

ij .
Therefore, we now have all the necessary utilities to

calculate the conductance of Andreev billiards with two
superconducting islands. When the incoming and outgoing
leads are the same, i = j , and the first encounter is a
2-encounter this encounter may enter the lead. In this case,
however, the encounter simply contributes Ni and the diagrams
consist of one ζ side tree and one ζ ′ side tree. The contribution
of these diagrams is therefore simply

δijNi |P e|2 if the dot is entered by an electron, (18a)

δijNi |P h|2 if the dot is entered by a hole. (18b)

The transmission coefficients necessary for calculating the
conductance may be calculated by evaluating the side tree
contribution by solving (9), inserting this into (17a) and (17b),
and performing the sums and finally inserting into (13a) and
(13b) and solving for the transmission coefficients.

V. CONDUCTANCE WITH SUPERCONDUCTING ISLANDS

We now evaluate the conductance of Andreev billiards with
two normal leads. We first consider a chaotic quantum dot
coupled to two normal conducting leads and one or two isolated
superconductors with equal numbers of channels as shown
in Fig. 1(c). The chemical potential of the superconducting
lead is then adjusted by the dot such that the net current in
the superconductor vanishes. The dimensionless conductance
g = πh̄I/(e2V ), with I the current and V the voltage drop
between the two normal leads, in this case is given at zero
temperature by3

g = T ee
21 + T he

21 + 2
T he

11 T he
22 − T he

21 T he
12

T he
11 + T he

22 + T he
21 + T he

12

. (19)

A. Low temperature

1. One superconductor

Using Eqs. (18a) and (18b) in the simplest case without
phase difference, the random matrix result for the conductance
correction δg = g − gcl

18 can be reproduced:

δg = N1N2

NN

[
x + 1

2
(1 + x)2 − 1

2
(1 + x)

√
1 + 6x + x2

]
.

(20)

The conductance correction is shown in Fig. 11 as a function
of x = NS/NN. From (20) it can be easily seen that the
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FIG. 11. (Color online) Conductance correction scaled by N1 as
a function of the number of channels of the isolated superconductor
x = NS/NN for N2/N1 = 0.2 (dotted line), N2/N1 = 1 (solid line),
and N2/N1 = 100 (dashed line).

conductance in this case is symmetric in exchanging N1

and N2, as one would expect due to the symmetry of the
setup. Moreover, with this setup the superconductor always
increases the conductance. In the limit of large numbers of
superconducting channels we find that the conductance is
doubled compared to the classical limit x = 0 and hence
approaches the conductance of an N-S interface.1

2. Two superconductors with phase difference

In Ref. 18 using RMT for a finite phase difference the
authors could calculate the transmission only numerically but
for all N . Moreover, they restricted themselves to the case
NS1 = NS2 . With our semiclassical approach, however, we are
able to calculate it at zero temperature analytically for all
cases, as long as N is large. Using this we could reproduce
the large-N limit in Ref. 18 shown in Fig. 12 for the case
NS1 = NS2 . Moreover, Fig. 13 shows the dependence of
the conductance on the channel number difference of the
superconductors. The conductance correction vanishes for
φ → π since the phase accumulated at each Andreev reflection

(a) (b)

FIG. 12. (Color online) The conductance correction as a func-
tion of the phase difference for NS1 = NS2 : (a) N2/N1 = 0.2 and
x = 0.5 (space-dashed line), x = 1 (dotted line), x = 2 (solid
line), x = 3 (dashed line), x = 5 (dash-dotted line), (b) x = 1
and N2/N1 = 0.2 (space-dashed line), N2/N1 = 0.5 (dotted line),
N2/N1 = 1 (solid line), N2/N1 = 3 (dashed line), and N2/N1 = 7
(dash-dotted line).

(a) (b)

FIG. 13. (Color online) Dependence on the difference of the
numbers of superconducting channels with y = 1 (space-dashed
line), y = 0.95 (dotted line), y = 0.9 (solid line), y = 0.5 (dashed
line), and y = 0 (dash-dotted line) for (a) N2/N1 = 0.2, x = 0.5 and
(b) N2/N1 = 7, x = 0.2.

causes destructive interference. In this case the conductance is
a monotonic function of the phase difference φ up to π .

The symmetry found in Figs. 12 and 13 results from the
fact that electrons and holes contribute symmetrically to the
conductance. The 2π periodicity may also be found using (17a)
and (17b): If we increase φ by 2π the side tree contribution
changes its sign. This does not affect Aα

l or the first part of Bα
l .

If l is odd in the last two terms in Bα
l , changing the sign of the

side tree contribution results in a change of the sign of these
two parts. However, increasing the phase by 2π also yields an
exchange of the sign of the phase factors canceling the change
of sign of the side tree contributions. If l is even we again have
an even number of side tree contributions and the phase factors
also do not change their sign.

The crossover from two superconductors to just one
superconductor is smooth and monotonic as shown in Fig. 13.
We found that the bigger the difference in the numbers of
channels the faster the amplitude changes.

3. Magnetic field

Whitney and Jacquod found in Ref. 10 that for small x

the conductance of an Andreev quantum dot with an isolated
superconductor decays at T = 0 with increasing magnetic field
as (1 + b2)−2. For higher orders in x the (1 + b2)−2-decay
mixes up with terms decaying as (1 + b2)n with n � 2. This
leads to the behavior shown in Fig. 14. It can be seen
that the conductance correction decays very quickly. Since
the magnetic field enters the transmission coefficients and
therefore the conductance quadratically, the conductance is
symmetric in reversing the magnetic field.

B. Temperature dependence

If we want to allow for nonzero temperature each transmis-
sion and reflection coefficient in (19) has to be multiplied by
the negative derivative of the Fermi function and integrated
over energy. We evaluated these integrals numerically using
Gaussian quadrature with a total accuracy 10−10 and a
truncation of the integral at ε = 100θ with θ = kBT/ET

being the temperature measured in units of the temperature
corresponding to the Thouless energy. In doing so we find that
the superconducting island obeys a monotonic temperature
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FIG. 14. (Color online) The conductance correction for the setup
with one superconducting island as a function of the magnetic field
dependence for N2/N1 = 0.2 and x = 0.5 (space-dotted line), x =
1 (dotted line), x = 2 (solid line), x = 3 (dashed line), and x = 5
(dash-dotted line).

dependence: The conductance correction has its maximum at
T = 0. For higher temperature it is damped due to the mixing
with higher energies for which the side tree contributions
become smaller because of the loss of coherence of the
electrons and holes. As the temperature tends to infinity
the conductance correction vanishes slowly. In Fig. 15 we
plotted the conductance correction of the setup with one
superconducting island versus the temperature.

VI. CONDUCTANCE WITH SUPERCONDUCTING LEADS

Next we consider superconductors with externally con-
trolled chemical potential. In particular, we consider super-
conductors lying on the same chemical potential as one of
the two normal conducting leads, say, lead 2. Such a setup
is schematically shown for the case of one superconducting

FIG. 15. (Color online) Temperature dependence of the conduc-
tance correction for the setup with a superconducting island for
N2/N1 = 0.2 and x = 0.1 (dotted line), x = 1 (solid line), and x = 2
(dashed line).

lead in 1(d). The current in lead i may be calculated by the
Landauer-type expression2,27

Ii = 2e

h̄

2∑
j=1

∫ ∞

0
dε

[
2Niδij − T ee

ij + T he
ij − T hh

ij + T eh
ij

]

×
(

−∂f

∂ε

)
(μj − μS), (21)

where f = [exp (−ε/θ ) + 1] is the Fermi function with the
temperature again measured in units of the Thouless energy
ET, and μj and μS are the chemical potentials in the normal
conducting lead j and in the superconductor, respectively.

Of course, we could use the transmission coefficients
themselves calculated in Sec. IV. However, we would like
to present a slightly different way to calculate the conductance
here, which in the case of the superconducting leads simplifies
the calculation. For simplicity we present this way only for
the case that the numbers of channels of the superconducting
leads are equal since the modifications one would have to
do in order to include different numbers of channels are
the same as in Sec. IV. According to (21) we have to
calculate the difference between the Andreev and normal
transmission, namely, T̃ e

ij = T ee
ij − T he

ij and T̃ h
ij = T eh

ij − T hh
ij .

To do this (considering only the case of an incident electron)
we essentially perform the same steps as before and split the
diagrams at their first l-encounter. In the same way as above we
find that the sum over the remaining diagrams again contributes
to T̃ e

ij or T̃ h
ij depending on whether the quasiparticle leaving

the encounter is an electron or a hole. An additional sign arises
as follows: Consider, for example, a diagram contributing to
T ee

ij thus contributing to T̃ e
ij with positive sign. Then if the

number of ζ side trees arising from the first encounter is even
the remaining diagrams contribute to T ee

ij , too, and therefore
it again contributes with a positive sign to T̃ e

ij . However, if
the number of ζ side trees is odd the remaining diagrams
contribute to T eh

ij . Hence, it contributes to T̃ h
ij .

Taking into account the diagram connecting lead i and
lead j directly, which has no Andreev reflection, this diagram
contributes to T ee

ij and therefore to +T̃ e
ij . According to the

diagrammatic rules this contribution is simply given by
NiNj/[NN(1 + x)]. The transmission difference T̃ e

ij therefore
read

T̃ e
ij = NiNj

NN(1 + x)
+

∞∑
l=2

Ae
l T̃

e
ij +

∞∑
l=2

Be
l T̃

h
ij , (22)

with Ae
l and Be

l given by (17a) and (17b), respectively, and
the same equation holds for T̃ h

ij with an exchange of e and
h yielding a replacement of φ with −φ in the coefficients
A and B including an exchange P e ↔ P h. If the numbers
of channels of the superconductors are the same, this also
implies a symmetry in the exchange of electrons and holes and
T̃ e

ij = −T̃ h
ij which reduces the number of variables by a factor

of 2 and therefore makes the arising equations easier to solve.
Since we consider the chemical potential of the super-

conductors being the same as that of the second lead the
contribution to the conductance is given by the transmission
coefficient for reflecting an electron entering the cavity from
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lead 1 back into lead 1 again. The conductance g, defined by
I1 = eg (μ1 − μS) /πh̄, therefore, reads

g = −2N1

∫ ∞

0
dε

(
1 + |P |2 − N1

N (1 − A + B)

)
∂f

∂ε
.

(23)

Note that this setup induces an asymmetry due to the channel
numbers: Since the chemical potential of the superconductor
is the same as that of lead 2 one cannot exchange the two
channels and therefore the solution will not (in general) be
symmetric under the exchange of N1 and N2.

A. Low temperatures

1. One superconductor

Let us consider first the simplest case of no phase difference
and the absence of magnetic fields. Moreover, we consider
sufficiently low temperatures to approximate −∂f/∂ε ≈ δ(ε).
The contributions of the side trees are therefore given by (12),
and we obtain

δg = N1(2N2x
3 + 4N1x

2 + 8N2x
2 + κ)

2 (2x + 1) (N1 + N2)

− N1 (x + 1) κ

2
√

1 + 6x + x2 (N1 + N2)
, (24)

with κ = N2x
2 + 2xN1 + 6xN2 + 2N1 + N2.

We can easily compare our result for the conductance
correction δg = g − gcl to the limiting case found for small
superconductors in Ref. 10 by expanding our result in a Taylor
series in x = NS/NN. The first nonvanishing term in the Taylor
expansion is exactly the contribution found by Jacquod and
Whitney10:

δg(2) = N1 (N2 − 4N1) N2
S

N3
N

. (25)

Therefore, for small superconducting leads the correction
becomes negative if lead 1 carries a sufficiently large number
of modes compared to lead 2. The ratio N2/N1, for which
the conductance has no longer a minimum and hence the
conductance correction becomes no longer negative for small
x, is approximately N2/N1 ≈ 4 as found by Whitney and
Jacquod.10 Interestingly, Fig. 16(a) shows moreover a sec-
ond change in sign of δg, namely, when increasing x, for
fixed N1 > N2/4. This characteristic crossover is beyond the
treatment of Ref. 10 and arises from higher-order diagrams
as calculated here. The size of the superconductor for which
the conductance becomes minimal is shown as a function of
N2/N1 in Fig. 16(b). Moreover, we again found a doubling
of the conductance for NS/NN → ∞, that is, g = 2N1,
independently of the ratio N1/N2 in alignment with previous
results for quantum dots with only one normal conducting
lead.28

2. Two superconductors with a phase difference

The effect of a phase difference between two supercon-
ducting leads depends sensitively on the ratios x and N2/N1.
The result is fairly similar to the phase dependence of the
conductance of a normal conducting region with one normal

(a) (b)

FIG. 16. (Color online) (a) The quantum correction to the
conductance of an Andreev billiard with one superconducting and two
normal conducting leads [see 1(d), with the superconducting chemical
potential being the same as that of normal lead 2] as a function
of the number of channels of the superconductor, x = NS/NN,
for N2/N1 → 0 (space-dashed line), N2/N1 = 0.2 (dotted line),
N2/N1 = 1 (solid line), N2/N1 = 7.2 (dashed line), and N2/N1 →
∞ (dash-dotted line). (b) The size of the superconductor for which
the conductance becomes minimal as a function of the ratio N2/N1.

conducting lead and two superconducting leads with a phase
difference φ found by different approaches.29,30 While for most
combinations the effect of the superconductor decreases with
increasing phase difference due to destructive interference,
in some cases the conductance becomes a nonmonotonic
function between φ = 0 and φ = π , as shown in Fig. 17. The
phase difference may even cause a change of the sign of the
conductance correction. In Fig. 17 this can be seen for the case
N2 = N1 and x = 0.5 as well as for the cases N2 = 0.2N1 and
x = 1 or x = 1.2.

However, if the number of channels of the superconducting
leads are equal, all possible combinations of x and N2/N1

have in common that the conductance correction becomes
zero for a phase difference φ = π and that the conductance is
symmetric and periodic in φ with period 2π . This can also be
seen from (17a), (17b), and (9): The symmetry follows from
the symmetry of Bl and P as well as the fact that Al does not
depend on φ explicitly. If φ is replaced with φ + 2π the side
tree contribution changes its sign. Al and the first part of Bl as

(a) (b)

FIG. 17. (Color online) Phase dependence of the conduc-
tance correction. (a) x = 0.5 and N2/N1 → 0 (space-dashed line),
N2/N1 = 0.2 (dotted line), N2/N1 = 1 (solid line), N2/N1 = 2
(dashed line), and N2/N1 = 7 (dash-dotted line). (b) N2/N1 = 0.2
and x = 0.1 (dotted line), x = 1 (dashed line), x = 1.2 (solid line),
x = 1.5 (dash-dotted line), and x = 2 (space-dashed line).
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(a) (b)

(c) (d)

FIG. 18. (Color online) Dependence on the difference between
the numbers of channels of the superconductors with x = 0.5 and y =
1 (space-dashed line), y = 0.95 (dotted line), y = 0.9 (solid line),
y = 0.5 (dashed line), and y = 0 (dash-dotted line). (a) N2/N1 = 0.2,
(b) N2/N1 = 1, (c) N2/N1 = 2, (d) N2/N1 = 7.

well as the last two terms of Bl for even l’s are symmetric in P

and therefore give the same contribution as before. However,
for an odd l the last two parts of Bl are antisymmetric in
P but when increasing the phase difference by 2π the phase
factors contribute an additional minus sign such that the total
contribution stays the same.

This symmetry toward φ still holds if the two supercon-
ducting leads provide different numbers of channels. We show
the crossover from a setup with two superconducting leads
having the same number of channels to the setup with just
one superconducting lead for different cases in Fig. 18. As
in (17b), y = (NS1 − NS2 )/NS is the difference between the
numbers of channels in the superconducting leads such that
y = 0 corresponds to the symmetric case NS1 = NS2 and
y = ±1 to the case of just one superconducting lead. We
found that in the cases where the conductance correction had
a dip at φ = ±π first of all this dip vanishes and after that the
conductance correction tends to the φ = 0 result for all φ if y is
increased. If there is no dip the result converges monotonically
to the result for the case with just one superconducting
lead.

3. Weak magnetic field

If a magnetic field is applied, time reversal symmetry is
broken. Therefore, building side trees becomes less likely
and their contribution vanishes as b → ∞, as can be seen in
Fig. 19. In particular, we find the same three regimes Whitney

(a) (b)

(c) (d)

FIG. 19. (Color online) Magnetic field dependence of the con-
ductance correction for (a) x = 0.1 and (b) x = 1, with N2/N1 = 0.2
(space-dashed line), N2/N1 = 1 (dotted line), N2/N1 = 3 (solid line),
N2/N1 = 7 (dashed line), and N2/N1 → ∞ (dash-dotted line) and
for (c) x ≈ 1.84 and (d) x = 10, with N2/N1 = 0 (space-dashed
line), N2/N1 = 0.2 (dotted line), N2/N1 = 1 (solid line), N2/N1 = 7
(dashed line), and N2/N1 → ∞ (dash-dotted line).

and Jacquod10 already predicted for small superconducting
channel numbers:

(1) If the ratio N2/N1 is small enough, the conductance
correction is negative for all values of b and monotonic;

(2) for intermediate values N2/N1 δg is still negative for all
values of the magnetic field but nonmonotonic;

(3) at large enough N2/N1 δg > 0 at b = 0 but δg < 0 for
larger magnetic fields.

Increasing x the values of N2/N1 separating these regimes
decrease such that the first two regimes get smaller. Finally,
the first two regimes disappear at a critical value x ≈ 1.84
and only the third one persists. Note that the fact that there
is no region with δg < 0 visible in Fig. 19(d) is only due to
the graph being not extended to large-enough values of b.
In fact, we did not find values for x where we get a regime
not mentioned above such that for large x we again get the
same behavior as has been found for the case of one normal
conducting lead.31 Since the diagrammatic rules depend on b2

rather than b the conductance is a symmetric function of b and
therefore satisfies the Onsager relation32,33 for a two-terminal
setup g(b) = g(−b).

B. Temperature dependence

To include the effect of finite temperature we have to include
the energy dependence of the side tree contribution and the
central encounters. For zero phase the sixth-order equation for
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(a)

(b) (c)

FIG. 20. (Color online) The conductance correction as a func-
tion of the temperature θ = kBT/ET. (a) N2/N1 = 0.2, φ = 0,
and x = 1.2 (space-dashed line), x = 1.3 (dotted line), x = 1.4
(solid line), x = 1.5 (dashed line), and x = 1.6 (dash-dotted line).
(b) φ = π/4 (space-dashed line), φ = 7π/20 (dotted line), φ = π/2
(solid line), φ = 13π/20 (dashed line), and φ = 3π/4 (dash-dotted
line), N2/N1 = 1 and x = 0.5. (c) N2/N1 = 0.2 and x = 1.3.

the side tree contribution factorizes and one has to solve a
quartic equation. At leading order in NS/NN the temperature
dependence is given by the generalized ζ function. However,
as can be seen from Fig. 20 when including higher-order terms
strong derivations from this behavior may occur again.

The integral in (21), of course, cannot be performed
analytically. Therefore, we calculated the integral numerically
using Gaussian quadrature with a total accuracy of 10−10. The
integral has been truncated at ε = 100θ , where θ = kBT/ET

is again the temperature measured in units of the Thouless
energy. In Fig. 20 we plotted the conductance correction versus
the temperature.

As one might expect from the Sommerfeld expansion the
conductance correction has a local extremum at θ = 0 but
not necessarily a global one, as can be seen from the solid
and the dash-dotted curves in Fig. 20(a). For a certain range
of combinations of the ratios x and N2/N1 the conductance
correction increases with increasing temperature although it is
positive for T = 0. A similar effect, known as the reentrance
of the metallic conductance, has previously been found in NS
structures.34,35 Moreover, it may happen that the conductance
correction changes its sign when the temperature is increased

such as in the case N2/N1 = 0.2 and x = 1.4, shown by the
solid line in Fig. 20(a).

When including a phase difference again this affects the
temperature dependence. It may again cause a nonmonotonic
temperature dependence even if it is monotonic at φ = 0.
Moreover, in contrast to the case φ = 0 where the sign of
the conductance correction with increasing temperature may
only change from positive to negative it can be the other
way around for φ �= 0. The temperature dependence of the
conductance correction for different phases is shown in
Figs. 20(b) and 20(c).

In all cases for large temperatures the conductance correc-
tion tends to zero. However, this limit is approached only very
slowly.

VII. CONDUCTANCE OF A DOUBLE-DOT SETUP

For the double-dot model shown in Fig. 1(b), where the
quasiparticles stay on average a time δτ · τD in the neck
connecting the two dots, the necessary modifications are more
substantial than in the previous case. First of all, we have to
find a way to calculate the transmission probabilities at all
orders in x and in n = Nn/NN, where Nn is the number of
channels of the neck connecting the two different dots. For
simplicity we additionally assume that the two dots have the
same dwell time. Since we consider the neck to be represented
by an ideal lead every electron in the left dot entering the neck
at channel i leaves the neck at the same channel into the right
dot and vice versa such that a traversal of the neck yields a
factor Nn.

The idea of the calculation is as follows: We first of all split
the whole setup into two distinct parts, each having two normal
leads (one of them being the neck) and one superconducting
lead as has been done in Ref. 36. To find a recursion relation
for the transmission, we cut the backbone not only at the
first encounter but also at the first traversal of the neck;
that is, the diagram is cut when the first path pair enters an
encounter or traverses the neck without having entered an
encounter. Since traversing the neck contributes a factor Nn

we assign this factor to a path pair hitting the neck. Due to
the splitting of diagrams at the neck we thus get path pairs
starting at a neck which do not contribute a factor Nn. Thus,
a diagram starting at the neck in dot j contributes to T

αβ

ij /Nj .
In order to simplify the handling of the contributed numbers
of channels here we define a “normalized” transmission
coefficient t̃

αβ

ij = T
αβ

ij /Nj .
Consider a diagram starting in lead 1 with an electron,

thus contributing to t̃ αe
j1 with j ∈ {1,2} and α ∈ {e,h}. If the

first path pair enters an encounter without having traversed
the neck, the diagrams are treated in the same way as above:
The remaining part after cutting the diagram right after the first
encounter contributes to t̃ αe

j1 if the number of ζ side trees emerg-
ing from the encounter is even and contributes to t̃ αh

j1 otherwise.
If the number of ζ side trees is even, the contribution of the
first path pair, the first encounter, and its side trees is given by

Ae
11,l = −

l−1∑
p=0

[1 + i (2p − l + 1) ε]

× (
P e

1 P h
1

)p [ (
P e

1 P h
1

)∗ ]l−p−1
, (26)
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dot 2dot 1 neck

(a) (b)

dot 2dot 1 neck

FIG. 21. (Color online) (a) A 3-encounter of the backbone
touching the neck. (b) A 3-encounter of a side tree touching the
neck.

where the subscript “11” indicates that the encounter lies
fully in dot 1. P α

i , i ∈ {1,2}, α ∈ {e,h}, is the contribution of
side trees starting with an α-type quasiparticle in dot i and is
derived below.

If the e-e∗ path pair leaving the first encounter and
the odd-numbered side trees attached to the first encounter
traverse the neck before entering another encounter, the first
encounter can touch the neck. As shown in Fig. 21(a) the
odd-numbered side trees and the e-e∗ path pair leaving the
encounter then start in dot 2, since we treat the neck as
a ballistic connection between the two dots, while the total
number of side trees stays the same. Hence, the contribution
becomes

Ae
21,l =

l−1∑
p=0

Nn

N1 + NS1 + nn

[1 + i (2p − l + 1) ε]

· (P e
2 eiεδτP h

1

)p [ (
P e

2 eiεδτP h
1

)∗ ]l−p−1
. (27)

Since the e-e∗ path pair now starts in dot 2, the remaining part
of the diagram in this case contributes to t̃ αe

i2 . The additional
phase factor eiεδτ is the phase accumulated by an e-e∗ path pair
which traverses the neck.

For the encounters with an odd number of side trees built
by ζ we have to be even more careful. This is because
the encounter now can be moved into either the neck or
the superconductor coupled to the dot the encounter lies
in. The fact that when an encounter touches the neck the
odd-numbered side trees have to traverse the neck means that
the path pairs of the backbone entering and leaving the first
encounter both have to be in the same dot after traversing the
encounter. The l − 2 in total side trees still starting in the left
dot are the originally even numbered side trees and therefore
start with a hole.

If again the first encounter is in the left dot the contribution
of the encounters with an odd number of side trees built by ζ

is

Be
11,l = −

l−2∑
p=0

{
[1 + i (2p − l + 2) ε]

(
P e

1

)p+1 (
P h

1

)p

× [(
P e

1

)∗]l−p−1 [ (
P h

1

)∗ ]l−p−2

− NS1

N1 + NS1 + Nn

e−iφ(2p−l+2)/2
(−iP h

1

)p

× [
i
(
P h

1

)∗ ]l−p−2

− Nn

N1 + NS1 + Nn

ei(2p−l+2)εδτ
(
P h

1

)p

[ (
P h

1

)∗ ]l−p−2 (
P e

2

)p+1 [(
P e

2

)∗]l−p−1

}
. (28)

Similar formulas as above hold for the remaining coefficients
Aα

ij,l and Bα
jj,l , i,j ∈ {1,2}, α ∈ {e,h}.

If the e-e∗ path pair, however, hits the neck without having
traversed an encounter, we cut the diagram at the neck such that
the first part contributes Nn/(N1 + NS1 + Nn) and the second
part contributes to t̃ αe

j2 . Therefore, the normalized transmission
coefficient is given by

t̃
αβ

ij = Niδij

Nj + NSj
+ Nn

+
∞∑
l=0

A
β

jj,l t̃
αβ

ij

+
(

Nn

Nj + NSj
+ Nn

+
∞∑
l=0

A
β

j̄j,l

)
t̃
αβ

ij̄
+

∞∑
l=0

B
β

jj,l t̃
αβ̄

ij ,

(29)

where j̄ = 3 − j as well as β̄ = h if β = e and vice versa.
This gives in general a 16-dimensional system of linear

equations which decomposes into four independent systems
of linear equations.

The complication of treating the double-dot setup is that
the side tree contributions are also different. We may calculate
their contribution though following the steps in Sec. III with
slight changes. First of all it is no longer enough just to consider
the generating functions f and f̂ for side trees starting with
an electron or a hole, respectively, but we have to consider the
generating functions f1, f̂1, f2, and f̂2 for side trees starting
with an electron (without the hat) or a hole (with the hat) in
the left (subscript “1”) or in the right dot (subscript “2”).
Here we only consider f1 for the side trees starting with
an electron in the left dot explicitly since the derivation of
the remaining generating functions is similar and needs only
simple replacements.

First of all we have to slightly modify the way we look at the
side trees. In general they may consist of parts lying in dot 1
and parts lying in dot 2, as indicated in Fig. 22. By cutting a tree
starting in dot 1 at the neck we find that an electron traversing
the neck builds a tree starting in dot 2 and finally comes back
as a hole since the number of Andreev reflections provided by
a tree is odd. Thus, every time a link of a tree starting in dot
1 hits the neck we cut the tree at the corresponding channel
and insert a retroreflection there contributing an additional
factor given by the side tree starting in dot 2, hence a factor
f2 if an electron hits the neck and f̂2 if a hole hits the neck.
Moreover, we have to include the additional phase εδτ due
to the time a quasiparticle spends in the neck. Therefore, we
may write a diagrammatic rule for a path pair in dot 1 hitting
the neck:

(i) An electron hitting the neck contributes a factor
Nneiεδτ f2;

(ii) a hole hitting the neck contributes a factor Nneiεδτ f̂2.
We may then start with (6a) and adapt it to our new problem

since the steps leading to this can be used here in exactly the
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dot 2

dot 1

dot 2

dot 1

dot 1

dot 1

dot 1
he h e

hee
dot 2dot 1

FIG. 22. A side tree starting in dot 1 may also have parts lying in dot 2. If a quasiparticle hits the neck we treat this as an electron being
retroreflected as its counterparticle indicated by the open squares and include an additional factor of the side tree starting in the other dot for
each traversal of the neck. “e” and “h” denote that the side tree starts with an electron or a hole, respectively.

same way. The second term in the first line and the last term
in the second line which previously corresponded to a tree
whose first encounter hits S2 is now given by a tree with its
first encounter hitting the neck and therefore building a side
tree in dot 2 yielding a contribution f2. Therefore, we replace
the contribution z

(2)
o,l of an l-encounter touching S2 with the

contribution z
(n,1)
o,l of an l-encounter touching the neck. Thus,

f1 = −i
NS1

N (1) e−iφ/2 + Nn

N (1) eiεδτ f2

+
∞∑
l=2

[
x1,lf

l
1 f̂

l−1
1 + (

z
(1)
o,l + z

(n,1)
o,l

)
f̂ l−1

1

]
, (30)

where N (i) = Ni + NSi
+ Nn, i ∈ {1,2}.

Due to the assumption that the neck may be represented
by an ideal lead an l-encounter may touch the neck even if
the odd-numbered side trees do not have zero characteristic.
The only restriction to them is that they traverse the neck
before having an encounter or hitting a superconductor. Thus,
when sliding an l-encounter into the neck we get the situation
depicted in Fig. 21(b): The odd-numbered side trees, which
start with an electron, now start in dot 2 instead of dot 1.
Moreover, there are l path pairs traversing the neck, each giving
a phase εδτ . Therefore, we get

z
(n,1)
o,l = Nn

N (1) eilεδτ f l
2 r̃

l−1. (31)

x1,l and z
(1)
o,l are obtained in the same way as in Sec. III and are

given by

x1,l = − (1 + ilε) r̃ l−1

(1 + iε)l
, (32a)

z
(1)
o,l = NS1

N (1) (−i)l e−ilφ/2r̃ l−1. (32b)

The remaining steps then are again the same as in Sec. III.
For a side tree starting with an electron in dot 2 we have to
exchange the labels “1” and “2” as well as the phase φ with
−φ. If we consider side trees starting with a hole in dot i

instead of electrons we have also to reverse the phase with
respect to fi and exchange fj ↔ f̂j , j ∈ {1,2}. All in all,
after performing the sums using geometric series, making the
change of variables (8) and setting r = 1 to get the side tree

contributions P α
i out of gi and ĝi , we obtain(

−P e
1 P h

1 − iε
(
P e

1 P h
1

)2 + 2iεP e
1 P h

1 − 1
)

P e
1 P h

1(
1 − P e

1 P h
1

)2

+ 1

N (1)

[
NS1P

h
1(

iP h
1 + eiφ/2) + NnP

h
1 P e

2(
P h

1 P e
2 − e−iεδτ

)
]

= 0 (33)

and similar equations for P h
1 , P e

2 , and P h
2 .

For simplicity in the following we consider zero temper-
ature, that is, ε = 0, and equal leads N1 = N2 = NN/2 and
NS1 = NS2 = NS/2. Then one finds that P α

2 = P ᾱ
1 where ᾱ

labels a hole if α labels an electron and vice versa. Moreover,
in this case exchanging electrons and holes is the same as
exchanging dot 1 and dot 2 and is related to the fact that when
exchanging electrons and holes this is essentially an exchange
of φ ↔ −φ. This also reduces the number of linear equations
for the normalized transmission coefficients by a factor of 2
since it yields Ae

ij = Ah
īj̄

and Be
ij = Bh

īj̄
where ī = 2 if i = 1

and vice versa. Therefore, we have t̃ ee11 = t̃ hh
22 , etc. The set

of four nonlinear equations indicated by (33) decomposes into
two copies of sets of two nonlinear equations where the second
set is the same as the first one.

The classical conductance can be found by using a similar
recursion relation for the normalized transmission coefficient
as above which is for the diagonal diagrams given by

t̃
αβ

ij = Niδij

N (i) + NSj

N (j ) t̃
αβ̄

ij + Nn

N (i) t̃
αβ

ij̄
. (34)

With the classical conductance obtained using this recursion,
gcl = NN(2n + x)/(2 + 4x + 8n), where n = Nn/NN, x =
NS/NN and NS = NS1 + NS2 , at zero temperature we get the
conductance correction shown in Fig. 23. The conductance
correction is symmetric in the phase difference due to the
symmetry in exchanging the two dots and the symmetry with
respect to the exchange of electrons and holes. Moreover, we
found that the conductance correction is periodic in the phase
difference with a period of 2π , as can be seen from (26)–(29)
and (33): If we replace φ → φ + 2π the side tree contributions
change their sign. However, in Aα

ij,l and the first and the last
term of Bα

ij,l in (28) this sign cancels since the total number
of side tree contributions entering them is always even. An
additional minus sign enters the second term of Bα

ij,l if l is odd,
but when l is odd the phase factor of this term also contributes
an additional minus sign. If l is even the total number of side
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(a) (b)

(c) (d)

FIG. 23. (Color online) The conductance correction of the
double-dot setup with (a) n = 0.5 and x = 5 (dashed line), x =
20 (solid line), and x = 100 (dotted line); (b) n = 20 and x = 1
(dashed line), x = 20 (solid line), and x = 100 (dotted line); (c)
x = 0.2 and n = 0.3 (dotted line), n = 0.5 (solid line), and n = 0.7
(dashed line); (d) n = 5 (dotted line), n = 20 (solid line), and n = 100
(dashed line).

trees entering this term is again even and the phase factor
does not contribute an additional minus sign on increasing the
phase difference by 2π . Thus, the transmission coefficients are
symmetric under replacing φ with φ + 2π .

Moreover, we find that for a small number of channels in the
neck the conductance correction is negative. It increases if n

is increased and finally becomes positive. For such values of n

where the conductance correction is positive we also find that
the conductance correction vanishes for φ = ±π . For smaller
values of n the changes in the conductance correction when
changing x are most pronounced around ±π , as can be seen
from Figs. 23(a) and 23(b).

VIII. THERMOPOWER OF THE SYMMETRIC AND
ASYMMETRIC HOUSE

If the normal leads additionally have different temperatures
there is also a coupling between the electrical current and
the temperature difference. For a two-terminal setup with
the superconductors being isolated and the two normal leads
having a temperature difference �T and a voltage difference
�V , the electrical and thermal current are given by37

(
I

Q

)
=

(
G B

� �

) (
�V

�T

)
, (35)

where G = 2e2g/h is again the conductance essentially given
by (19) and

B = 2e

hT

(
T̄ ee

12 − T̄ he
12 − 2

(
T̄ he

11 + T̄ he
21

) (
T̂ he

11 + T̂ he
12

)
T̂ he

11 + T̂ he
22 + T̂ he

21 + T̂ he
12

)
,

(36a)

� = −2e

h

(
T̄ ee

21 + T̄ he
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(
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11 + T̂ he
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) (
T̄ he

11 + T̄ he
12

)
T̂ he

11 + T̂ he
22 + T̂ he

21 + T̂ he
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)
,

(36b)

� = − 2

hT

(
T̂ ee

21 + T̂ he
21 + 2

(
T̄ he

11 + T̄ he
21

) (
T̄ he

11 + T̄ he
12

)
T̂ he

11 + T̂ he
22 + T̂ he

21 + T̂ he
12

)
,

(36c)

where T̂
αβ

ij = − ∫ ∞
−∞ dε (∂f/∂ε) T

αβ

ij and T̄
αβ

ij =
− ∫ ∞

−∞ dε ε (∂f/∂ε) T
αβ

ij . Note that in Ref. 37 these
coefficients have been written only for low temperatures using
the Sommerfeld expansion.

An estimate of the thermoelectric coupling is, for example,
provided by the thermopower

S = − 1

e

∂μ

∂T

∣∣∣∣
I=0

= − �V

�T

∣∣∣∣
I=0

= −B

G
. (37)

The calculation of the thermopower is therefore closely
related to the electrical transport since due to (37) we
have to evaluate the same transmission coefficients. We first
consider the two cases shown in Figs. 1(e) and 1(f), which
are topologically equivalent to the symmetric Fig. 1(e) and
asymmetric houses Fig. 1(f).38,39 We restrict ourselves to
Andreev billiards with two normal leads and two isolated
superconducting leads with a phase difference φ. The results
presented here are again in leading order in the channel
numbers and for the numbers of channels of the two normal
leads being equal, since these numbers only enter by a prefactor
N1N2/(N1 + N2). It is further assumed that no magnetic field
is applied. Note that we consider the superconductors to be
isolated, thus adjusting their chemical potential such that the
net current through the superconducting leads is zero.

A. Symmetric house

We start with the setup Jacquod and Whitney called the
symmetric house15 shown in Fig. 1(e). They treated the trans-
mission coefficients perturbatively in the ratio x = NS/NN up
to second order. Within this approximation they argued that for
the symmetric house with equal numbers of superconducting
channels the thermopower vanishes in second order in x since
B, defined in (36a), is antisymmetric in exchanging electrons
and holes, which yields an exchange ε → −ε and in leading
order in N is equivalent to reversing the superconducting
phase φ → −φ. Since additionally the electrical conductance
G is symmetric, as already seen in Sec. V, the thermopower
S = −B/G is antisymmetric in the phase difference. On the
other hand, the result has to be symmetric under exchanging the
superconducting leads, which is again equivalent to reversing
the sign of φ. Thus, the thermopower has to be zero. With our
approach we find that this argument holds to all orders and may
also be seen from the discussion in Sec. IV: There we stated
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(a) (b)

(c) (d)

FIG. 24. (Color online) The thermopower of the symmetric house
in units of 10−3kB/e with different numbers of superconducting
channels. (a) Dependence of the thermopower on the difference
between the numbers of superconducting channels with x = 0.2,
θ = 0.2, and y = 0.3 (dashed line), y = 0.5 (solid line), and y =
0.9 (dotted line). (b) Dependence on x with y = 0.3, θ = 0.2, and
x = 0.2 (dotted line), x = 0.5 (solid line), and x = 0.7 (dashed
line). (c) Dependence on the temperature with x = 0.2, y = 0.3, and
θ = 0.2 (dashed line), θ = 1.5 (solid line), and θ = 2 (dotted line).
(d) Thermopower up to third order in x for x = 0.2, θ = 0.2, and
y = 0.3 (dashed line), y = 0.5 (solid line), and y = 0.9 (dotted line).

that as long as the superconducting leads both provide the same
number of channels the transmission probability is symmetric
in exchanging electrons and holes which when inserted in
(36a) gives B = 0.

However, if NS1 �= NS2 the symmetry under exchanging
the two superconductors is broken and the thermopower
does not vanish. Note that the thermopower arises from
the diagrams of higher order than 3 in x as indicated by
Fig. 24(d) (together with the result of Ref. 15). By using
the transmission coefficients found in Sec. IV, inserting into
(19) as already done in Sec. V and (36a), and performing the
integrals numerically with a total accuracy of 10−10 we find
the results shown in Fig. 24. The thermopower is found to
be antisymmetric and 2π periodic in the phase difference φ.
When the difference y = (NS1 − NS2 )/NS is increased starting
at zero a nonzero thermopower appears which increases up
to about y = 0.5. If the difference is increased further the
resulting thermopower decreases again and vanishes at y = 1,
which corresponds to the case of just one superconductor.
Increasing the total number of superconducting channels
x = NS/NN results in an increase of the thermopower while an
increase in the temperature θ = kBT/ET causes a decrease of
S. This is due to the fact that the thermopower of Andreev
billiards is a pure quantum mechanical property since the
diagonal approximation gives S = 0.

B. Asymmetric house

Moreover, for NS1 = NS2 we can also generate a nonzero
thermopower by inserting a neck at one of the two super-
conducting leads, say at S1, as in Fig. 1(f), in which the
trajectories spend an additional time δτ · τD. An e-h pair hitting
the superconductor S1 picks up an additional phase εδτ . Thus,
the total phase provided by the neck plus the Andreev reflection
at S1 is (−φ + 2εδτ )/2 if an electron is converted into a
hole and (φ + 2εδτ )/2 if a hole is converted into an electron.
Therefore, the electron-hole symmetry is broken, leading to
an asymmetry in the phase difference as well as in the energy.
So T

αβ

ij �= T
ᾱβ̄

ij with ᾱ (β̄) labeling a hole if α (β) labels an
electron and vice versa. Note that we treat the neck as an
ideal lead such that every quasiparticle entering the neck hits
the superconductor before leaving the neck again.36 When
redoing the steps of Secs. III and IV for the calculation of the
transmission coefficients again one finally finds the following
changes: The variable β = cos(φ/2) has to be replaced with
βe = cos[(φ − εδτ )/2] for a side tree starting with an electron
and with βh = cos[(φ + εδτ )/2] for a side tree starting with a
hole. Furthermore, the side trees starting with an electron are
multiplied by e−iεδτ/2 and those starting with a hole by eiεδτ/2.
However, since in Aα

l and Bα
l each factor P α is paired either

with a factor P ᾱ or with a factor (P α)∗ these additional factors
cancel. Additionally, if the incident quasiparticle is an electron
the phase φ in the second term of (14b) also has to replaced
with φ − 2εδτ . Again for an incident hole the phase φ has to
be replaced with −φ.

All in all, we have to solve a 4 × 4 system of linear equations
rather than a 2 × 2 system of linear equations, as it was for
the conductance of the symmetric version. Using N1 = N2 =
NN/2 the four equations are

T ee
ij = N2

N

4N
+

∞∑
l

AlT
ee
ij +

∞∑
l

Be
l T

eh
ij , (38a)

T he
ij =

∞∑
l

AlT
he
ij +

∞∑
l

Be
l T

hh
ij , (38b)

T hh
ij = N2

N

4N
+

∞∑
l

AlT
hh
ij +

∞∑
l

Bh
l T he

ij , (38c)

T eh
ij =

∞∑
l

AlT
eh
ij +

∞∑
l

Bh
l T ee

ij , (38d)

with Al being the same as in (14a) but with P e and P h

redefined to depend on βe and βh, respectively, and b = 0.
Analogously, one finds

Be
l = −

l−2∑
p=0

[
(1 + i (2p − l + 2) ε) (P e)p+1(P h)p

× [(P e)∗]l−p−1[(P h)∗]l−p−2

−x( − i(P h))p(i(P h)∗)l−p−2

2(1 + x)

× (e−i(2p−l+2)(φ−2εδτ )/2 + ei(2p−l+2)φ/2)

]
, (39a)
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(a) (b) (c)

FIG. 25. (Color online) The thermopower in units of 10−3kB/e as a function of the phase difference φ: (a) δτ = 0.03, θ = KBT/ET = 0.2,
and x = 0.2 (dotted line), x = 2 (solid line), and x = 10 (dashed line); (b) δτ = 0.03, x = 0.2, and θ = 0.2 (dotted line), θ = 4 (solid line),
and θ = 10 (dashed line); (c) θ = 0.2, x = 0.2, and δτ = 0.03 (dotted line), δτ = 0.1 (solid line), and δτ = 0.3 (dashed line).

Bh
l = −

l−2∑
p=0

[
(1 + i (2p − l + 2) ε) (P h)p+1(P e)p

× [(P h)∗]l−p−1[(P e)∗]l−p−2

−x( − i(P e))p(i(P e)∗)l−p−2

2(1 + x)

× (ei(2p−l+2)(φ+2εδτ )/2 + e−i(2p−l+2)φ/2)

]
. (39b)

By inserting the transmission coefficients into (19) and
(36a) we find the thermopower S = −B/G. To this end
we again integrated the transmission coefficients numerically
using Gaussian quadrature with a total accuracy of 10−10. The
results for the thermopower for different values of δτ , x, and
different temperatures is shown in Fig. 25.

We find that the antisymmetry in phase found by Whitney
and Jacquod in second order in x holds up to all orders in x.
However, this antisymmetry is in contradiction to previous
experimental measurements38,39 on diffusive normal metal
regions coupled to two superconductors. Moreover, one can
see from Fig. 25 that the thermopower is 2π periodic in φ. The
arguments for the periodicity of the conductance in Sec. V
also apply to B and thus the thermopower is periodic in the
phase difference φ with period 2π . A period of 2π had also
been found previously in Ref. 40. The antisymmetry and the
periodicity may also be obtained by (39a) and (39b) combined
with (19) and (36a): Due to the summation over p, Be

l and
Bh

l are symmetric under an simultaneous exchange φ ↔ −φ

and ε ↔ −ε and satisfy Bh
l = Be

l |ε→−ε . Thus, replacing φ

with −φ is the same as replacing ε with −ε. Now if we
replace ε with −ε we get an additional minus sign in (36a) and
therefore a minus sign in the thermopower. In contrast to the
symmetric case, however, the symmetry due to the exchange
of the leads is broken and thus the thermopower is nonzero but
antisymmetric in φ. Furthermore, for specific combinations of
x and δτ the thermopower as a function of the phase difference
may show additional oscillations with period smaller than 2π

[see Fig. 25(a)]. However, these additional oscillations are
smoothed out if the temperature is increased.

Over a pretty wide range of increasing the temperature
the thermopower also increases before it shrinks again. This
increase of the thermopower with increasing temperature

is related to the decrease of the thermal resistance found
in Ref. 39. Figure 25(c) also shows that the thermopower
increases if the time a quasiparticle spends in the neck is
increased. This is due to the fact that with increasing δτ the
electron-hole symmetry is increasingly broken.

It should be noted that the thermopower again arises solely
from the nondiagonal diagrams since for the diagonal diagrams
the energy differences of the links are always zero and thus
the neck does not play any role.

IX. CONCLUSIONS

We have shown in this article that the transport properties
of chaotic cavities are strongly affected by the introduction
of superconducting leads. In particular, using a semiclassical
framework, we have extended the work of Ref. 10 to all
orders in the ratio NS/NN of the sizes of the superconducting
and normal leads. With this we could reproduce the large-N
limit of the random matrix theory result18 for two isolated
superconductors which shows in the limit NS/NN → ∞ the
conductance doubling of the N-S interface consisting of one
normal conducting and one superconducting lead.1 Our result
shows a 2π periodicity and symmetry with respect to the phase
difference of the superconductors which have already been
found by other approaches.3,41 If a magnetic field is applied or
the temperature is increased the conductance correction will
decrease toward zero.

An Andreev billiard with two normal leads and two
superconducting leads having the same chemical potential as
one of the two normal leads shows more interesting features
than the setup with superconducting islands. Depending on
the numbers of channels, these may be similar to those already
found previously in the conductance of N-S junctions. Again
the conductance is doubled in the limit NS/NN → ∞ and
is 2π periodic and symmetric with respect to the phase
difference φ which has been observed for N-S junctions
with two superconducting leads in several approaches.10,29,42,43

However, the conductance shows a nonmonotonic behavior
similar to the conductance through quantum dots with one
normal and two superconducting leads.29 The phase difference
may even cause a change of the sign of the conductance
correction. Furthermore, the magnetic field dependence also
inherits a nonmonotonic behavior from the N-S junction28,31
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and again the sign of the conductance correction may be
changed by increasing the magnetic field. This has already
been found by Whitney and Jacquod10 in their consideration
of the contribution up to second order in NS/NN. A nonzero
temperature may even cause an increase of the conductance
correction similar to the reentrance in the case of the N-S
junction.34,35

Separating the Andreev billiard into two dots each con-
nected to one normal and one superconducting lead and
connecting them by a neck necessitates a splitting of the
diagrams when traversing the neck. A small number of
channels in the neck causes a reduction of the conductance
while for a large neck the superconductors enhances the
conductance as long as the phase difference between the two
superconducting leads φ �= π . The conductance of this setup
is again symmetric and periodic in φ with a period of 2π .

The investigations of the thermopower in Ref. 15 have also
been extended to all orders in the number of superconducting
channels for the symmetric house and the asymmetric house.
For these two setups we could show that the antisymmetry
of the thermopower toward the phase difference φ holds
in all orders in NS/NN and that the thermopower of the
symmetric house with equal numbers of superconducting
channels is identically 0. In the case of the asymmetric house
this antisymmetry, however, is in contradiction with some
previous experimental results,38,39 which found a symmetric
thermopower for diffusive normal regions. However, the
thermopower oscillates in both cases with a period 2π , in
agreement with experimental results.38,39 Additionally, the
thermopower increases with increasing temperature over a
pretty wide range. With the treatment represented in Sec. VII
where we calculated the conductance of the double dot we
would, in principle, be able to calculate also the thermopower
of this setup. However, including the necessary energy dif-
ference and the difference between the numbers of channels
of the two superconductors increases the complexity of the
equations to such an extent that we have not got a reasonable
solution of the four coupled nonlinear equations for the side
tree contributions.

Like for the density of states,13 the considerations in this
article show that in the case of normal metal-superconductor
hybrid systems, a semiclassical treatment based on the
diagonal approximation is not sufficient to describe such

systems. Instead, one has to consider all diagrams consisting
of path pairs and encounters contributing in leading order in
the channel number. Importantly, it shows that the effect of
superconductors on attached normal regions is of the order of
the total number of channels and the leading order corrections
in NS/NN compete with higher-order terms for larger numbers
of superconducting channels.

However, up to now there are neither confirming nor
disproving experimental data. Thus, it would be interesting to
see results of measurements upon the conductance of Andreev
billiards. While the realization of ballistic Andreev systems
based on InAs has been experimentally shown,44 correspond-
ing transport measurements have yet to be performed.

The results presented here are only valid in leading order in
the inverse channel numbers, and further investigations could
include the calculation of subleading order terms, especially
the weak localization correction. Doing this first of all requires
a way of systematically finding all the diagrams contributing in
the next order in 1/N . The key problem then is to find a suitable
recursion since the structures found here break down. Namely,
the trees have no longer to be trees and the diagrams may not
necessarily have a backbone. However, the types of recursion
relations presented here would prove useful in such a case. We
may also wonder about the effects of superconductors on the
noise and other finer transport statistics. Here we considered
Andreev billiards coupled to at most two superconductors.
However, extending our calculation to a higher number of
superconductors seems (maybe up to solving the equation
found for the side tree contributions) straightforward. We also
restricted ourselves to zero Ehrenfest time. However, it has
been shown that the Ehrenfest time plays a crucial role in
Andreev billiards.45 Allowing nonzero Ehrenfest time yields a
simple replacement for the side trees13,46 but the effect on the
backbone has to be investigated further.
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