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Valley-contrastive selection rules of a nonlinear optical transition in graphene
with an energy gap
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A valley degree of freedom in graphene has been playing significant roles in novel properties of the material.
For graphene whose energy spectrum has a gap, valley-contrastive phenomena in nonlinear optics are theoretically
studied. With the use of the Floquet method and the wave vector point group theory, we show that N -photon
resonant excitation by circularly polarized light obeys a selection rule that is complementary with respect to
the number of the photons involved, handedness of the circularly polarized laser field, and the valley index. In
particular, a hallmark of inversion symmetry breaking is clarified in the selection rule. Besides, the band gap
renormalization as an influence of the applied laser field is found to be also valley dependent.
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I. INTRODUCTION

Enthusiasm for research on graphene is unbounded. Since
the discovery of electron dispersion with conical intersection,
called Dirac electrons,1 the physical properties expected in
graphene have been important subjects in condensed matter
physics for more than half a century, and the recent experimen-
tal realization by the Novel laureates has drastically developed
the research activity.2 The electron in graphene behaves in such
a fashion that mimics the massless Dirac fermion in quantum
electrodynamics. In this respect, the advent of the material has
bridged the two branches of physics, relativistic physics and
nonrelativistic condensed matter physics, fueling the extensive
studies.

In neutral graphene, the chemical potential exactly crosses
the Dirac points located at the two nonequivalent Brillouin-
zone corner points K±, and a semimetallic behavior is
thus predicted. This observation primarily aroused research
interests in electron transport properties, which results in
finding novel behaviors in, for instance, cyclotron resonance,3,4

magnetoresistance,5,6 and the anomalous integer quantized
Hall effect.7,8 In particular, the report of ultrahigh electron
mobility at the room temperature ∼ 15,000 [cm2/Vs],9 which
is beyond the conventional figure (e.g., about 1400[cm2/Vs] in
silicon) extends the graphene research for device application.
When one intends to use the material in such a device as
a field effect transistor, the gapless energy spectrum would
be unfavorable since the magnitude of the energy gap of
the material measures on-and-off ratio and the threshold
of the voltage of the device. Thus a method to open an
energy gap in graphene is devised for stable device operation.
Nowadays, several schemes are proposed such as imposing
Kekúle distortion on the layer10 and chemical decorations
with ammonia11 and CrO3 (Ref. 12). Among them, the
graphene fabricated on the SiC substrate is found to be a
semiconductor that has direct gaps with an identical magnitude
at the K± points, which are referred to as K± valleys.13–15

Although the detail of the gap-opening mechanism has still
been an open question, it is widely believed that the substrate
introduces an on-site staggered electron potential into the
carbon layer. This effect breaks the spacial inversion symmetry
of graphene, resulting in opening energy gaps at the Dirac
points.

This interplay between the basic and applied physics brings
about another synergy effect. The graphene with an energy
gap, in turn, puts optical properties of the material on the list of
relevant research subjects. Along this line, a circular dichroism
that depends on the valley degree of freedom in a linear optical
response was theoretically reported in Ref. 16: When electric
dipole transition by a left (right) circularly polarized photon
is allowed (forbidden) at one valley, the selection rule at the
other valley alternates. From the analogy with the conventional
circular dichrolism that originates from an electron spin, the
valley indexes should become central degrees of freedom for
“valleytronics”.17

To fully understand the optical properties of gapped
graphene it is quite natural to ask whether valley-contrastive
selection rules would be expected in nonlinear optics. In
spite of the immenseness of the interest, the procedures
used in Ref. 16 cannot be straightforwardly applied to the
nonlinear regime. In this paper, we take other routes to explore
valley-contrastive phenomena in nonlinear optics and clarify
a selection rule for circular polarization in N -photon resonant
processes. For this purpose, we first apply the Floquet method.
Since graphene is well described by a tight binding model on
a lattice with two sites in a unit cell (honeycomb lattice), or
equivalently by a two-level system at each wave number, one
can immediately be reminded of the usefulness of the Floquet
method. In addition to the selection rule, the method reveals
that the band gap renormalization as an influence of the driving
laser field also depends on the valley index. The selection rule
obtained by the Floquet method covers the processes where
the photons involved have an identical circular polarization.
Thus, we also rely on the wave vector point group theory
to complete the selection rule. The latter method shows that
an experimental observation of the nonlinear optical selection
rule enables one to identify the symmetry that has been broken
for the gap opening.

II. NONLINEAR OPTICAL SELECTION RULE

A. Floquet method approach

Consider spinless electrons subjected to a monochromatic
laser field in graphene with a broken spatial inversion sym-
metry. The electron dynamics is well described in the tight
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FIG. 1. Energy band structure with ky = 0 around the K± valleys.

binding approximation, whose Hamiltonian is given in the
wave number space as (h̄ = 1)

H =
∑

k

(
a
†
k b

†
k

)
H(t)

(
ak

bk

)
, (1)

with the 2 × 2 matrix18

H(t) =
(

� t1
∑

i e
+i(�k+e �A(t))· �di

t1
∑

i e
−i(�k+e �A(t))· �di −�

)
. (2)

In this equation, the two components in the row and column
vectors ak(a†

k) and bk(b†k) are annihilation (creation) operators
of an electron residing on the A and B triangular sublattices,
respectively, of the honeycomb lattice. The parameters t1 and
� each denote the nearest-neighbor hopping integral and
staggered on-site electron potential, the latter of which breaks
the spacial inversion symmetry. The three vectors connecting
the nearest-neighboring sites in the honeycomb lattice, �di(i =
1,2,3), are set as �d1 = a(

√
3/2,1/2), �d2 = a(−√

3/2,1/2), and
�d3 = a(0, − 1) with the lattice constant a. In the present
coordinate system, the K± points, at which the two Dirac points
appear for an ideal graphene with � = 0, are positioned at
(kx,ky) = (±4π/3

√
3a,0). When the staggered on-site energy

potential is finite, � > 0, the degeneracies at the Dirac points
are lifted and energy gaps with magnitude 2� open [see
Fig. 1].

The driving laser field is described by the vector potential
�A(t), whose wave vector is assumed to be normal to the plane.

The laser field is also assumed to be circularly polarized to pick
up the valley-contrastive phenomena in this system. The vector
potential for the laser field with frequency ω and amplitude
E0 then takes the form of �A(t) = (E0/ω)(−sin ωt,τ cos ωt),
where τ = +1(−1) indicates the left (right) circularly po-
larized light. Here and hereafter, the matrix H(t) is simply
referred to as the Hamiltonian.

Our central interest is the selection rules of a nonlinear
optical transition by the circularly polarized light in N -photon
resonant processes. For this purpose, we apply the Floquet
method, which is the powerful tool to tackle sinusoidally
time-dependent problems. In the present context, an advantage
of this scheme is that a selection rule in nonlinear optics
can be obtained on an equal footing with the one in a linear
process. The procedure is as follows.19 For the time-dependent
Schrödinger equation

[
H(t) − i(∂/∂t)

]|�〉 = 0 with tempo-
rally periodic Hamiltonian H(t) = H(t + 2π/ω), the Floquet
theory assumes the solution of this equation in the form of

|�〉 = e−iεt |	〉
=

∑
α

∑
n

e−iεt e−inω|α,n〉. (3)

The bases used in the expansion in the second line are
defined as |α,n〉 ≡ |α〉 ⊗ |n〉, which are the composites of the
appropriate electronic bases |α〉 and photonic bases |n〉. The
integer n can be interpreted as the photon numbers involved.
Substituting the form of the solution to the Schrödinger equa-
tion turns the problem into a (time-independent) eigenvalue
problem HF |	〉 = ε|	〉, where ε is the quasi-energy and
the operator HF is the Floquet Hamiltonian. In the renewed
eigenvalue problem, one has to treat the infinite-dimensional
matrix HF consisting of block matrices Hmn

HF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

. . .

· · · H 11 H 10 H 1−1 · · ·
· · · H 01 H 00 H 0−1 · · ·
· · · H−11 H−10 H−1−1 · · ·
. . .

...
...

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The diagonal block Hnn operates on an n-photon sector,
which is defined as a Hilbert subspace with a fixed photon
number n. The each entry in HF is the 2 × 2 matrix Hmn =
{Hmn

αβ } (α,β = 1,2), where

Hmn
αβ = ω

2π

∫ 2π/ω

0
H(t)αβei(m−n)ωtdt + δmnδαβmω. (5)

The matrix elements are evaluated by the wave numbers of
the K± valleys, at which the direct optical transitions are
addressed:

Hmn
11 = (� + mω)δmn, (6)

Hmn
12 = t1JN (−λ)(−i)τN

×
[
2 cos

{π

3
(τN ± 2)

}
+ (−1)τN

]
, (7)

Hmn
21 = t1JN (+λ)(−i)τN

×
[
2 cos

{π

3
(τN ∓ 2)

}
+ (−1)τN

]
, (8)

Hmn
22 = (−� + mω)δmn, (9)

with N ≡ n − mth order Bessel function JN and λ = eaE/ω.
Here, the zero-photon sector n = m = 0 is found to be
diagonal. Thus in the following, the diagonal state with higher
(lower) energy is referred to as a conduction (valence) band
state at the K± valleys.

In the framework of the Floquet method, the transition
probability from a given initial state to a target state is described
by an infinite sum of the matrix elements of the time evolution
operator determined by HF . The probability in the present
problem is then written as

Pv→c(t) =
∑

n

|〈c,n| exp[−iHF t]|v,0〉|2, (10)

where the Floquet states |v,0〉 and |c,n〉 denote the initial
valence band and conduction band states, respectively. This
infinite sum is approximated when the N -photon resonant
condition Nω = 2� is satisfied; Eq. (10) is dominated by the
transition between the two Floquet states, |c, − N〉 and |v,0〉
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TABLE I. Selection rules at the K± valleys for left/right cocircu-
larly polarized light. The capital letters A/F indicate that the optical
transition is “allowed”/“forbidden”.

N = 1 N = 2 N = 3

K+ A/F F/A F/F
K− F/A A/F F/F

(Ref. 19). Thus the Hamiltonian matrix is reduced from HF

into the 2 × 2 matrix H
(N)
F spanned by the corresponding two

Floquet states, and the transition probability can be simplified
as P (N)

v→c(t) = |〈c, − N | exp[−iH
(N)
F t]|v,0〉|2, where

H
(N)
F =

(
H 00

11 H 0−N
21

H−N0
12 H−N−N

22

)
. (11)

We note, in passing, that for below-gap excitation, the influence
of the laser field effectively appears in the renormalization of
electron hopping integrals.20 One can now immediately find
out the selection rule from the off-diagonal matrix elements in
H

(N)
F ; when they are null (finite), the direct optical transition

is forbidden (allowed). The selection rule is summarized in
Table I. The result in N = 1 (i.e., a linear process) is confirmed
to be line with that in Ref. 16. One can observe alternation
with respect to the polarization direction as well as the valley
index. We remark that the result describes the transitions with
cocircular photons in nonlinear responses.

B. Wave vector point group approach

Next, the wave vector point group theory is applied to derive
a selection rule for nonlinear processes where the left and right
circularly polarized photons are simultaneously involved.

The space group that the graphene with broken inversion
symmetry belongs to is P 6̄m2 and the wave vector point group
at the K± points is C3h (Refs. 21,22). The irreducible represen-
tations of this point group characterize energy eigenfunctions
at the K± valleys. From the character table, one finds that
three-fold rotations R(±2π/3) add a phase factor to the wave
functions of valence (conduction) band states at the K± valleys,
|v(c); K±〉, in such a manner that

R(2π/3)|v(c); K±〉 = e+i2πm±
v(c)/3|v(c); K±〉, (12)

R(−2π/3)|v(c); K±〉 = e−i2πm±
v(c)/3|v(c); K±〉, (13)

with m+
v = −m+

c = −m−
v = m−

c = −1. The azimuthal selec-
tion rule for a N (= nR + nL)-photon process, where nR(nL)
is the number of the right (left) circularly polarized photon, is
determined by a condition that quantity∑

φ=0,±2π/3

(eim±
c φ)∗ei(nR−nL)φeim±

v φ, (14)

should be finite. This leads to an equality

−m±
c + nR − nL + m±

v = 3M, (15)

with an integer M . This relation obviously includes the
results presented in Table I. Moreover, the “mixed” processes

involving both polarizations are now covered. For instance,
the second order transition with nL = nR = 1 is found to be
forbidden at both the valleys, while the “mixed” third order
process with nL(R) = 2 and nR(L) = 1 is optically active at the
K+(−) valley.

Here, we would like to emphasize that the selection rule
is nontrivial with respect to the following two aspects. In the
field theoretical description, the chiral symmetry is found to be
equipped with the graphene system. Since the chiral nature of
the system is often related with the helicity (i.e., the projection
of a spin degree of freedom along the momentum vector) one
might think that left- and right-handedness should appear in
a certain form and that the valley-contrastive selection rule
is one of the natural manifestations of it. However, it is not
straightforward: that is the case in three space dimensional
systems, and not valid in two space dimensions (e.g., in
graphene). The reason is that in two space dimensions a
momentum operator has two components (kx,ky), thus the
projection of the spin degrees of freedom resides in the
plane where the momentum operator is defined. Thus,
the in-plane projection does not have a direct relation with
the helicity possessed by the laser field, the latter of which
is normal to the plane. More precisely, the helicity in two
space dimensions is not well defined.23 Thus, the alternation
with respect to the handedness shown in the selection rule
should not be ascribed to the chiral nature of the graphene
system.

The other aspect that should be remarked is the influence
of the three-fold rotation. The period three with respect to N

in the selection rule is caused by the phase factor attached
to the eigenfunction in the course of the three-fold rotation.
The phase factor in the form of e±i2π/3 is not a consequence
of the three-fold symmetry of the lattice, as opposed to
the appearance. This is obviously understood when one is
reminded that the wave vector point group at the K± points
in an ideal graphene is D3h

24. In this system, the phase factor
e±iπ is picked up for the R(±2π/3) rotations, although the
three-fold symmetry remains.

The point group that the K± valleys obey has a tight
connection with the mechanism how the degeneracies at the
Dirac points are lifted. The key of the present gapped graphene
is that the energy gap originates from inversion symmetry
breaking. Various physical and chemical methods to open
an energy gap in graphene are proposed. All of the means
mentioned in Sec. I break the inversion symmetry, and the
selection rule is insensitive to further details of the methods
to open the gap, as long as the symmetry that is broken for
the gap opening is commonly the spacial inversion. When a
gap opening mechanism with another symmetry is introduced
to graphene, a distinct selection rule should be obtained. For
instance, the intrinsic spin-orbit coupling is found to open an
energy gap with preserving the graphene lattice symmetry.
Thus, for this graphene with the energy gap, the wave vector
point group at the K± valleys should be D3h, and the selection
rule Eq. (15) would not hold. This fact inversely enables
one to experimentally identify a relevant symmetry causing
an optical gap by observing the selection rule in nonlinear
optics. The behavior with the period three with respect to
the photon numbers is the hallmark of broken inversion
symmetry.
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III. VALLEY-DEPENDENT BAND GAP
RENORMALIZATION

One might think that the use of the wave vector point group
would solely meet the present purpose since the selection rule
obtained by the method is more general. When our discussion
is limited to qualitative aspects, this would be true. However,
when we expand our interest to quantitative issues, the group
theoretical approach could not be helpful. Thus, we once again
rely on the Floquet method to examine a quantitative valley-
dependent phenomenon in one-photon resonant process, and
discuss band gap renormalization as an influence of driving
the laser field.

The reduced Floquet matrix in the lowest order approx-
imation H

(N)
F was sufficient to derive the selection rule, as

shown above. However, to discuss quantitative nature we have
to move to the next order approximation, where the effects
of matrix elements discarded in the course of the matrix-size
reduction should be considered. These appear as an energy
shift in the second order approximation. Individual couplings
of the Floquet states |c, − 1〉 and |v,0〉 with remaining Floquet
states yield to the relevant correction

δ

∣∣∣∣
K±L(R)

=
∑
n�=0,1

∣∣H (0n)
12

∣∣2

(n − 1)ω
, (16)

at the K± valleys under the shining of left (right) circularly
polarized light. Taking these corrections into the diagonal
elements of H

(N=1)
F , electron dynamics at the K± valleys is

described by

H
(N=1)
F2

∣∣∣
K+L

=
(

H
(N=1)
F2

∣∣∣
K−R

)∗

=
(−ω/2 + δ±± −3it1J−1(λ)

3it1J1(−λ) −ω/2 − δ±±

)
, (17)

H
(N=1)
F2

∣∣∣
K+R

= H
(N=1)
F2

∣∣∣
K−L

=
(−ω/2 + δ±∓ 0

0 −ω/2 − δ±∓

)
, (18)

where

δ±± = 9t2
1

∑
m�=0

|J3m+1(−λ)|2
3m

, (19)

δ±∓ = 9t2
1

∑
m�=0

|J3m+2(λ)|2
3m + 1

. (20)

While these energy corrections do not alter the optical
selection rule, the inequality of δ±± with δ±∓ indicates another
valley-dependent phenomenon; the amount of the band gap
renormalization is different between the two valleys. The
transition probability P (t) when the band gap renormalization
is taken into account is given as

P (N=1)
v→c (t) = g2

δ2±± + g(λ)2
sin2

(√
δ2±± + g(λ)2t

)
, (21)

for H
(N=1)
F2 |K+L = H

(N=1)
F2 |K−R , where g(λ)2 = 9t2

1 J 2
1 (λ). It is

also straightforward to obtain the time profile of the Rabi
oscillation R(t),

R(t) ≡ ∣∣〈v0| exp
( − iH

(N=1)
F2

)
t
)|v0〉∣∣2

= cos2

(√
δ2±± + g(λ)2t

)

+ δ2
+

δ2±± + g(λ)2
sin2

(√
δ2±± + g(λ)2t

)
, (22)

where the initial state is assumed to occupy the valence band.

IV. CONCLUSION

We obtained the valley-contrastive selection rules of a
nonlinear optical transition by circularly polarized light in
graphene with an energy gap. The selection rule is complemen-
tary with respect to the photon numbers involved, handedness
of the laser field and the valley index. The experimental
observation of the rule enables us to identify the dominant
symmetry of the mechanism that lifts the degeneracies at
the Dirac points in graphene. In particular, the period three
with respect to the photon numbers in the selection rule is
the hallmark of broken inversion symmetry, which should be
understood in term of the wave vector point group symmetry
of the K± valley, but not of the three-fold symmetry of the
lattice structure. The band gap renormalization is found to be
a quantitatively valley-dependent phenomenon.
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