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Dynamical effects and fluctuations of interaction-matrix elements for a ballistic quantum dot
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We study matrix element fluctuations of the two-body screened Coulomb interaction and of the one-body
surface charge potential in ballistic quantum dots, comparing behavior in actual chaotic billiards with analytic
results previously obtained in a normalized random-wave model. We find that the matrix element variances in
actual chaotic billiards typically exceed by a factor of 3 or 4 the predictions of the random-wave model, for dot
sizes commonly used in experiments. We discuss dynamical effects that are responsible for this enhancement.
These dynamical effects have an even more striking effect on the covariance, which changes sign when compared
with random-wave predictions. In billiards that do not display hard chaos, an even larger enhancement of matrix
element fluctuations is possible. These enhanced fluctuations have implications for peak spacing statistics and
spectral scrambling for quantum dots in the Coulomb blockade regime.
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I. INTRODUCTION

The statistical fluctuations of single-particle energies and
wave functions of dots whose single-particle dynamics are
chaotic can be well approximated by random matrix theory
(RMT).1 The mesoscopic fluctuations of the conductance
through open dots that are strongly coupled to leads are then
successfully described by RMT.2 In the opposite limit of an
almost-isolated dot, the charge is quantized and electron-
electron interactions modify the mesoscopic fluctuations of
the conductance. Many of the analytical tools used to describe
such isolated interacting systems are discussed in the recent
review by Ullmo.3

The randomness of the single-particle wave functions
induces randomness into the interaction-matrix elements when
the latter are expressed in the basis of the former. These matrix
elements can be decomposed into an average and a fluctuating
part. The average part of the interaction, when combined
with the one-body kinetic energy and a confining potential,
leads to the so-called universal Hamiltonian.4,5 This universal
Hamiltonian includes a charging energy term, an exchange
interaction term that is proportional to the square of the total
spin of the dot, and a Cooper-channel term (that is repulsive
in a quantum dot and does not lead to the BCS instability).
The fluctuating part of the interaction is suppressed by the
Thouless conductance gT , and in the limit gT → ∞, the dot
is completely described by the universal Hamiltonian.

The charging energy term leads to charge quantization
in a weakly coupled dot, and the conductance peak height
distributions in such a dot were derived in Ref. 6 using the RMT
statistics of the single-particle wave functions. Qualitative
features of these peak height distributions as well as the
parametric peak height correlation and the weak localization
effect as a function of magnetic field7,8 were confirmed in
experiments.9–11 Remaining discrepancies between theory and
experiments regarding the temperature dependence of the
width of the peak spacing distribution12 and the peak height
distributions13 at low temperatures were explained by the
inclusion of the exchange interaction term of the universal
Hamiltonian.14,15

However, not all observed features of the peak spacing
distribution can be explained by the exchange interaction
alone. At low temperatures, the spacing is given by the
second-order difference of the ground-state energy versus
particle number. When only charging energy is present, the
peak spacing distribution is expected to be bimodal because
of spin effects. The exchange interaction (with realistic
values of the exchange coupling constant in quantum dots)
reduces this bimodality but cannot explain its absence in the
experiments.12,16–18 It is then necessary to consider the effect
of the fluctuating part of the interaction beyond the universal
Hamiltonian.

In the Hartree-Fock-Koopmans approach (or alternatively,
using a perturbation theory in the screened Coulomb interac-
tion), the peak spacing can be expressed in terms of certain
interaction-matrix elements, and sufficiently large fluctuations
of such matrix elements19 might explain the absence of
bimodality in the peak spacing distribution. It is therefore
of interest to make accurate estimates of interaction-matrix
element fluctuations in chaotic dots. These fluctuations are
determined by single-particle wave function correlations. In
a diffusive dot, such correlations are well understood and
lead to an O(�/gT ) standard deviation in the interaction-
matrix elements,20,21 where � is the mean single-particle
level spacing. Peak spacing fluctuations are also affected
by a one-body surface charge potential induced by the
accumulation of charge on the surface of the finite dot.20 Matrix
element fluctuations of the two-body interaction and one-body
surface charge potential are also important for determining the
statistical scrambling of the Hartree-Fock energy levels and
wave functions as electrons are added to the dot.22,23

Wave-function correlations and interaction-matrix element
fluctuations in a ballistic dot are less understood. In Ref. 24 we
used a normalized random-wave model (see also Refs. 25–27)
to obtain analytic expressions for interaction-matrix element
variances and covariances in the regime of large Thouless
conductance gT for a ballistic two-dimensional (2D) dot. In
such a dot, gT ∼ kL, where k is the Fermi wave number and L

is the linear size of the dot (defined more precisely as the square
root of the dot’s area). Since kL ∼ √

N where N is the number
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of electrons in the dot, the kL � 1 limit in which the random-
wave model is expected to hold is also the limit of many
electrons in the dot. In the present paper, we systematically
investigate matrix element fluctuations in real chaotic billiards,
for 30 � kL � 70, corresponding roughly to the parameter
range relevant for experiments (∼150–800 electrons in the
dot). We show that fluctuations can be significantly enhanced
due to dynamical effects, e.g., the variance may be enhanced
by a factor of 3 or 4. Such enhancement can help in explaining
the peak spacing distribution measured in the chaotic dots of
Ref. 12.

On the other hand, the typical fluctuations of matrix
elements in chaotic dots cannot explain the even broader peak
spacing distributions in the experiment of Ref. 18. The small
dots used in the latter experiment are probably nonchaotic (top
gates were used), and this has motivated us to study fluctuations
beyond the chaotic regime. We show that a large (i.e., order
of magnitude) enhancement of the fluctuations is possible in
nonchaotic billiards.

The outline of this paper is as follows. In Sec. II, we
introduce the modified quarter-stadium billiard as a conve-
nient model for investigating matrix element fluctuations in
chaotic systems. In Sec. III we consider matrix elements
of the two-body screened Coulomb interaction, and find
strong enhancement of the fluctuations in comparison with
random-wave predictions. Semiclassical corrections due to
bounces from the dot’s boundaries lead to an increase in
the fluctuations, but do not correctly predict the scaling with
kL in the experimentally relevant range. Insight into the
underlying mechanism of fluctuation enhancement is obtained
by studying a quantum map model, which is described in the
Appendix. An important conclusion is that the expansion in
1/kL, while asymptotically correct, can be problematic in
quantifying matrix element fluctuation in the regime relevant
to experiments.

In Sec. IV we extend our investigation to one-body matrix
elements associated with the surface charge potential, and
find similar fluctuation enhancements. Going beyond the
variance, we examine the full matrix element distributions
in Sec. V, and observe deviations from a Gaussian shape
that are even stronger than the deviations found in the
random-wave model.24 In Sec. VI we study systems beyond
the chaotic regime: billiards dominated by marginally stable
bouncing-ball modes and billiards with mixed dynamics (i.e.,
partly regular and partly chaotic). Finally, in Sec. VII we
briefly discuss some implications of the present work for the
quantitative understanding of spectral scrambling and peak
spacing statistics for quantum dots in the Coulomb blockade
regime.

II. CHAOTIC BILLIARDS

Here we investigate how dynamical effects modify the fluc-
tuations of interaction-matrix elements beyond our findings
in the random-wave model.24 Here and in Secs. III–V we
treat exclusively geometries displaying hard chaos. (Systems
with stable or marginally stable classical trajectories will be
considered in Sec. VI.) To this end, we will use a chaotic
system shown in Fig. 1—a modified quarter-stadium billiard
geometry,28 where the quarter circle has radius R and the
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FIG. 1. A modified quarter-stadium geometry with parameters
a and s is used to illustrate dynamical effects on matrix element
fluctuations. In the figure, we set the quarter-circle radius R = 1. The
random-wave contribution to the wave-function intensity correlator
C(r1,r2) is schematically indicated by a dashed line, and a typical
dynamical contribution by a dotted line.

straight edge of length aR has been replaced by a parabolic
bump to eliminate bouncing-ball modes. Algebraically, the
billiard shape is defined by

0 � y/R � 1 − s

(
1 − x2

a2R2

)
, 0 � x/R � a,

(1)
0 � y/R �

√
1 − (x/R − a)2, a � x/R � a + 1,

where s is a free dimensionless parameter.
We use a quarter stadium instead of a full stadium shape

in order to remove symmetry effects. This system has been
verified numerically to be fully chaotic for the range of
parameters used. Variation of the bump size s allows us to
check the sensitivity of the results to details of the billiard
geometry while maintaining the chaotic character of the clas-
sical dynamics. Furthermore, by varying the parameter a, we
can control the degree of classical chaos. The degree of chaos
can be characterized for example by the Lyapunov exponent
λ, defined as the rate of divergence at long times of generic in-
finitesimally separated trajectories, |r(t) − r′(t)| ∼ |r − r′|eλt

as |r − r′| → 0 and then t → ∞. For a = 1.00 and 0.1 �
s � 0.2, the exponent λ takes values 0.69 � λTB � 0.74 (here
TB = mL/h̄k is a typical time scale associated with one bounce
in the billiard). When a = 0.25, 0.55 � λTB � 0.56 in the
same range of s, indicating that the system is somewhat less
chaotic for the smaller value of a. Other measures of the degree
of chaoticity are possible and may be more relevant to the
problem of matrix element fluctuations, as we will argue below.
In particular, we may consider the rate λ∗ of long-time decay of

classical correlations, f (q,p)f [q(t),p(t)] − f (q,p)
2 ∼ e−λ∗t

as t → ∞, where f (q,p) is a typical function defined over
the classical phase space and the average is over an energy
hypersurface.29 Numerically, we find 0.15 � λ∗TB � 0.20 for
a = 1 and 0.095 � λ∗TB � 0.13 for a = 0.25, for the same
range of bump sizes s as above, again indicating a less rapid
approach to ergodicity in the a = 0.25 geometry.

An important consideration in the investigation of dy-
namical systems, as opposed to random-wave models, is
the presence of boundary conditions. Boundary conditions
lead to Friedel oscillations in the average wave-function
intensity at distances O(1/k) from a billiard boundary. The
effect of such oscillations has recently been considered in
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Refs. 25. The choice of boundary conditions, e.g., Neumann
or Dirichlet, will also be seen to have significant effects on
matrix element fluctuations, particularly on the fluctuations of
one-body matrix elements.

Numerical wave functions for several values of the billiard
parameters a, s and in various energy ranges have been
calculated using a variation of the plane-wave method.30

At each wave number k, a basis consisting of plane waves
supplemented by a set of Y0 Bessel functions centered a
fraction of a wavelength outside the boundary is used; the
size of the basis scales linearly with k. Singular value
decomposition finds at each k the linear combination that
minimizes the integrated squared deviation along the boundary
from the selected boundary condition (Dirichlet or Neumann).
Finally, minima of this deviation as a function of k indicate
the correct eigenvalues of the system. Tests of the method
include stability with respect to changes in the basis size and
comparison of the resulting density of states with the Weyl
formula.

Statistics are collected by averaging over an energy window.
A straightforward estimate shows that such averaging is
sufficient to give good results for matrix element variances,
i.e., the ratio of signal to statistical noise grows with increasing
kL. For all numerical results that follow, we use energy
windows of constant momentum width �kL = 10, e.g., the
data point kL = 30 uses all wave functions within the window
25 � kL � 35. The Weyl formula for the density of states
in 2D implies that the number of wave functions in such a
window grows linearly with kL.

III. TWO-BODY MATRIX ELEMENTS

A. Fluctuation of diagonal matrix elements vαβ

We first study the variance of the diagonal two-body
interaction-matrix elements vαβ ≡ vαβ;αβ , associated with a
pair of electrons in distinct orbitals α 
= β interacting via the
screened Coulomb force. Since the screening length of the
Coulomb interaction in large 2D quantum dots is much smaller
than the dot size, the interaction may be modeled as a contact
interaction v(r,r′) = �V δ(r − r′), where V = L2 is the dot’s
area, and the single-particle mean level spacing � serves to
set the energy scale.31,32 We then have

vαβ = �V

∫
V

dr|ψα(r)|2|ψβ(r)|2, (2)

where the single-electron wave functions ψ obey the usual
normalization condition

∫
V

dr|ψ(r)|2 = 1. To leading order
in 1/gT ∼ 1/kL, the variance is then given by22,24

δv2
αβ = �2V 2

∫
V

∫
V

dr dr′ C2(r,r′) + O

(
�2

(kL)3

)
, (3)

where

C(r,r′) = |ψ(r)|2|ψ(r′)|2 − |ψ(r)|2|ψ(r′)|2 (4)

is the intensity correlator of a single-electron wave function
at points r and r′. Assuming C(r,r′) is described by the
normalized random-wave model (i.e., the single-electron

wave functions are normalized as above with no boundary
conditions), one obtains

δv2
αβ = �2 3

π

(
2

β

)2 ln kL + bg

(kL)2
+ O

(
�2

(kL)3

)
, (5)

where β = 1, 2 corresponds to the presence or absence of
time-reversal invariance (i.e., the absence or presence of
an external magnetic field), while bg is a dimensionless
coefficient that depends weakly on the dot geometry.24 For a
general dot shape, bg is obtained by evaluating numerically
the integral in Eq. (3), using the normalized random-wave
intensity correlator C(r,r′) = J 2

0 (k|r − r′|) − 1
V

∫
V

dra J 2
0

(k|r − ra|) − 1
V

∫
V

dra J 2
0 (k|ra − r′|) + 1

V 2

∫
V

∫
V

dra drb J 2
0

(k|ra − rb|).24 For geometries considered in the present paper,
bg ranges between −0.07 and −0.10, and its variation is of
negligible practical importance.

We now evaluate the variance of vαβ
vs kL using “exact”

(numerically evaluated) real wave functions in actual chaotic
billiards. Typical results are shown in Fig. 2, where we note the
large enhancement of the billiard results over the random-wave
model (dotted line). To understand this enhancement, we
compare the exact numerical results for δv2

αβ with the first
term on the right-hand side of Eq. (3), in which C(r,r′)
is taken to be the single-wave-function correlator Cbill(r,r′)
calculated numerically for the appropriate billiard system.
The discrepancy is immediately reduced to a ∼5%–10% level,
which is comparable to the O[(kL)−3] higher-order correction
expected and observed in the random-wave model. Thus, the
large enhancement of vαβ fluctuations over the random-wave
prediction is not due to higher-order terms in Eq. (3), but
instead can be traced directly to a dynamical enhancement
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FIG. 2. The variance of vαβ vs kL (on a log-linear scale)
for modified quarter-stadium billiards with Neumann boundary
conditions. The solid line is for a = 0.25, while the dashed line is for
a = 1.00. In both cases, the results are averaged over two values of
the bump size: s = 0.1 and 0.2. Dotted line: Analytic random-wave
prediction, Eq. (5), with bg = −0.10. Inset: The numerical result for
a = 0.25 with the leading logarithmic term of Eq. (5) subtracted (solid
line) appears to fall off as (kL)−1.15 (dashed line). The analytically
expected subleading behavior (kL)−2 is indicated by a dotted line for
comparison.
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in the intensity correlator Cbill(r,r′) over the random-wave
correlator.

We next estimate the dynamical enhancement of the
intensity correlator (as compared with a random-wave model)
in a semiclassical approach. The random-wave correlator
Crw(r,r′) may be interpreted semiclassically as arising from
straight-line free propagation21 indicated by the dashed line
in Fig. 1. As discussed by Hortikar and Srednicki33 and more
recently by Urbina and Richter,34 additional contributions to
the correlator can be associated with trajectories that bounce
off the boundary n times on their way from r to r′, such
as the one indicated by a dotted line in Fig. 1. To find
these contributions, we start from the dynamical correlator
for wave-function amplitudes, which may be written as26

ψ∗(r)ψ(r′) = G
∗
(r,r′,E) − G(r′,r,E)

2πiρ(E)
. (6)

Here G is the retarded Green’s function G(r,r′,E) =∑
α

ψ∗
α (r)ψα(r′)

E−Eα+iε
smoothed on an energy scale much larger than

the level spacing � and much smaller than the Thouless energy
kL�, and ρ(E) is the density of states ρ(E) = ∑

α δ(E − Eα),
smoothed on the same energy scale. Using Eqs. (4) and (6),
the dynamical intensity correlator is given by

Cbill(r,r′) = 2

β
|G(r′,r,E) − G

∗
(r,r′,E)|2/4π2ρ2(E). (7)

Semiclassically, i.e., to leading order in 1/kL, the smooth
density of states is given by the Weyl formula in 2D,

ρ(E) = mL2/2πh̄2, (8)

while the Green’s function to leading order in 1/kL is given
by the Gutzwiller formula35

G(r,r′,E) = 1

ih̄(2πih̄)1/2

∑
j

|Dj |1/2eiSj /h̄−iμj π/2. (9)

The sum in (9) is over classical trajectories j connecting
r to r′ at energy E, Sj is the action along the trajectory
j , μj is the corresponding Maslov index, and Dj is a
classical focusing factor that scales as m2/pLj (where p is
the classical momentum and Lj is the trajectory length). For
the straight-line trajectory, |Dj | = m2/p|r − r′|. Inserting the
semiclassical expressions (8) and (9) into Eq. (6), we obtain

ψ∗(r)ψ(r′) = 1

V
[J0(k|r − r′|) + h(r,r′)(kL)−1/2], (10)

where the Bessel function arises from the straight-line path,
and h(r,r′) is a sum over all other trajectories:

h(r,r′) =
′∑
j

hj (r,r′)

=
′∑
j

∣∣∣∣2pLDj

πm2

∣∣∣∣
1
2

cos

(
Sj

h̄
− (2μj + 1)π

4

)
. (11)

For typical point pairs (r,r′) separated by a distance of order L,
the function h(r,r′) is order unity in kL, and the contributions
to the correlator from the straight-line path and from other
paths are both O[(kL)−1/2]. For pairs (r,r′) separated by
a bouncing path of length Lj/L � ε � 1, h(r,r′) ∼ ε−1/2.

However, the fraction of such pairs is O(ε3) and their
contribution to the variance and other moments of matrix
element distributions is negligible.

The intensity correlator in the semiclassical approximation
becomes

Csc(r,r′) = 1

V 2

2

β

[
J 2

0 (k|r − r′|) + h2(r,r′)(kL)−1

+ 2J0(k|r − r′|)h(r,r′)(kL)−1/2
]
, (12)

where the first (random-wave) term is associated with the
straight-line path, and the remaining terms constitute semi-
classical corrections.

Similarly to the random-wave correlator,24,27,36 Csc(r,r′)
must be corrected to take into account individual wave-
function normalization. [Since the numerator and denominator
in (6) are both evaluated in a large-kL approximation, the
resulting intensity correlator Csc(r,r′) in general violates
wave-function normalization at O(1/kL).] In analogy with
Refs. 24 and 36, we have, to leading order in 1/kL,

C̃sc(r,r′) = Csc(r,r′) + 1

V 2

∫
V

∫
V

dra drb Csc(ra,rb)

− 1

V

∫
V

dra Csc(r,ra) − 1

V

∫
V

dra Csc(ra,r′).

(13)

Substituting C̃sc for C in Eq. (3), we find

δv2
αβ = �2 3

π

(
2

β

)2 (ln kL + bg) + bsc

(kL)2
+ O

(
�2

(kL)3

)
, (14)

where bsc is a classical constant that in practice must be deter-
mined numerically by performing the integral in Eq. (3). As
noted above, the random-wave and semiclassical contributions
to Csc(r,r′) are of the same order except for |r − r′| � L;
it is these short-distance pairs that result in a logarithmic
enhancement of the random-wave term.

We may easily estimate the dependence of bsc on the degree
of chaoticity of the dynamical system by invoking a diagonal
approximation, in which the intensity correlator Csc(r,r′) of
Eq. (12) is averaged over classically small regions surrounding
r and r′. Noting that Eq. (11) gives h(r,r′) as a sum of
oscillatory terms with quasirandom phases, such averaging
leads to

Cdg
sc (r,r′) = 1

V 2

2

β

[
J 2

0 (k|r − r′|) + 1

kL

′∑
j

h2
j (r,r′)

]
. (15)

We note from Eq. (11) that after averaging over wavelength-
scale oscillations, h2

j (r,r′)/L = pDj/πm2, which is pro-
portional to the classical probability of traveling from a
neighborhood of r to a neighborhood of r′ via path j .33,35

Thus,
∑′

j h2
j (r,r′) in Eq. (15) corresponds to the total classical

probability of traveling from a neighborhood of r to a
neighborhood of r′ via paths j other than the straight-line path.
Naively, the average semiclassical correction to the intensity
correlator appears to increase as we include longer trajectories.
However, let us organize the trajectories by number of bounces
n or by time t ∼ nTB , where TB is a typical time for
one bounce in the billiard. Trajectories at times t that are
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significantly longer than the classical correlation decay time
λ−1

∗ contribute only a constant, independent of r and r′, to
C

dg
sc (r,r′). This is because a classical cloud of trajectories

centered near r becomes approximately equidistributed over
the entire billiard when eλ∗t � 1, for any initial point r. Such
position-independent contributions to C

dg
sc (r,r′) get subtracted

off in the normalization procedure (13). Thus, the typical size
of Csc(r,r′) is determined by trajectories j having no more
than nmax ≈ (λ∗TB)−1 bounces.

Furthermore, as a function of t , the number of classical
trajectories typically grows as eλt , while the focusing factor
for each trajectory j falls off as |Dj | ∼ e−λt , where λ is
the Lyapunov exponent defined earlier. Thus, all n-bounce
trajectories combine to form a contribution to Eq. (15) whose
order is roughly n independent for n < nmax. Summing over n

up to nmax, where nmax is large, we find

Cdg
sc (r,r′) = 1

V 2

2

β

[
J 2

0 (k|r − r′|) + O

(
nmax

kL

)]
. (16)

Going beyond the diagonal approximation is necessary to
evaluate properly the integral in Eq. (3), but the scaling is
unaffected [since the diagonal contribution

∑′
j h2

j consists of
O(eλt ) positive terms, whereas the off-diagonal contribution∑′

i 
=j hihj consists of O(e2λt ) entering with random signs].
Comparing Eqs. (3), (14), and (16), we obtain an estimate
for the coefficient bsc in Eq. (14) describing the semiclassical
correction to the random-wave model,

bsc ∼ n2
max ∼ (λ∗TB)−2. (17)

This estimate confirms our intuition that semiclassical correc-
tions to the random-wave approximation become increasingly
important as we consider billiards with a very long ergodic
time λ−1

∗ .
Alternatively, the scaling (17) may be obtained by noting

that when classical correlations persist on a time scale λ−1
∗

that is much longer than the one-bounce time TB , then the
effective dimensionless Thouless conductance, which scales as
the ratio of the Heisenberg time to the ergodic time, is reduced
to gT ∼ (TBkL)/λ−1

∗ ∼ (λ∗TB)kL. Now a typical chaotic wave
function ψα(r) may be written as a superposition of O(gT )
nonergodic basis states ηi(r). Since the correlator η∗

i (r)ηi(r′)
for each nonergodic basis state ηi is of order V −1, we easily
see that ψ∗

α (r)ψα(r′) takes typical values of order V −1g
−1/2
T .

The wave-function intensity correlator Csc(r,r′) scales as the
square of the amplitude correlator, or as V −2g−1

T for typical
pairs (r,r′), yielding a lower bound

δv2
αβ ∼ �2

g2
T

∼ �2

(λ∗TBkL)2
(18)

for the integral (3), consistent with Eqs. (14) and (17).
For “generic” chaotic systems, the correlation decay time

λ−1
∗ is of the same order as the one-bounce time TB , and the

above asymptotic scaling arguments for λ∗TB � 1 are not
directly applicable. However, the first few bounces may be
summed up numerically to obtain the semiclassical coefficient
bsc. This coefficient may in practice be quite large even for
generic chaotic systems (e.g., the modified stadium billiard)
and grows as the system becomes less chaotic (and the time

scale associated with nonuniversal behavior increases), in
qualitative agreement with Eq. (17).

Qualitatively, the above discussion is consistent with our
billiard results shown in Fig. 2, as fluctuations are observed
to be consistently larger for the less chaotic a = 0.25 billiard,
as compared with the a = 1.00 billiard. We note that both
billiards are “generic,” in the sense that they are not fine tuned
to obtain an anomalously long time scale λ−1

∗ .
However, a close look at the data suggests that the numerical

results cannot be explained fully by semiclassical arguments,
no matter how many bounces are included in the analysis.
The semiclassical correction to the variance in Eq. (14) is
manifestly O[1/(kL)2]. However, the inset in Fig. 2 clearly
shows that the dynamical contribution to the variance with kL

is not consistent with Eq. (14) but instead appears to follow a
much slower power law ∼1/(kL)−1.15. This may be seen also
in Fig. 3 (solid line), where the enhancement over the random-
wave prediction grows instead of diminishing with increasing
kL. We also note in Fig. 3 the increase from kL = 70 to 140
in the enhancement of the double-diagonal matrix element
variance δv2

αα (dashed line), discussed below in Sec. III B.
While this might be partly due to statistical noise, the data
show clearly that wave-function fluctuations are not beginning
to approach random-wave expectations even at kL = 140.

This anomalous behavior results from a combination of
two related factors: the dynamical enhancement, discussed
above, of the bsc coefficient due to a finite correlation time
scale λ−1

∗ in an actual dynamical system, and the consequent
saturation of the 1/(kL)2 behavior at moderate (�100) values
of kL. As the classical system becomes less unstable and the
correlation time λ−1

∗ increases, bsc also increases in accordance
with Eq. (17), leading to greatly enhanced matrix element
variance at very large values of kL. Because the variance is
bounded above independent of kL, the (kL)−2 growth in the
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FIG. 3. The enhancement of the variance of vαβ (solid line), vαα

(dashed line), and vαβγ δ (dotted line) over the corresponding random-
wave predictions is shown for a = 0.25 billiards, at kL = 30, 40,
50, 60, 70, and 140. In each case, the data is averaged over bump
sizes s = 0.1 and 0.2. See Sec. III B below for a discussion of vαα

and vαβγ δ . For vαβ , the random-wave prediction is given by Eq. (5)
with bg = −0.10, and analogous expressions for vαα and vαβγ δ may
be found in Ref. 24, with corresponding constants b′

g = −2.25 and
b′′

g = 0.90, respectively.
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variance necessarily breaks down for smaller values of kL.
This small-kL saturation sets in at ever larger values of kL as
the system becomes less unstable and λ−1

∗ becomes larger.
Alternatively, one may note that the natural expansion

parameter for interaction-matrix element fluctuations in a
dynamical system is not (kL)−1 but rather the inverse Thou-
less conductance g−1

T ∼ (λ∗TBkL)−1, and the semiclassical
contribution with prefactor bsc in Eq. (14) is the leading
O(g−2

T ) effect in such an expansion. Terms of third and
higher order in g−1

T , although formally subleading and not
included in a semiclassical calculation, become quantitatively
as large as the leading O(g−2

T ) term when gT falls below some
characteristic value. This is a signature of the breakdown
of the semiclassical expansion (14) in the calculation of
interaction-matrix element fluctuations. Furthermore, if one
considers chaotic billiards with a long correlation decay time
λ−1

∗ , the importance of formally subleading terms in the
g−1

T expansion, and thus the breakdown of the semiclassical
expansion, will extend to quite large values of kL. These
results suggest that interaction-matrix element statistics are
particularly sensitive to long-range wave-function correlations
that go beyond the semiclassical approximation. We remark
that there is no conflict here with the well-known fact that
semiclassical approximations may work quite well in the
evaluation of other types of statistical quantities, even in the
same billiard systems as the ones being considered here and
in the same kL regime.

The above assertions are explicitly confirmed for a quantum
map model, described in detail in the Appendix, which has
scaling behavior analogous to that of a 2D billiard, with the
number of states N = 2π/h̄ playing the role of semiclassical
parameter kL = pL/h̄ in the billiard.37,38 As in the billiard,
a free parameter in the definition of the map allows for
control of the classical correlation decay time λ−1

∗ . A key
difference between the 2D billiard and the map model is
that the map lacks a logarithmic random wave contribution
to the variance. We see in Fig. 4 that the expected N−2

behavior of the variance is observed at sufficiently large N , for
all three families of quantum maps considered. Furthermore,
the prefactor multiplying N−2 in each case agrees with that
obtained from a semiclassical calculation, and as expected this
prefactor grows with increasing classical correlation time λ−1

∗
(corresponding to a decrease in the chaoticity of the system).
We also see in Fig. 4 that even for a “typical” chaotic system
(i.e., λ∗TB ∼ 1), strong deviations from the 1/N2 law appear
already below N ≈ 80. Such deviations extend to even larger
N for chaotic systems with slower classical correlation decay.
Based on results shown in Fig. 4 and the scaling N ∼ kL, it
is reasonably safe to conclude that the large-N or large-kL

expansion will be valid for kL ∼ 1000, corresponding to
∼105 electrons in the dot. At the same time we see that this
expansion, though theoretically appealing and asymptotically
correct, is problematic in describing the quantitative behavior
of interaction-matrix element fluctuations for real chaotic
systems in the physically interesting energy range kL < 100.

The above numerical calculations were all performed in the
presence of time-reversal symmetry (β = 1). From Eq. (14) we
see that when time-reversal symmetry is broken (β = 2), both
the random-wave contribution to the matrix element variance

10-6
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10-1

10 100 1000

S

N

FIG. 4. The two-body matrix element variance S for a quantum
map, Eq. (A6) in the Appendix, as a function of the Hilbert space
dimension N . From top to bottom, the three solid lines represent data
for dominant orbit stability exponent λ0 = 0.25, 0.50, 1.00. The three
dashed lines indicate the asymptotic 1/N2 behavior for each case in
the semiclassical regime of large N , where the theoretical prefactors
are obtained from the classical dynamics.

(the term proportional to ln kL + bg) and the semiclassical
contribution (the term proportional to bsc) are suppressed by
the same factor of 4. Thus, the dynamical enhancement factor
for a given dot geometry is necessarily β independent in the
semiclassical limit kL � 1. However, the saturation effect,
which tends to suppress the enhancement as kL is reduced, will
be less important when β = 2, since the variance is smaller
in this case. Thus, at any finite value of kL, the dynamical
enhancement in the variance over the random-wave model will
be greater when time-reversal symmetry is broken, and one
may expect enhancements somewhat larger than those shown
in Fig. 3. This result has been confirmed in the quantum map
model.

B. Fluctuation of vαα and vαβγ δ

We have similarly studied the variance δv2
αα of double-

diagonal interaction-matrix elements and the variance δv2
αβγ δ

of off-diagonal interaction-matrix elements for actual chaotic
billiards. Once again, the random-wave predictions24 are
used as the baseline for comparison. In Fig. 3, we show
the enhancement factor for these matrix element variances,
together with the corresponding data for δv2

αβ discussed
previously.

In the range 30 � kL � 70 most relevant to experiment,
we observe an enhancement in δv2

αα over the random-wave

prediction that is similar to the enhancement in δv2
αβ in the

same energy range. In both cases, the enhancement factor
continues to grow, instead of approaching unity, at increasing
kL. This latter fact strongly suggests that even at kL = 140,
we are still far from the asymptotic regime of large gT , where
matrix element fluctuations would be adequately described
by a random-wave picture supplemented by semiclassical
corrections. The enhancement at large kL is particularly
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dramatic in the case of δv2
αα fluctuations. On the other

hand, the variance of off-diagonal matrix elements vαβγ δ is
enhanced over the random-wave prediction by at most 10%
over the entire energy range considered. This is consistent
with the reasonable expectation that dynamical effects lead to
particularly strong deviations from random-wave behavior in a
modest fraction of the total set of single-particle states, such as
those associated with particularly strong scarring on unstable
periodic orbits.39 Such deviations lead to a significant tail in the
vαα distribution, but have a minimal effect on the distribution
of off-diagonal matrix elements, since it is unlikely for all four
wave functions ψα , ψβ ψγ , and ψδ to be strongly scarred or
antiscarred on the same orbit.

Indeed, inspection of wave functions ψα associated with
anomalously large double-diagonal matrix elements vαα shows
that these wave functions have disproportionately high in-
tensity on average near the dominant horizontal bounce
periodic orbit, which follows the lower edge of the billiard
in Fig. 1. We note, however, that asymptotic scar theory
in the kL → ∞ limit predicts O[1/(kL)] corrections to the
intensity correlation function in position space and only in
a region of size O[1/(kL)1/2] surrounding a periodic orbit.
Comparing with the integral expression (3) for the variance,
we see that periodic orbits asymptotically contribute to the
variance only at order 1/(kL)3, compared to the O[1/(kL)2]
semiclassical effect associated with generic (nonperiodic)
classical trajectories (14). Thus, the relative importance of
periodic orbit effects on matrix element fluctuations is a
finite-kL (or finite-h̄) phenomenon, which cannot explain the
quantitative scaling behavior of the variance with kL, and
which is expected to become irrelevant in the asymptotic
kL → ∞ limit.

C. Matrix element covariance δvαβδvαγ

The normalized random-wave model has been shown to
produce a covariance δvαβδvαγ that is always negative, has
size ∼ �2 ln kL/(kL)3 for small ω = Eβ − Eγ , and falls off
as (ω/ET )−2 ∼ (δkL)−2 for ω � ET , where ET is the ballistic
Thouless energy.24 However, in a diffusive dot, the same matrix
element covariance is found to be a positive constant ∝�2/g3

T

(where gT is the diffusive Thouless conductance) for energy
separations ω much smaller than the diffusive Thouless energy
Ec. This diffusive covariance falls off for ω � Ec but remains
positive as long as ω � h̄/τ , where τ is the mean free time.22

An interesting issue is then the sign of the covariance in an
actual chaotic system.

First we note the sum rule,24∑
β 
=γ

δvαβδvαγ = −
∑

β

(δvαβ)2. (19)

This sum rule is quite general and holds for either a ballistic or
a diffusive dot as long as a completeness relation is satisfied
within an energy window in which the states β and γ reside.
The average covariance must therefore be negative when
averaged over all states β and γ within such an energy window.
The size of the energy window in each case must be at least of
size h̄ multiplied by the inverse time scale of first recurrences.
In a ballistic system this implies an energy window of size
at least E0 = h̄/TB , where TB is the one-bounce time. In a

diffusive system, the completeness relation requires energy
scales larger than E0 = h̄/τ , where τ is the mean free time,
and thus the positive sign of the diffusive covariance at energy
separations ω � h̄/τ does not contradict the sum rule (19).

In actual chaotic billiards, it is in principle possible to
find positive covariance at energy scales ω � E0, as long
as the covariance is sufficiently negative for ω ∼ E0 to
produce a negative average covariance over the full energy
window that is consistent with the sum rule (19). Such
positive covariance can result from scars since ψβ and ψγ will
typically be scarred or antiscarred along the same orbits when
ω = Eβ − Eγ is small. The scar contribution to the covariance
for small ω is O[1/(kL)3] (i.e., of the same order as the
scar contribution to the variance) and is formally subleading
compared with the negative O[ln kL/(kL)3] random-wave
contribution. However, within the range of kL values relevant
to experiments, the scar contribution can dominate and lead
to a positive covariance for nearby single-particle wave
functions.

Unfortunately, it is not practical to calculate the matrix
element covariance in a real billiard, since the number of
wave functions that can be averaged over is not sufficient
to obtain a signal larger than the statistical noise. We instead
obtain good statistics for the covariance in a ballistic discrete
map model, introduced previously in the discussion of the
variance, and described in detail in the Appendix. In such
discrete maps, the matrix element variance or covariance
contains no logarithmic terms. For generic chaotic ballistic
systems (i.e., Lyapunov time of the same order as the one-step
time), we find that the covariance is O(N−3) ∼ O[(kL)−3]
and positive for ω � E0 = h̄/TB , but becomes negative at
ω ∼ E0, in contrast with the random-wave prediction of an
always negative covariance. A typical example for N = 128
is shown in Fig. 5. Here discreteness of time implies energy
periodicity with period 2πE0 = 2πh̄/TB , and thus a maximum
energy separation ω = πE0. In Fig. 5, the dotted line indicates
the negative average covariance over the entire energy window
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FIG. 5. The covariance δvαβδvαγ is computed as a function of
energy separation ω = Eβ − Eγ for an ensemble of ballistic discrete-
time maps, described in the Appendix, Eqs. (A9) and (A10). Here
E0 = h̄/TB , where TB is the one-bounce time. The system size N

is 128, and A = 0. The dotted line indicates the negative average
covariance implied by the sum rule (19).
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FIG. 6. The covariance δvαβδvαγ is computed as a function
of energy separation ω = Eβ − Eγ for an ensemble of diffusive
discrete-time maps on a 32 × 32 lattice (Ref. 40). The solid curve
corresponds to Thouless conductance gT = 12 (Ec/E0 = 0.074) and
the dashed curve corresponds to gT = 24 (Ec/E0 = 0.147). Here
E0 = h̄/τ , where τ is the mean free time. The value ω = Ec, below
which the covariance is expected to approach a constant positive
value, is indicated by a circle in each case. The dotted line indicates
the negative average covariance implied by the sum rule (19).

of size 2πE0, as required by the sum rule (19). We note
that due to partial cancellation between positive covariance
at small energy separations and negative covariance at larger
separations, the average covariance is noticeably smaller than
the “typical” value, although both scale as O(N−3).

It is interesting to compare with the covariance in an en-
semble of two-dimensional diffusive discrete maps.40 Typical
data is shown in Fig. 6 for an ensemble of diffusive maps on
a 32 × 32 lattice, with Thouless conductance gT = 12 (solid
curve) and gT = 24 (dashed curve). The theory predicts a
variance scaling as 1/g2

T and a covariance scaling as 1/g3
T , so

δvαβδvαγ /δv2
αβ should scale as 1/gT in the gT → ∞ limit.

Just as in the ballistic case, the covariance is positive for
small separations ω and becomes negative when ω ∼ E0. The
average covariance over a maximal energy window of size
2πE0 is again negative, as predicted by the sum rule (19) and
indicated by a dotted line.

IV. ONE-BODY MATRIX ELEMENTS

When an electron is added to the finite dot, charge
accumulates on the surface and its effect can be described
by a one-body potential energy V(r), which diverges at the
boundary of the dot. For comparison with the random-wave
predictions, we use the schematic approximation

V(�r) ∼
(

min
�R∈C

|�r − �R|
)− 1

2

, (20)

which was shown in Ref. 24 to correctly capture the effect of
the one-body potential energy in the random wave model. Here
C is the boundary of the billiard, and the schematic potential
(20) is normalized to have the same average as the true one-
body potential.24

The diagonal matrix elements of V(r) are given by vα ≡
Vαα = ∫

V
dr|ψα(r)|2V(r), and the variance of these one-body

matrix elements may be computed as

δv2
α =

∫
V

∫
V

dr dr′ V(r)C(r,r′)V(r′). (21)

Dynamical enhancement of one-body matrix element fluctu-
ations may be studied similarly to the analysis of two-body
matrix element fluctuations presented in Sec. III. The leading
semiclassical contribution to the variance is obtained by
substituting the normalized semiclassical intensity correlator
C

dg
sc [see Eq. (16)] for C(r,r′) in Eq. (21). We immediately

obtain

δv2
α = cg + csc

β

�2

kL
+ O

(
�2

(kL)2

)
, (22)

where cg is a geometry-dependent dimensionless coefficient
arising already in the random-wave model,24 while csc ∼
(λ∗TB)−1 is associated with the classical dynamics. We note
that the asymptotic power-law behavior of the variance is
unchanged from the random wave model, and the variance
is enhanced only by a kL-independent constant.

Numerical data for δv2
α in modified quarter-stadium bil-

liards is presented in Fig. 7, and compared with random-wave
results. The ratio of the actual variance to the random-wave
prediction is shown in Fig. 8. Clearly this ratio is not constant
but rather grows with kL (as was also the case with the
vαβ variance). Assuming that semiclassical expressions are
applicable in the asymptotic large-kL regime, the results
of Fig. 8 indicate once again that at kL ≈ 70 this regime
is still far from being reached. The same can be observed
by comparing data for Neumann and Dirichlet boundary
conditions in Fig. 7. Since Dirichlet wave functions decay
to zero at distances less than 1/k from a boundary, where the
surface potential is especially strong, we expect larger matrix
element fluctuations for the Neumann boundary condition
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FIG. 7. The variance of the one-body diagonal matrix element
vα for modified quarter-stadium billiards (a = 0.25; averaged over
s = 0.1 and 0.2) is plotted as a function of semiclassical parameter
kL. Solid line: Neumann boundary conditions. Dashed line: Dirichlet
boundary conditions on curved boundaries, and Neumann bound-
ary conditions elsewhere. Dotted line: Analytic prediction for the
random-wave model [given by Eq. (22), including only the cg term].
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FIG. 8. Enhancement factor of the vα variance over the random-
wave prediction is plotted for modified quarter-stadium billiards with
Neumann boundary conditions, averaged over s = 0.1 and 0.2. Solid
line: a = 0.25; dashed line: a = 1.00.

data, qualitatively consistent with the results in the figure.
However, the fraction of points r so close to the boundary is
O(1/kL), while the surface potential V(r) is only enhanced by
O[(kL)1/2] there, so the boundary condition effect is formally
subleading. Nevertheless, we clearly see from the figure that
in the energy range of experimental interest, the boundary
condition effect is of size comparable both to the dynamical
enhancement and to the baseline random-wave prediction for
the variance.

V. MATRIX ELEMENT DISTRIBUTIONS

Just as was done previously for the random-wave model,24

we can go beyond the variance to investigate higher moments
of the matrix element distribution for actual chaotic systems.
A typical distribution for diagonal two-body matrix elements
vαβ in a modified quarter-stadium billiard with a = 0.25 and
s = 0.1 is shown in Fig. 9. Since the approach to Gaussian
behavior is already very slow in the case of random waves, it is
not surprising to find even stronger deviations from a Gaussian
shape for matrix elements in real chaotic systems at the same
energies. Thus, for modified quarter-stadium billiards with
a = 1, the skewness γ1 of the vαβ distribution grows from 1.95
at kL = 70 to 2.72 at kL = 140, while the skewness for the
same geometry in the random-wave model drops slightly from
1.21 to 1.09. Similarly, the excess kurtosis γ2 increases from
8.3 at kL = 70 to 20.9 at kL = 140, while dropping from 3.7
to 3.3 in the random-wave model. Similar behavior is obtained
for other matrix elements. Clearly, the distribution tails are
very long, and the assumption of Gaussian matrix element
distributions is even less justified for real chaotic systems than
it was in the random-wave model.

VI. BEYOND THE CHAOTIC REGIME

In this section we consider fluctuations of matrix elements
in systems that are not fully chaotic. Here no universal behavior
is expected but we shall see that in such systems the variance
can be enhanced much more than in fully chaotic systems.32
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FIG. 9. The distribution of diagonal interaction-matrix elements
vαβ is shown for real random waves in a disk (Ref. 24) (dashed
curve) and for actual eigenstates in a modified quarter-stadium billiard
geometry with Neumann boundary conditions (solid curve) at kL =
70. A Gaussian distribution with the same mean and variance as the
random-wave distribution is shown as a dotted curve for comparison.

We use the modified quarter-stadium billiard [see Eq. (1)] with
s = 0 or a < 0. The choice s = 0 corresponds to the original
Bunimovich stadium, whose quantum fluctuation properties
are dominated by the marginally stable bouncing-ball modes,
while a < 0 corresponds to a lemon billiard, which has a
classically mixed, or soft chaotic, phase space.

A. Two-body matrix elements

1. Fluctuation of diagonal matrix elements vαβ

In contrast with the ln kL/(kL)2 falloff in the vαβ variance
predicted for fully chaotic dynamics by Eq. (14), in the case of
regular or mixed dynamics we expect kL-independent matrix
element fluctuations of order unity. To see this explicitly,
suppose that the classical phase space consists of one regular
and one chaotic region, with each wave function uniformly
distributed over one of the two regions. Projecting these
regions onto position space, let f (r) be the fraction of the
energy hypersurface at r that is part of the regular region, i.e.,
the fraction of momentum directions at r that correspond to
stable trajectories. Then the average regular wave function
has intensity |ψreg(r)|2 = V −1f (r)/f at position r, while
the average chaotic wave function has intensity |ψch(r)|2 =
V −1(1 − f (r))/(1 − f ). Here f = 1

V

∫
V

dra f (ra) is the total
fraction of regular points in classical phase space, or equiv-
alently the fraction of regular quantum eigenstates in the
large kL limit. Then, starting with the expression (2) for the
two-body matrix element we find that on average

vαβ = �V

∫
V

dr
1

V 2

f 2(r)

f
2 = �

f 2

f
2 , (23)

whenever α and β are both regular states, to be compared
with the overall average vαβ = � for all states α, β. Clearly,
vαβ is enhanced by a factor of order unity, since the two
regular states tend to be concentrated in the same region of
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phase space. Similarly, by replacing f with 1 − f , we obtain
enhanced vαβ = �(f 2 − 2f + 1)/(1 − f )2 when both α and
β are chaotic, and finally, below average interaction-matrix

elements vαβ = �(f 2 − f )/(f
2 − f ) are typically obtained

when one single-particle state is regular and the other chaotic.
Combining these results, we obtain the lower bound

δv2
αβ � �2

(
f 2 − f

2

f − f
2

)2

, (24)

where the quantity in parentheses is a classical system property
independent of kL. Unless the local regular fraction f (r) is
a position-independent constant, this quantity is nonzero, and
the standard deviation is necessarily of the order of �, i.e., of
the same order as the average vαβ . We note that Eq. (24) is a
lower bound only, as it assumes that each regular or chaotic
state is uniformly spread over its corresponding phase space
region. Any intensity fluctuations within the set of regular
states or within the set of chaotic states will only add to the
total matrix element variance.

The kL independence of the variance for regular systems
can also be inferred from the following simple argument:
Regular-like quantum behavior is obtained when the ergodic
time λ−1

∗ of a chaotic system becomes of the same order as
the Heisenberg time πkLTB needed to resolve the spectrum.
Then the Thouless conductance gT ∼ kLλ∗TB is of order
unity and Eqs. (14) and (17) obtained originally for chaotic
dynamics imply δv2

αβ ∼ �2. Thus, in both the chaotic and
the regular (or mixed) situations, increased interaction-matrix
element fluctuations can be understood as arising from excess
wave-function localization, beyond what is expected from a
random wave model.

The constant factor in Eq. (24) depends not only on the
regular fraction f in phase space, but equally importantly

on the relative size ∼ f
2
/f 2 of the position-space region in

which the regular states live (i.e., the participation ratio of the
regular states). For example, in the extreme case where all
regular states live in in area Vreg and all chaotic states live in
the complementary area V − Vreg, we have f = f 2 = Vreg/V ,

and δv2
αβ = �2, independent of the size of Vreg.

Equation (24) predicts very large enhancement, scaling
as (kL)2/ ln kL, of the matrix element variance in mixed
dynamical systems, over the random-wave prediction. Large
matrix element fluctuations in the presence of soft chaos have
previously been observed in Ref. 32.

The diagonal matrix element variance δv2
αβ is computed as

a function of kL for two typical mixed phase-space quarter-
lemon billiards and shown by dashed lines in Fig. 10. As
expected, no falloff with kL is observed. In Fig. 11, we see that
enhancement of an order of magnitude or more over random-
wave behavior can easily be obtained for physically interesting
values of kL. The most dramatic enhancement is observed
for the a = −0.25 quarter-lemon billiard, which is closer to
integrability.

Behavior intermediate between hard chaos and mixed
chaotic and/or regular phase space is obtained in the presence
of families of marginally stable classical trajectories, such
as the “bouncing ball” orbits of the stadium billiard. In the
quarter-stadium billiard (s = 0 in Fig. 1), exceptional states
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FIG. 10. The variance of vαβ for a = 0.25, 1.00 quarter-stadium
billiards (upper and lower solid lines); a = −0.25, −0.50 quarter-
lemon billiards (upper and lower dashed lines); random waves (dotted
line). Neumann boundary conditions are used for all four billiards.

associated with such orbits are concentrated in the rectangular
region of the billiard and constitute a fraction ∼1/(kL)1/2 of
the total set of states.41 When α and β are both bouncing-ball
states, δvαβ = vαβ − vαβ ∼ �, just as would be the case for
regular states concentrated in a finite fraction of the available
coordinate space. These special matrix elements dominate the
variance, leading to

δv2
αβ ∼ �2

kL
, (25)

and implying an enhancement factor ∼kL/ ln kL over the
random-wave prediction. Numerical data for quarter-stadium
billiards is shown by solid lines in Figs. 10 and 11. The stronger
fluctuations are observed in the less chaotic a = 0.25 stadium.
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FIG. 11. Enhancement of the vαβ variance as compared with the
random-wave prediction for a = 0.25, 1.00 quarter-stadium billiards
(solid lines); a = −0.25, −0.50 quarter-lemon billiards (dashed
lines). See Fig. 10.
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2. Fluctuation of vαα and vαβγ δ

A calculation analogous to the one resulting in Eq. (24)
shows that δv2

αα must also be O(�2) and kL independent for a
billiard with mixed phase space. In addition, the average vαα is
enhanced by an O(1) factor from its random-wave value of 3�

(β = 1) or 2� (β = 2). In the stadium billiard, the absence of
a stable phase space region ensures that bouncing-ball states,
with δvαα ∼ � and frequency ∼1/(kL)1/2 should dominate
the double-diagonal matrix element variance:

δv2
αα ∼ �2

(kL)1/2
. (26)

The billiard results (not shown) are qualitatively consistent
with the above predictions, although statistical noise prevents
us from extracting a meaningful power-law behavior.

In contrast, fluctuations in the off-diagonal matrix elements
vαβγ δ are relatively little affected by bouncing-ball orbits or
even regular phase space regions. This is due to the fact that
these elements are zero on average, not O(�), and thus an
increase by an O(1) factor of some matrix elements does
not necessarily lead to a large variance. We may consider
an extreme scenario where each eigenstate is located in one of
two disjoint regions of area V/2. Clearly vαβγ δ is nonvanishing
only when all four states are located in the same half of
the billiard. In such a case, the typical v2

αβγ δ is enhanced
by a factor of 8 compared with the random-wave prediction,
ignoring logarithms. Because 1/8 of all matrix elements vαβγ δ

are nonzero, the variance δv2
αβγ δ is nearly unchanged from

the ergodic case. The above argument generalizes trivially to
an arbitrary number of wave-function classes. Numerical data
in quarter-stadium and quarter-lemon billiards (not shown)
confirm that δv2

αβγ δ is nearly independent of the classical
dynamics in the billiard. Higher moments of the δvαβγ δ

distribution are greatly enhanced in systems with mixed phase
space, and the distribution becomes strongly non-Gaussian.

B. One-body matrix elements

In a billiard with mixed classical phase space, we expect
the one-body matrix element vα of the surface charge potential
V to average

∫
V

drV(r)f (r)/
∫
V

dr f (r) = Vf /f for regular
states, where f (r) is the function defined in Sec. VI A 1,
and similarly to average (V − Vf )/(1 − f ) for chaotic states.
We then obtain a lower bound for the variance analogous to
Eq. (24),

δv2
α � (Vf − Vf )2

f − f
2 , (27)

which is O(�2) and independent of kL. Thus, Eq. (27) implies
an enhancement by a factor ∼kL over the variance for fully
chaotic billiards given by Eq. (22). The absence of a falloff in
the variance with increasing kL is consistent with our results
for quarter-lemon billiards (dashed lines) in Fig. 12.

In the quarter-stadium billiard, bouncing-ball states with
δvα ∼ � will once again dominate the variance

δv2
α ∼ �2

(kL)1/2
, (28)

5×10-4

1×10-3

2×10-3

5×10-3

1×10-2

 30  40  50  60  70

(δ
v α

)2

kL

FIG. 12. The variance of vα for a = 0.25, 1.00 quarter-stadium
billiards (solid lines); a = −0.25, −0.50 lemon billiards (dashed
lines); random waves (dotted line). Neumann boundary conditions
are used for all four billiards.

which is a factor ∼(kL)1/2 enhancement over random-wave
behavior. The decay predicted by Eq. (28) is not observed in
the numerical data in the experimentally relevant range 30 �
kL � 70 (solid lines in Fig. 12), suggesting once again that
the energies are not high enough for the asymptotic large-kL

scaling laws to be applicable. We do find that enhancement by
a factor of 5 to 15 of the one-body matrix element variance is
quite possible in the energy range of interest, when the billiard
under consideration exhibits either soft chaos or marginally
stable orbits in the classical dynamics.

VII. SUMMARY AND CONCLUSION

We have studied fluctuations of two-body and one-body
matrix elements in chaotic billiards as a function of a
semiclassical parameter kL, and compared them with the
normalized random wave model predictions. Understanding
the quantitative behavior of these fluctuations is important for
the proper analysis of peak spacing statistics in the Coulomb
blockade regime of weakly coupled chaotic quantum dots.

Dynamical effects, associated with nonrandom short-time
behavior in actual chaotic systems, are formally subleading
for two-body matrix elements, and of the same order as
the random-wave prediction for one-body matrix elements.
In practice, however, we find that these effects can easily
lead to enhancement by a factor of 3 or 4 of the variance
in both one-body and two-body matrix elements for ex-
perimentally relevant values of kL and in reasonable hard
chaotic geometries. Somewhat larger enhancement factors
are expected when time-reversal symmetry is broken by a
magnetic field. The size of these dynamical corrections scales
in each case as a power of λ−1

∗ , a time scale associated with
approach to ergodicity in the associated classical dynamics.
Random-wave behavior is recovered in the limit λ−1

∗ → 0.
In typical geometries, dynamical effects on matrix element
fluctuations cannot be properly computed in a semiclassical
approximation, as higher-order terms are quantitatively of the
same size as the semiclassical expression in the kL range of
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experimental interest. We have used a quantum map model
to investigate the approach to semiclassical scaling at very
large values of kL as well as the saturation of matrix element
fluctuations at moderate to small values of kL.

In the case of the interaction-matrix element covariance
for energy levels that are separated by less than the ballistic
Thouless energy, dynamical effects are not only often larger
than random-wave effects, but are also of opposite sign,
leading to an overall covariance that is positive. This is in
contrast with the random-wave model where the covariance is
always negative. Nevertheless, the sum rule (19) is preserved
due to large negative covariances for more widely separated
states. We have discussed an analogy with similar behavior in
diffusive systems.

Systems with a mixed chaotic-regular phase space or
with families of marginally stable classical orbits show
even stronger enhancement of matrix element fluctuations as
compared with the random-wave model. We discussed the
expected asymptotic scaling with kL of the matrix element
fluctuations in these cases, and found it to be very different
from the scaling found in chaotic systems.

Our results strongly indicate that wave function statistics
in actual chaotic single-particle systems, including dynamical
effects, are needed to make a proper quantitative comparison
between theory (e.g., Hartree-Fock) and experiment. A better
understanding of single-particle wave-function correlations
is then essential for the calculation of observables in an
interacting many-electron system, such as the peak spacing
distribution in the Coulomb blockade regime of a quantum
dot. Furthermore, these correlations need to be understood
beyond the naive leading-order semiclassical approximation,
to allow comparison with experiments, which are gen-
erally performed at moderate values of the semiclassical
parameter kL.
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APPENDIX: QUANTUM MAP MODEL

To understand better the anomalously slow decay of δv2
αβ

and other matrix element fluctuations in realistic chaotic
systems, we may consider a toy model (perturbed cat map42)
that displays very similar behavior and for which it is easy
to collect good statistics at very large values of kL. Define a
classical map on the torus (q,p) ∈ [−π,π ) × [−π,π ) by

qt+1 = qt + K ′(pt ) mod 2π,
(A1)

pt+1 = pt − V ′(qt+1) mod 2π.

The above map may be obtained by stroboscopically viewing
the periodically kicked Hamiltonian system

H (q,p,t) = K(p) +
∞∑

n=−∞
δ(t − n)V (q). (A2)

We choose the kick potential to be a perturbation of an inverted
harmonic oscillator

V (q) = −q2

2
− A cos q − B(4 cos q − cos 2q)

+C(2 sin q − sin 2q), (A3)

while the kinetic term governing free evolution between kicks
is

K(p) = p2

2
+ A cos p + B(4 cos p − cos 2p). (A4)

K(p) is even in p to preserve a time-reversal invariance
(symmetry class β = 1). V (q) and K(p) have been chosen so
that the map has a period-1 orbit at q = p = 0, with stability
exponent

λ0 = cosh−1

[
1 + 1

2 (1 − A)2

]
≈ 1 − A, (A5)

where the approximate form holds for λ0 � 1. Thus, A may be
varied to change the stability of the shortest orbit, whereas the
perturbations B and C, which have no effect on the linearized
behavior around q = p = 0, allow for ensemble averaging
while keeping the monodromy matrix of the central orbit fixed.

This map may be quantized using standard techniques;37

the position basis is discrete with spacing h̄ due to periodicity
in momentum. The Hilbert space dimension, N = 2π/h̄, plays
the role of the semiclassical parameter kL = pL/h̄ in the
billiard system. The double integral of Eq. (3) must be replaced
by a double sum

S = N2
N∑

i,j=1
i 
=j

[|ψi |2|ψj |2 − c]2, (A6)

where c is a constant that ensures

N2
N∑

i,j=1
i 
=j

[|ψi |2|ψj |2 − c] = 0. (A7)

Note that since we are working in one dimension, we must
drop the i = j terms to prevent them from dominating the
sum. Our one-dimensional toy model will not reproduce the
ln kL/(kL)2 behavior that is associated with the short-distance
1/k � |r − r′| � L divergence of the 2D correlator. Instead,
we can think of S as the analog of the 2D integral (3) with the
short-distance part subtracted:

V 2
∫

V

∫
V

dr dr′ C2(r,r′) − 3

π

(
2

β

)2 ln kL

(kL)2
∼ bg

(kL)2
+ · · · .

(A8)

Numerical results for the map are shown in Fig. 4. We
observe the expected S = bmap/N

2 semiclassical behavior for
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large N , and the increase of the prefactor bmap with decreasing
classical stability exponent λ0 (see the discussion in Sec. III A).
Furthermore, we note that even for the “typical” case λ0 = 1,
strong deviations from the simple power-law behavior appear
for N � 50; even larger values of N are necessary to observe
the correct power law for smaller λ0. All the curves saturate at
S ≈ 0.045, leading to the appearance of a slower than 1/N2

decay at moderate N values. Thus, it is not surprising that
a weaker than expected dependence on kL is observed for
moderate kL values in Sec. III A.

As noted in Ref. 24, the interaction-matrix element covari-
ance is suppressed relative to the variance by a factor ∼kL

or N , and the covariance is not a self-averaging quantity. To
improve the poor ratio of signal to statistical noise, we may

work with a larger ensemble defined by

V (q) = −q2

2
− A cos q + Vrnd(q)�(|q| − q0) (A9)

and

K(p) = p2

2
+ A cos p + Krnd(p)�(|q| − p0), (A10)

where Vrnd(q) and Krnd(p) are random functions, Krnd(p) is
even to preserve time-reversal symmetry, and � is the step
function: �(x) = 1 for x � 0 and 0 otherwise. The local
dynamics near the periodic orbit at q = p = 0 is unaffected
by the ensemble of perturbations. In Fig. 5, we use A = 0 and
q0 = p0 = π/2, but very similar behavior is obtained for other
values of the parameters.
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