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Kondo effects in a triangular triple quantum dot with lower symmetries
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We study the low-energy properties and characteristic Kondo energy scale of a triangular triple quantum
dot, connected to two non-interacting leads, in a wide parameter range of a gate voltage and distortions which
lower the symmetry of an equilateral structure, using the numerical renormalization group approach. For large
Coulomb interactions, the ground states with different characters can be classified according to the plateaus of
� ≡ (δe − δo)(2/π ), where δe and δo are the phase shifts for the even and odd partial waves. At these plateaus of
�, both � and the occupation number Ntot ≡ (δe + δo)(2/π ) take values close to integers, and thus the ground
states can be characterized by these two integers. The Kondo effect with a local moment with total spin S = 1
due to a Nagaoka mechanism appears on the plateau, which can be identified by � � 2.0 and Ntot � 4.0. For
large distortions, however, the high-spin moment disappears through a singlet-triplet transition occurring within
the four-electron region. It happens at a crossover to the adjacent plateaus for � � 0.0 and � � 4.0, and the
two-terminal conductance has a peak in the transient regions. For weak distortions, the SU(4) Kondo effect also
takes place for Ntot � 3.0. It appears as a sharp conductance valley between the S = 1/2 Kondo ridges on both
sides. We also find that the characteristic energy scale T ∗ reflect these varieties of the Kondo effect. Particularly,
T ∗ is sensitive to the distribution of the charge and spin in the triangular triple dot.
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I. INTRODUCTION

The triangle is the simplest polygon, and has a closed
loop which plays an important role on various fascinating
phenomena in the condensed matter physics. The closed
path in a metal and semiconductor allows the electrons to
move around the loop, and causes a quantum-mechanical
interference effects, such as an Aharanov-Bohm (AB) effect.1,2

The closed path consisting of the odd-number of links also
causes frustration, which leads to resonating valence bonds
for some anti-ferromagnetic systems.3

Furthermore, the interplay between the strong correlation
and the interference effects caused by the triangular structure
has also been one of the topics of the current interests in dif-
ferent fields of the condensed matter physics. For instance, the
single triangle is also a fundamental unit of the triangular and
kagomé lattices. In these systems the geometrical frustration
affects significantly the magnetic properties and the behavior
at the Mott-Hubbard metal-insulator transition.4,5 Another
interesting example is the triangular trimer of Cr atoms placed
upon an Au surface,6–8 and this system is expected to show
a non-Fermi-liquid behavior due to the multi-channel Kondo
effect.9,10

Recently, the triangular triple quantum dot (TTQD) has
been experimentally realized and intensively studied using
various systems, such as AlGaAs/GaAs heterostructures11–15

and self-assembled InAs quantum dot.16 Theoretically, the
TTQD has been shown to demonstrate various types of the
Kondo effects,17–22 as well as the AB effect.23,24 The closed
path makes the TTQD different from a linear quantum-dot
chain25–32 and the other three-level systems.33–38 One of the
most interesting points is that the appearance of a local moment
with total spin S = 1, at the filling where one additional

electron is introduced into half-filling.17,39 This is caused by a
Nagaoka ferromagnetic mechanism for the electrons moving
around the triangular structure.40 The S = 1 moment shows a
Kondo behavior when the leads are coupled to the quantum
dots.17–19 Another interesting point is that the SU(4) Kondo
effect takes place at half-filling,17–22 in the case where the
ground state has a 4-fold degeneracy caused by the orbital
and spin degrees of freedoms. The TTQD has provided a new
variety to the SU(4) Kondo effect, which had been studied for
the double-dot systems.41–44

The number of leads connected to the TTQD also affects
significantly the Kondo behavior. This is because whether
or not the local moment can be screened depends on the
relation between the dimension of the Hilbert space for the
local moment and the number of conducting channels.9 The
low-temperature properties of the TTQD have been studied,
so far, by several theoretical groups, for the configurations
with one,21 two,17–20,22 and three leads.22 These studies
complement each other the wide parameter space of the
TTQD. Žitko et al.20 and Mitchell et al.21 studied the Kondo
effect at half-filling in some situations, but the dependence
on the electron filling was not examined. Vernek et al.22

examined the gate voltage εd dependence in a wide range of
the electron filling, but the parameters used were confined to
a region of small interaction U and a large dot-lead coupling
� where the Kondo behavior is still rather smeared.

We have studied the Kondo behavior of the TTQD away
from half-filling in the series of the works.17–19 Our research
in the early stage17 started with a theoretical observation of a
two-stage Kondo screening of the S = 1 Nagaoka high-spin
at four-electron filling and a sharp conductance dip caused by
the SU(4) Kondo effect at half-filling (with three electrons),
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appearing in the gate-voltage dependence. The precise features
of these Kondo effects have been clarified further in the
previous paper,19 for the parameter values which cover the
weak and strong couplings with respect to both U and �.
We have also examined the effects of the perturbations which
break the full symmetry of the equilateral triangle,19 as the
real TTQD systems have some deviations from the regular
structure in most of cases. Our results, obtained with the
Wilson numerical renormalization group (NRG),45,46 have
shown that the conductance dip typical of the SU(4) Kondo
effect in the TTQD is quite sensitive to the perturbation, while
the S = 1 Kondo behavior is robust.19

The distortions of the triangular structure discussed in the
previous paper, however, were still relatively small, so that
the overall features of the Kondo effect in the TTQD have
not yet been fully revealed and much remains to be explored.
Particularly, a singlet-triplet transition between a local singlet
and the Nagaoka high-spin state occurs in the isolated TTQD
cluster for large deformations, and this transition will affect
the Kondo behavior at four-electron filling. Furthermore, the
behavior of the conductance dip due to the SU(4) Kondo effect
also needs to be clarified in more detail.

The purpose of the present work is to provide a comprehen-
sive overview of the Kondo effect in the TTQD and to study
the effects of large distortions. Specifically, we examine two
different types of distortion: (i) an irregular inter-dot coupling,
and (ii) an inhomogeneity in the level position of the quantum
dots. We calculate the phase shifts, δe and δo, for the even and
odd partial waves of the renormalized quasi-particles, in a wide
parameter region of the gate voltage εd and the distortions.
These two phase shifts determine the ground state properties
of the TTQD connected to two leads.

In the parameter space for large U and small �, we find
plateau with the integer values of the phase difference � ≡
(δe − δo)(2/π ), and at each plateau the occupation number
given by the Friedel sum rule Ntot ≡ (δe + δo)(2/π ) also
approaches to an integer. These plateaus, therefore, can be
classified with the two integer set (Ntot,�), and each plateau
corresponds to the ground state realized in each parameter
region. For instance, the plateau for the S = 1 Kondo region
can be labeled as (Ntot,�) � (4.0, 2.0). The singlet-triplet
transition emerges as a steep rise in � to the adjacent
plateaus with the label (Ntot,�) � (4.0, 0.0) and (4.0, 4.0),
situated in the regions of a large distortion. Therefore, the
two-terminal conductance gs shows a peak of the unitary-limit
value gs = 2e2/h in the middle of the rise. We also find that the
SU(4) Kondo behavior appears in the parameter space along
the contour line for � = 2.0, which traverses the middle of
the steep rise in � between the plateaus with � � 1.0 and
� � 3.0, for Ntot � 3.0.

We also estimate the characteristic energy scale T ∗ of the
Kondo screening in the wide parameter region, from the flow
of the low-lying excitation energies in the NRG. The energy
scale T ∗ depends strongly on the local charge distribution in
the TTQD. The screening is protracted significantly in the case
where the partial component of the local moment becomes
large at the apex site, which is located away from the leads as
shown in Fig. 1(a). This is because that the tunneling processes
of the conduction electrons from the leads to the apex site tend

FIG. 1. Triangular triple quantum dot in (a) series and (b) parallel
configurations. The dot which has no direct connection to the leads
is referred to as the apex site, and labeled as i = 2 in the text.

to be suppressed in the intermediate states on the other two
sites.

The paper is organized as follows. We describe the model
and the formulation in Sec. II. Some characteristics of the
TTQD, seen already in the non-interacting case of U = 0, are
summarized in Sec. III. Then, the molecular limit � → 0 for
finite U is considered in Sec. IV in order to see the basic
features of the local charge and spin states of the TTQD.
The NRG results for the ground-state properties are shown in
Sec. V. The results for the characteristic energy scale T ∗ are
presented in Sec. VI. A summary is given in Sec. VII.

II. FORMULATION

A. TTQD connected to two non-interacting leads

We consider a three-site Hubbard model on a triangular
cluster as a model for the TTQD. The cluster is connected
to two non-interacting leads on the left (L) and right (R) as
illustrated in Fig. 1(a). The Hamiltonian is given by

H = H0
dot + HU

dot + Hmix + Hlead, (1)

H0
dot = −

ND∑
〈ij〉

∑
σ

tij (d†
iσ djσ + d

†
jσ diσ )

+
ND∑
i=1

∑
σ

εd,i d
†
iσ diσ , (2)

HU
dot = U

ND∑
i=1

nd,i↑ nd,i↓, nd,iσ ≡ d
†
iσ diσ , (3)

Hmix =
∑

σ

(
vL d

†
1,σ CLσ + vR d

†
ND,σCRσ + H.c.

)
, (4)

Hlead =
∑

ν=L,R

∑
kσ

εk c
†
kνσ ckνσ . (5)

Here, d
†
iσ creates an electron with spin σ at the i-th dot,

εd,i the onsite potential, U the Coulomb interaction, and
the number of the dots is given by ND ≡ 3. The hopping
matrix element tij between the dots is chosen to be real
and positive (tij � 0). The dots labeled by i = 1 and i = 3
are directly coupled, respectively, to the left and right leads
via the tunneling matrix element vL/R . The coupling causes
the level broadening of �L/R ≡ πρ v2

L/R , with ρ the density
of states for the conduction band described by εk , and we
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will take � to be a constant assuming a wide flat band. The
conduction electrons are described by the operators c

†
kνσ and

Cνσ ≡ ∑
k ckνσ /

√
N . In the present work, we consider the case

that the system has an inversion symmetry choosing �L = �R

(≡ �), namely vL = vR (≡ v), εd,1 = εd,3 (≡ εd ), t12 = t23

(≡ t) and t13 (≡ t ′). We shall refer to the dot which has no
direct connection to the leads as the apex site, and will use
a notation εd,2 ≡ εapex for i = 2. We also choose the Fermi
energy EF as the origin of the energy EF = 0.

B. Phase shift, conductance and local charge

Charge transfer between the dots and leads makes the
low-energy states of the whole system a local Fermi liquid,
which can be described by renormalized quasi-particles.
Specifically, in the inversion symmetry case the two phase
shifts, δe and δo, for the even and odd partial waves become
the essential parameters which characterize the ground state
[see also Appendix A]. At zero temperature T = 0, the series
conductance gs for the current flowing through the two-channel
configuration shown in Fig. 1(a), and the total number of
electrons Ntot in the dots can be expressed in terms of these
phase shifts,19,47

gs = g0 sin2(δe − δo), (6)

Ntot ≡
ND∑
i=1

∑
σ

〈d†
iσ diσ 〉 = 2

π
(δe + δo) , (7)

where g0 ≡ 2e2/h. Note that the sum Ntot and the difference
� ≡ (δe − δo)(2/π ) between the two phase shifts link directly
to the ground-state properties in the series configuration.
Specifically, � becomes a more natural measure for classifying
the parameter space than gs for the quantum dots consisting
of more than three local orbitals ND � 3. This is because the
phase difference can be greater than π , for instance, it takes a
value in the range 0 � δe − δo � 2π for ND = 3.

The parallel conductance gp for the current flowing along
the horizontal direction in the four-terminal geometry, shown
in Fig. 1(b), can also be deduced from these two phase shifts
δe and δo defined with respect to the series configuration,

gp = g0 (sin2 δe + sin2 δo). (8)

The even and odd channels contribute to the parallel conduc-
tance separately with no cross terms which would represent
interference effects. Note that in the case where the series con-
ductance reaches the unitary-limit value gs = 2e2/h, namely
at δe − δo = (n + 1/2)π for n = 0, ± 1, ± 2, . . ., the parallel
conductance also takes the same value gp = 2e2/h which is
the half of its maximum possible value 4e2/h.

The phase shifts for the interacting case can be expressed
in terms of the renormalized hopping matrix element t̃ij for
the quasi-particles,19,48

−̃tij ≡ −tij + εd,i δij + Re 
+
ij (0). (9)

Here, 
+
ij (ω) is the self energy due to the Coulomb interaction

HU
dot, defined in Appendix A. For the TTQD, the renormalized

matrix elements expressed in the form

{−̃tij } =

⎡⎢⎣ ε̃d −̃t −̃t ′

−̃t ε̃apex −̃t

−̃t ′ −̃t ε̃d

⎤⎥⎦ . (10)

The explicit form of the phase shifts can be obtained by solving
the scattering problem of the renormalized quasi-particles, or
equivalently from the Dyson equation given in given in (A2),
as

cot δe = ε̃d − t̃ ′ − 2̃t 2/̃εapex

�
, cot δo = ε̃d + t̃ ′

�
. (11)

Specifically, the zero points of gs can be determined by the
condition between the renormalized parameters

ε̃apex t̃ ′ + t̃ 2 = 0, (12)

which follows from the relation cot δe = cot δo. Similarly, gs

takes the unitary-limit value gs = 2e2/h in the case of cot δe =
−1/ cot δo, which corresponds to the condition

(̃εd − t̃ ′ − 2̃t2/̃εapex)(̃εd + t̃ ′) + �2 = 0. (13)

III. EFFECTS OF DISTORTIONS IN THE
NON-INTERACTING CASE

We first of all discuss the level structure of an isolated clus-
ter for � = 0 in order to trace out the particular characteristics
of the TTQD. We then calculate the conductances through the
dots for U = 0 to see how they reflect the level structure.
These examples provide us with essential information for
understanding the variety of forms which we will encounter in
the wider parameter space.

A. Level structure of the TTQD

The one-particle energy levels for the non-interacting
TTQD cluster which is described by H0

dot are given by

E
(1)
e,± = εapex + εd − t ′

2
±

√(
εapex − εd + t ′

2

)2

+2t2, (14)

E(1)
o = εd + t ′. (15)

Here, E(1)
e,± and E(1)

o are, respectively, the energy for the eigen-
states with the even and odd parities [see also Appendix B].
Among the three eigenstates, the one with the energy E

(1)
e,− is

the lowest for t > 0 and t ′ � 0. The excited states become
degenerate, E

(1)
e,+ = E(1)

o , for an equilateral triangle with
εapex = εd and t ′ = t . The degeneracy is lifted as the symmetry
is lowered by a site diagonal distortion �ε ≡ εapex − εd and
also by an off-diagonal distortion �t ≡ t ′ − t . The first order
correction is given by E

(1)
e,+ − E(1)

o � (2/3) �ε − (4/3) �t.

Thus, for �ε − 2�t > 0 (< 0), the energy of the even excited
state becomes larger (smaller) than that of the odd one. It
reflects the fact that εapex belongs to the even part of the basis,
and the odd energy E(1)

o increases with t ′
The number of the electrons which enter the TTQD is

determined by the relative position of these levels with respect
to the Fermi energy EF (= 0). Figure 2 shows the phase
diagrams of the ground state of the TTQD cluster for U = 0

205304-3



A. OGURI et al. PHYSICAL REVIEW B 83, 205304 (2011)

FIG. 2. (Color online) Ground-state phase diagram of
the isolated TTQD for � → 0 and U = 0 is plotted in (a) an
εd vs t ′ plane for εapex = εd , and in (b) an εd vs �ε plane
for t ′ = t . Here, �ε ≡ εapex − εd . The phase boundaries
are given by the contours for the energy levels, crossing
the Fermi level: E(1)

o = 0 (solid line), E
(1)
e,+ = 0 (dashed

line), and E
(1)
e,− = 0 (dot-dashed line). The label (Ntot, �)

is assigned for each region divided by these lines, and it
represents the occupation number of the TTQD Ntot, and
� ≡ (δe − δo)(2/π ), which only for U = 0 coincides with
the difference in the occupation number of the even-parity
levels and that of the odd-parity level.

and � → 0. The boundaries are determined by the condition
that the one-particle energy level crosses the Fermi energy:
E(1)

o = 0 (solid line), E
(1)
e,+ = 0 (dashed line), and E

(1)
e,− = 0

(dot-dashed line). The left panel (a) is plotted as a function
of εd and t ′ keeping the site diagonal part uniform εapex = εd .
Similarly, the right panel (b) is plotted as a function of εd and
�ε keeping the inter-dot couplings uniform t ′ = t . Therefore,
in the case of off-diagonal distortion, the cluster deforms from
the regular triangle to a linear chain for 0 � t ′ < t , and then
for t ′ > t the coupling between the apex site and the other
two becomes relatively weak as t ′ increases. The diagonal
distortion εapex �= εd affects directly the charge density in
the apex site, and in Fig. 2(b) the contour for the odd level
becomes a vertical line because E(1)

o does not depend on εapex.
The occupation number Ntot, varies discontinuously as an

energy level crosses the Fermi energy. For finite �, it can be
deduced from the Friedel sum rule (δe + δo)(2/π ). As shown
in Fig. 2, it takes the values Ntot = 0, 2, 4, and 6, depending on
the region that is separated by the boundaries. The difference in
the two phase shifts � ≡ (δe − δo)(2/π ) coincides, for U = 0,
with Neven − Nodd, where Neven and Nodd are the occupation
number for the even and odd levels, respectively. In the limit of
� → 0, it can take the values of � = 0, 2 and 4 in the case of
the TTQD, as shown in Fig. 2. For interacting electrons U �= 0,
however, there is no such general correspondence between
� and the charge difference in the even and odd subspaces,
while the Friedel sum rule remains valid. This is because the

Coulomb interaction HU
dot breaks the charge conservation in

each subspace, as seen explicitly in Eq. (B10).
We also see in Fig. 2 that the odd-parity level E(1)

o (solid
line) and the excited even-parity level E

(1)
e,+ (dashed line) cross

each other at t = t ′ and εapex = εd , where the system has the
full symmetry of the equilateral triangle. The crossing divides
the region of four-electron occupation into two different spin-
singlet regions, which can be classified according to the values
of �. In the region with � = 0 the highest occupied orbital
is the odd-parity b1 orbital, while in the opposite side with
� = 4 the the even-parity orbital with energy E

(1)
e,+ becomes

the highest occupied orbital. Note that the lowest even-parity
orbital with energy E

(1)
e,− has already been occupied by two

electrons in this area of the parameter space.

B. Conductance for U = 0

We next consider the noninteracting TTQD which are
connected to the leads in a series or parallel configurations,
as shown in Fig. 1. In this case, the conduction electrons from
the leads are scattered at the TTQD. The phase shifts δe and
δo, caused by the scattering, are given by Eq. (11), replacing
the renormalized parameters there by the bare ones t , t ′, and
εapex. The conductance can be deduced from these phase shifts
through Eqs. (6) and (8), or equivalently from the Green’s
function using Eqs. (A3) and (A4) given in Appendix A.

π

π/2 π/2

3π/2

FIG. 3. (Color online) Series (a) and parallel (b) conductances in the noninteracting case U = 0.0 as functions of εd/t and t ′/t , for
�/t = 0.25 and εapex = εd . The values of the conductances are scaled by g0 ≡ 2e2/h. In (a) the solid line denotes the contour for δe − δo = π ,
and the dashed lines are the contours for the values of π/2 and 3π/2.
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π

π/2 π/2

3π/2

FIG. 4. (Color online) Series (a) and parallel (b) conductances in the noninteracting case U = 0.0 as functions of εd/t and �ε/t , for
�/t = 0.25 and t ′ = t . Here, �ε ≡ εapex − εd . The values of the conductances are scaled by g0 ≡ 2e2/h. In (a) the solid line denotes the
contour for δe − δo = π , and the dashed lines are the contours for the values of π/2 and 3π/2.

The series and parallel conductances in the non-interacting
case U = 0 are plotted in Fig. 3 as functions of εd/t and t ′/t

for �/t = 0.25 keeping the onsite potential for the three dots
to be the same �ε = 0. Similarly, in Fig. 4 the conductances
are plotted as functions of εd/t and �ε/t , taking the inter-dot
hopping matrix elements to be uniform t ′ = t . The Figs. 3
and 4 can be compared, respectively, to the phase diagrams
given in Fig. 2(a) and (b).

Both gs and gp are enhanced as the resonance levels which
correspond to the one-particle energies defined in Eq. (14) and
(15) cross the Fermi level. The series and parallel conductances
show a similar behavior in most of the parameter regions. We
can see, however, that they show a quite different behavior
at the point t = t ′ and �ε = 0, where the series conductance
vanishes while the parallel conductance takes the maximum
possible value gp = 4e2/h for two conducting channels. At
this point, the two one-particle levels E

(1)
e,+ and E(1)

o cross the
Fermi level simultaneously, and the phase shifts take the value
δe = 3π/2 and δo = π/2.

The solid line in Fig. 3(a) and Fig. 4(a), denotes the contour
of the difference in the two phase shifts for the value δe −
δo = π . Thus, this contour corresponds to a zero line of the
series conductance, and it means that destructive interference
is most pronounced along this line. Similarly, the dashed lines
in Fig. 3(a) and Fig. 4(a) are the contours for δe − δo = π/2
and 3π/2, on which the two conductances show peaks of the
same height gs = 2e2/h and gp = 2e2/h.

We can also see in Figs. 3 and 4 that some conductance
peaks are sharp and the others are relatively wide. Particularly,
the resonance peak for the excited even-parity level E

(1)
e,+,

which corresponds to the dashed line in Fig. 2(a) and (b),
is much sharper than the other peaks. This is because the
eigenstate for E

(1)
e,+ has a large spectral weight at the apex

site which has no direct couplings to the leads, and thus the
hybridization with conduction band is suppressed. This feature
can also be seen in the explicit expression for the spectral
weight for the noninteracting TTQD is given in Eq. (B8) in
Appendix B. Conversely, the resonance width becomes large
for the local states, the spectral weight of which is mainly on
the other two dots coupled directly to the leads.

IV. GROUND STATE IN THE MOLECULAR LIMIT:
� = 0 AND U �= 0

The model can be solved also for finite Coulomb inter-
action U in the molecular limit � → 0.19,39 In this case the
TTQD is disconnected from the leads, and described by the
Hamiltonian,

Hdot ≡ H0
dot + HU

dot. (16)

The eigenstates of Hdot determine the high-energy properties
of the system, particularly the properties of the local excitations
near the quantum dots. It gives us a knowledge how the
parameter space could be classified; such a classification
relates to the fixed points of the renormalization group. In
this section we examine the effects of the distortions on the
local electronic states in the interacting case.

Figures 5 and 6 show the phase diagram of the ground state
of the isolated TTQD for � → 0. The Coulomb interaction
is chosen to be (a) U/(2πt) = 0.2, and (b) U/(2πt) = 1.0.

3 2 1 0 1 2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d U

t'
t

4
S 0

4
S 1

4
S 0

3
even

3
odd

6

5

5

2 1 0
Ntot

(a)

1.5 1.0 0.5 0.0 0.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

d U

t'
t

4

4

4

S 1

3

3

even

odd6

5

5

odd

even

2 1

0

(b)

∋∋

FIG. 5. (Color online) Ground-state phase diagram of the TTQD
for � = 0 is plotted in a εd/U vs t ′/t plane for �ε = 0. The Coulomb
interaction is chosen to be (a) U/(2πt) = 0.2, and (b) U/(2πt) = 1.0.
The occupation number Ntot is shown for each region. The total spin
S is 1/2 for odd Ntot, and S = 0 for even Ntot, except it becomes
S = 1 in the middle of three Ntot = 4 regions. Along the horizontal
line in the Ntot = 3 region, the ground state has an SU(4) symmetry
due to the parity and spin degeneracies. The eigenstate has an even
(odd) parity above (below) this horizontal line.
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FIG. 6. (Color online) Ground-state phase diagram of the TTQD
for � = 0 is plotted in a εd/U vs �ε/U plane for t ′ = t . The Coulomb
interaction is chosen to be (a) U/(2πt) = 0.2, and (b) U/(2πt) = 1.0.
The occupation number Ntot is shown for each region. The total spin
S is 1/2 for odd Ntot, and S = 0 for even Ntot, except it becomes
S = 1 in the middle of three Ntot = 4 regions. Along the horizontal
line in the Ntot = 3 region, the ground state has an SU(4) symmetry
due to the parity and spin degeneracies. The eigenstate has an odd
(even) parity above (below) this horizontal line.

These figures can be compared with the phase diagrams in
the non-interacting case shown in Fig. 2. We can see that
the eigenstate with an odd-number of electrons (Ntot = 1, 3,

and 5) and total spin S = 1/2 becomes a ground state due to
the Coulomb interaction. The odd-number electron regions
emerge between the even-number electron regions in the
parameter space, and become wider as U increases. We can
also see that three horizontal border lines appear in the phase
diagrams for U > 0, and along each line a level crossing takes
place between the two different eigenstates with the same
occupation number.

The ground state for Ntot = 3 is separated by one of these
horizontal lines at t ′ = t in Fig. 5, and similarly by the
one at �ε = 0 in Fig. 6. The ground state has an SU(4)
symmetry along this border due to the orbital degeneracy
caused by the symmetry of the equilateral triangle and the
spin degeneracy. Away from this horizontal line, the distortions
lower the equilateral symmetry, and lift the orbital degeneracy.
An even-parity (odd-parity) state becomes the ground state
for t ′ > t (t ′ < t) in Fig. 5. Correspondingly, in Fig. 6 the
ground state is an even-parity (odd-parity) state for εapex < εd

(εapex > εd ). Note that there are some similarities between the
phase diagrams in Fig. 5 and Fig. 6: the features seen for
t ′ > t (t ′ < t) are similar qualitatively (graphically) to those
for �ε < 0 (�ε > 0). This is because the two types of the
distortion, t ′/t and εapex − εd , lift the degeneracy in an opposite
way, as mentioned in the above with Eqs. (14) and (15).

The Coulomb interaction also causes the high spin S = 1
ground state seen in Figs. 5 and 6 in the middle of the Ntot = 4
regions where the TTQD has one extra electron introduced
into the half-filled cluster. The S = 1 region evolves in the
parameter space from the level crossing point for U = 0, seen
in Fig. 2 at the point of t ′ = t and εapex = εd . The degeneracy
at this level crossing point is lifted for infinitesimal U , and
the high-spin state evolves continuously, as U increases, to the
Nagaoka ferromagnetic state which is usually defined in the
large U limit. For large distortions, however, the transition to a
singlet ground state takes place on the horizontal lines, running
on the top and bottom of the S = 1 region in Figs. 5 and 6.

The isolated TTQD which is not connected to the leads
has a local moment of S = 1/2 for odd-number fillings, and
a high-spin S = 1 for Ntot = 4, as mentioned in the above. In
the case where two leads are coupled to the cluster, however,
the local moment is screened eventually at low energies by the
conduction electrons tunneling from the leads, and the ground
state of the whole system becomes a spin singlet. We show the
results of the ground-state properties of the TTQD connected
to the leads in the next section, and then discuss also the
characteristic energy scale of the Kondo screening in Sec. VI.

V. NRG RESULTS FOR GROUND-STATE PROPERTIES
OF THE INTERACTING TTQD

We now consider an interacting TTQD coupled to two leads
via tunneling matrix elements Hmix defined in Eq. (4). In this
case the phase shifts δe and δo play an central role on the
low-energy properties. The effects of the Coulomb interaction
enter through these two phase shifts, which can be expressed
in terms of the renormalized parameters for the quasi-particles
of the local Fermi liquid, as described in Eq. (11).

We have calculated the many-body phase shifts using the
NRG method,19,49 and have deduced the conductance and the
occupation number of the TTQD at zero temperature from the
phase shifts,19 using Eqs. (6)–(8). In our calculations, the ratio
of the inter-dot hopping matrix element t and the half width of
the conduction band D, defined in Appendix C, is chosen to be
t/D = 0.1. The iterative diagonalization has been carried out
by using the even-odd basis, described in Appendix B.19 For
constructing the Hilbert space in each NRG step, instead of
adding two orbitals from even and odd orbitals simultaneously,
we add one orbital from the even part first and retain 3600
low-energy states after carrying out the diagonalization of
the Hamiltonian. Then, we add the other orbital from the
odd part, and again keep the lowest 3600 eigenstates after
the diagonalization. The discretization parameter is chosen
to be  = 6.0, which has been confirmed to reproduce the
noninteracting results with a sufficient accuracy.27–29 In the
following, we set the strength of the Coulomb interaction to be
U/(2πt) = 1.0, which is adequate for observing typical results
caused by U , as seen in Figs. 5 and 6. We have carried out some
calculations changing U and � for the equilateral triangle in
the previous work.19 Our results have clarified how the value
of U affects the width of the Kondo ridges and the Kondo
energy scale. Furthermore, a large � smears the electronic
structure of the TTQD origin. Through these observations, we
have confirmed that the characteristic feature of the Kondo
behavior can be seen clearly for typical a parameter set of
U/(2πt) = 1.0 and �/t = 0.12, 0.25.

A. Off-diagonal distortions: t ′ �= t

We discuss in this subsection the transport properties in the
presence of the off-diagonal distortion t ′ �= t keeping the site-
diagonal potential uniform �ε = 0. The effects of the diagonal
distortion εapex �= εd are examined in the next subsection V B.

1. Local charge: Ntot = 2
π

(δe + δo) for t �= t ′

Figure 7 shows the NRG results of the occupation number
Ntot for �/t = 0.25, and U/(2πt) = 1.0. In (a), the results

205304-6



KONDO EFFECTS IN A TRIANGULAR TRIPLE QUANTUM . . . PHYSICAL REVIEW B 83, 205304 (2011)

(b)d U

N

U 2πt 1.0
t 0.25

apex dt' t 3.5

t' t 0.0

3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
t' t

(a)

FIG. 7. (Color online) NRG results for the occupation number
Ntot for U/(2πt) = 1.0, �/t = 0.25, and �ε = 0. The left panel (a)
shows Ntot as a function of εd/U for t ′/t = 0.0, 0.5, 1.0, . . . , and
3.5. The right panel (b) shows Ntot in the εd/U vs t ′/t plane. The
dotted lines in (b) are the contours for Ntot = 0.5, 1.0, 1.5, . . . , and
5.5 (in steps of 0.5 from the right to the left).

are plotted as a function of εd/U for several of values
of t ′/t (= 0.0, 0.5, . . . , and 3.5, in steps of 0.5). We can
see clearly that the plateaus emerge near integer values of
Ntot due to the Coulomb interaction, especially the one for
Ntot � 3.0 becomes almost flat for large t ′/t � 3.0. These
results show that the coupling strength � = 0.25t is small
enough to distinguish the different charge states for U = 2πt .
The plateau for the five-electron filling emerges due to the
distortion and it becomes wider as t ′/t deviates from 1.0.
These features are consistent with that for the isolated TTQD
discussed in the above.

We have carried out the calculations more densely for a
number of points in the parameter space than those presented
in Fig. 7(a), and the results are plotted in the εd/U vs t ′/t

plane in Fig. 7(b). The dotted lines are the contours for Ntot =
0.5, 1.0, 1.5, . . . , and 5.5 (in steps of 0.5 from the right to
the left). Note that this figure can be compared with Fig. 5(b)
where Ntot for � → 0 is shown. We can see in Fig. 7(b) that the
contours of Ntot for half integers (0.5, 1.5, . . . , and 5.5), which
are shown with the thicker dotted lines, follow almost faithfully
the phase boundaries between the different charge states for
� → 0 shown in Fig. 5(b). The electron filling Ntot changes
rapidly near these contours for the half integers. This can be
seen explicitly in Fig. 7(a), and it reflects the fact that � is much
smaller than the inter dot matrix elements t and the Coulomb
interaction U in the present case. From these observations, we
see that the charge distribution in the plateaus regions is almost
completely determined by the high energy states, and it can be
approximated by the one in the limit of � → 0. The low-lying
energy states are required, however, to describe correctly the
transport properties and the conduction-electron screening of
the local moment of the TTQD.

2. Series and Parallel Conductances for t �= t ′

The NRG results for the conductances at zero temperature
are shown in the εd/U vs t ′/t plane in Fig. 8 for U/(2πt) =
1.0, �/t = 0.25, and �ε = 0. In order to show more clearly
the overall features, we have provided two types of the plots
seen from different points in the parameter space for each of
the conductances. The series conductance gs is plotted in (a)
and (c). Similarly, the parallel conductance gp is shown in (b)
and (d). For comparison, the phase boundary for � → 0 given
in Fig. 5(b) is also superposed onto Fig. 8(b) with the dashed

π

(a)

(c)

(b)

(d)

FIG. 8. (Color online) Series (a) and parallel (b) conductances
for U/(2πt) = 1.0, �/t = 0.25 and �ε = 0 are plotted as functions
of εd/U and t ′/t . In (a), the solid line is a contour for the phase-shift
difference δe − δo = π , and the dotted lines are also the contours for
δe − δo = π/2 and 3π/2. In (b), the dashed lines denote the phase
boundaries in the isolated limit � → 0, corresponding to the ones
shown in Fig. 5(b). Lower panels: (c) and (d) are the surface plots
of the series and parallel conductances corresponding to (a) and (b),
respectively.

lines. We see that the feature of the conductances reflects the
occupation number in each of the regions in the parameter
space. Note that the ground state becomes a spin singlet in the
whole region of the parameter space due to the screening by
the conduction electron.

We can also see in Figs. 8(a) and (c) that typical Kondo
ridges for the series conductance with gs � 2e2/h emerge
for odd-number fillings Ntot � 1.0, 3.0, and 5.0. Furthermore,
both gs and gp almost vanish for even-number fillings Ntot �
0.0, 2.0, 4.0 and 6.0 except for the S = 1 Kondo region.
Particularly, the behavior at small fillings Ntot < 2.0, for
εd/U � −1.0, can be explained simply by the S = 1/2 Kondo
effect due to the lowest single molecular orbital of E

(1)
e,−.

Therefore, the characteristic features of the TTQD appear in
the region of εd � −0.2U , where the two excited levels E(1)

o

and E
(1)
e,+ are partially filled.

The solid line in Fig. 8(a) denotes the contour for the
difference in the two phase shifts corresponding to the value
δe − δo = π . Along this line, the series conductance becomes
exactly zero. Specifically, in the three-electron region, for
−0.8 � εd/U � −0.3, this contour runs near the horizontal
line for t ′/t = 1.0 where the triangle has the equilateral
symmetry. The contour line tilts slightly from the horizontal
line because the coupling to the two leads breaks the equilateral
symmetry already at t ′ = t . This contour for δe − δo = π

appears in Fig. 8(c) as a very sharp valley of the series
conductance. The Kondo ridges on each side of this valley have
a different parity. Just at the bottom of the valley, the low-lying
quasi-particle states for the even and odd channels become
degenerate, and the low-energy properties can be described
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(a) (b)

FIG. 9. (Color online) Ground-state properties at εd = −0.6U ,
(a) conductances and (b) phase shifts (δe ± δo)(2/π ), are plotted in a
narrow region of t ′ near t ′/t = 1.0 for U/(2πt) = 1.0, �/t = 0.25,
and εapex = εd . In this parameter region, the occupation number is
almost constant Ntot � 3.0.

by the SU(4) Fermi-liquid theory.19 Furthermore, along this
valley the two phase shifts are almost constant with the values,
δo � π/4 and δe � 5π/4, since the Coulomb interaction keeps
the sum of the two to be δe + δo � 3π/2 in the three-electron
region through the Friedel sum rule. Therefore, the parallel
conductance does not change so much near this valley of the
series conductance, keeping the value of gp � 2e2/h.

In order to see the sharp SU(4) Kondo valley in more detail,
the conductances and the phase shifts at εd = −0.6U are
plotted in Fig. 9 as functions of t ′/t . Particularly, the two lines
in Fig. 9(a) correspond to a cross section of the surface plots
given in Fig. 8(c) and (d) in the middle of the three-electron
region along the vertical direction. We can see in Fig. 9(b) that
the phase-shift difference δe − δo increases with t ′/t showing
a kink, the value of which varies from π/2 to 3π/2 as t ′/t

increases, and taking the value of π at t ′/t � 1.0 in the middle
of the transient region. This kink determines the structure of
the series conductance valley seen in Fig. 9(a). Therefore,
the slope of the phase difference δe − δo in the middle of the
kink determines the width of the valley. Note that it is quite
general to the local Fermi-liquid systems that the derivative of
the phase shift with respect to the parameters, such as the
frequency and the external fields, plays an important role on
the renormalization of some correlation functions.

The S = 1 Kondo behavior can be seen for the four-electron
filling in the diamond-shape region in Figs. 8(a) and (b). The
series conductance almost vanishes gs � 0.0 in this region,
while the parallel conductance is enhanced gp � 4e2/h despite
an even-number electron filling. This contrast between gs and
gp can be seen clearly, particularly in Figs. 8(c) and (d). We can
also see in Fig. 8(a) that the contour for δe − δo = π is winding
in the center of the diamond region near εd/U � −1.0. Such
a bend is not seen in the noninteracting case, for which
the contour varies monotonically as shown in Fig. 3(a). The
contour lines of the phase shifts evolve, however, continuously
from the non-interacting form. This is because the ground
state of the whole system evolves adiabatically from a singlet
described by a single Slater determinant to a correlated singlet
described by the local Fermi-liquid theory for finite �. Note
that the S = 1 moment is screened at low temperature by
the conduction electrons from the two leads via a two-stage
screening processes.17–19

The dotted lines in Fig. 8(a) express the contours for
δe − δo = π/2 (below the solid line) and 3π/2 (above the solid
line), on which the series conductance reaches the unitary-limit

(a) (b)

FIG. 10. (Color online) Ground-state properties at εd =
−1.043U , (a) conductances and (b) phase shifts (δe ± δo)(2/π ), are
plotted as functions of t ′/t for U/(2πt) = 1.0, �/t = 0.12, and
εapex = εd . In this parameter region, the occupation number is almost
constant Ntot � 4.0. Note that in the limit of � → 0 the Nagaoka state
is the ground state for the isolated cluster for 0.30 < t ′/t < 2.88.

value gs = 2e2/h. One of the dotted lines on the right, at
εd/U � 0.1, follows simply the Kondo ridge caused by the
lowest orbital E

(1)
e,−. The other two lines pass on the top and

bottom of the diamond of the S = 1 Kondo region. These
two contours can be compared to the phase boundaries for
the singlet-triplet transition, seen in a narrow range of εd

at t ′/t � 0.30 and 2.88 in Fig. 5(b). In order to clarify the
precise feature of the corresponding crossover between the
S = 1 Kondo and non-Kondo singlet states, the conductance
and phase shifts are plotted in Fig. 10 as functions of t ′/t ,
choosing the level position εd to be in the middle of the
four-electron region at εd � −1.04U . At each of the crossover
points, near t ′/t � 0.3 and 3.0, the series conductance has
a peak. The feature of these conductance peaks reflects the
kink in the phase difference δe − δo, the value of which varies
from 0.2π to 1.0π near t ′/t � 0.3, and from 1.0π to 3.0π

near t ′/t � 3.0. Therefore, the slope of these kink determines
the width of the conductance of peak. Furthermore at the
crossover region, the electron occupation fluctuates slightly
from 4.0 as Ntot − 4.0 � ±0.5. In the S = 1 Kondo-singlet
region situating between the two peaks of gs, the phase shifts
are almost locked at δe � 3π/2 and δo � π/2, and thus the
parallel conductance takes the value gp = 4e2/h. In one of the
non-Kondo regions for t ′/t � 3.2, the phase shifts approach
to δe � 2π and δo � 0. The phase shifts take the values of
δe � 1.2π , and δo � π in the limit of t ′ → 0, in the other
non-Kondo region for t ′/t � 0.2. Note that for Fig. 10, the
coupling between the TTQD and the leads has been chosen
to be �/t = 0.12, which is smaller than that (�/t = 0.25) for
the previous figures, in order to see clearly the typical features
of the narrow crossover regions.

3. Phase-shift difference: � = 2
π

(δe − δo) for t �= t ′

The difference between the two phase shifts δe − δo is a fun-
damental parameter that contains the essential information of
the interference effects between the even and odd conducting
channels. It affects the series conductance, while each channel
contributes independently to the parallel conductance, through
the expressions given in eqs. (6) and (8). Specifically, peaks
and dips of the series conductance correspond directly to the
kinks of the phase-shift difference δe − δo, as seen in Figs. 9
and 10. It is also much easier for a numerical purpose to trace
the kink structure of δe − δo than to find directly the dips and
peaks of gs.
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d
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π

(a) (b)

FIG. 11. (Color online) Difference between the even and odd
phase shifts � ≡ (δe − δo)(2/π ) for U/(2πt) = 1.0, �/t = 0.25 and
�ε = 0. The left panel (a) shows � as a function of εd/U for the
values of t ′/t = 0.0, 0.25, 0.5, . . . , and 3.5 (in steps of 0.25 from the
bottom to the top). The right panel (b) shows � in the εd/U vs t ′/t

plane. The dotted lines in (b) are the contours for (δe − δo)(2/π ) =
0.5, 1.0, 1.5, . . . , and 3.5 (in steps of 0.5 from the bottom to the top).

We also provide the NRG results for � ≡ (δe − δo)(2/π )
in Fig. 11 in order to clarify its behavior in the wide parameter
space. In the left panel (a), � is plotted as a function of εd/U

for the values of t ′/t varying from 0.0 to 3.5 in steps of 0.25.
Furthermore, Fig. 11(b) shows the results obtained in the εd/U

vs t ′/t plane: the dotted lines are the contours for the values of
� varying from 0.5 (bottom and right) to 3.5 (top) in steps of
0.5. We can see that there are several plateaus, or shelves, in
these figures near the integer values of � � 1.0, 2.0, and 3.0,
on which gs becomes almost transparent or zero. Furthermore,
the occupation number also approaches to an integer value
on each of these plateaus, and thus they can be classified
according to a set of the two integers (Ntot,�). For instance,
in Fig. 11(a), we can see a wide plateau which can labeled
by (Ntot,�) � (3.0, 3.0) for −1.0 � εd/U � −0.3 and t ′/t �
1.0. The height of the plateau, however, is slightly smaller
than the exact integer 3.0. Such a deviation of the plateau
height from an integer value decreases as � decreases. This
has been confirmed explicitly for the equilateral triangle in
the previous work [see Fig. (6) of Ref. 19]. Furthermore, we
can see another example for smaller � in the next section [see
Fig. 14].

The feature of � in the parameter space can also be
compared to the phase diagram for the isolated TTQD.
Particularly, the contours for � = 0.5, 1.5, 2.5, and 3.5, which
are shown with the thicker dotted lines in Fig. 11(b), divide the
parameter space in a similar way that the phase boundaries did
in Fig. 5(b). The contour lines, however, do not cross each other
while the border lines for � = 0 are crossing at some points.
We can see in Fig. 11 that the SU(4) Kondo effect is manifest
in the parameter space as a sheer cliff at −0.8 � εd/U � −0.3
near t ′/t � 1.0. It also corresponds to the kink that we have
seen in Fig. 9(b). Between the bottom and top of the cliff
the value of � varies from 1.0 to 2.9, respectively. The slope
of the cliff determines the width of the SU(4) valley which
corresponds to the contour line for � = 2.0, running in the
middle of the cliff. The Kondo ridges of gs on both sides of
the valley can be classified according to the plateau value of
δe − δo = π/2 or 3π/2, as the phase difference varies by π

across the valley.

∋

d U
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FIG. 12. (Color online) NRG results of the occupation number
Ntot for U/(2πt) = 1.0, for �/t = 0.12 and t ′ = t . The left panel
(a) shows Ntot as a function of εd/U for values of for the values
of �ε/U = −1.0, −0.9, −0.8, . . . , and 1.4 (in steps of 0.1 from
the top to the bottom). The right panel (b) shows Ntot in the εd/U

vs �ε/U plane. The dotted lines in (b) are the contours for Ntot =
0.5, 1.0, 1.5, . . . , and 5.5 (in steps of 0.5 from the right to the left).

The S = 1 Kondo region can also be seen as a diamond-
shape plateau in Fig. 11(b), appearing at εd � −1.0U and
0.3 � t ′/t � 2.9. This plateau is characterized by the two
parameters, � � 2.0 and Ntot � 4.0. Thus the phase shifts
are almost fixed at the value of δe � 3π/2 and δo � π/2 in
this region.

B. Diagonal distortions: εapex �= εd

We next examine the effects of the diagonal distortion
εapex �= εd , keeping the inter-dot hopping matrix elements
uniform t ′ = t and taking the Coulomb interaction to be
U = 2πt . In this subsection we choose the coupling between
the leads and the TTQD such that �/t = 0.12, which is
approximately a half of the one used for Figs. 7, 8, and 11
in the off-diagonal case.

1. Local charge: Ntot = 2
π

(δe + δo) for �ε �= 0

Figure 12(a) shows the occupation number Ntot in the
TTQD as a function of εd/U for the values of �ε/U =
−1.0,−0.9,−0.8, . . . , and 1.4 (in steps of 0.1 from the top
to the bottom). We can see clearly that the plateaus appear
near integer values of Ntot. In the present case the coupling
strength � is much smaller than U and t , so that the different
charge states can be distinguished clearly. In other words,
the crossover between two adjacent charge states becomes
sharp, and thus the border can be determined reasonably by
the middle point where Ntot takes a half-integer value.

We have also carried out the calculations for a number of
parameter sets, more than the ones which are shown explicitly
in Fig. 12(a), and have plotted the results in Fig. 12(b) in the
εd/U vs �ε/U plane. In this figure the dotted lines denote the
contours for Ntot = 0.5, 1.0, 1.5, . . . , and 5.5 (in steps of 0.5
from the right to the left). Particularly, the thick dotted lines are
the contours for the half-integer values; 0.5, 1.5, 2.5, 3.5, 4.5,
and 5.5. We can see that these thick dotted lines almost follow
the phase boundaries between the different charge states in
the isolated TTQD, shown in Fig. 6(b). The local charge Ntot

changes rapidly near these thick contours, and has a plateau of
an integer value between the thick dotted lines, as can be seen
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(b)(a)

FIG. 13. (Color online) Series (a) and parallel (b) conductances
for U/(2πt) = 1.0, �/t = 0.12 and t = t ′ are plotted as functions of
εd/U and �ε/U . In (a), the solid line is a contour for the phase-shift
difference δe − δo = π , and the dotted lines are also the contours for
the values of π/2 and 3π/2. In (b), the dashed lines denote the phase
boundaries for the isolated TTQD, corresponding to Fig. 6(b).

explicitly in Fig. 12(a). Therefore the charge in the plateau
regions is determined at high energy scale, and the sum of the
phase shifts (2/π )(δe + δo) in the plateaus can be approximated
reasonably by the value of Ntot in the � → 0 limit. However,
the transport properties at zero temperature are determined by
each of the two phase shifts or the difference between them,
which are determined essentially by the low-lying energy states
of the whole system including the leads.

2. Series and Parallel Conductances for �ε �= 0

The series (a) and parallel (b) conductances are plotted in
Fig. 13 in the parameter space of εd/U and �ε/U . For com-
parison, the phase diagram for � → 0 given in Fig. 6(b) is su-
perposed onto Fig. 13(b) with the dashed lines. We can see that
the behavior of the conductances in this parameter space also
reflects the feature of the phase diagram for the isolated TTQD.
In the regions of the odd-number electron filling the both con-
ductances gs and gp have the Kondo plateaus with the height of
2e2/h. Furthermore, the S = 1 Kondo effect takes place in a
trapezoidal region near �ε � 0.0 and εd/U � −1.0. In this re-
gion, the series and parallel conductances show a clear contrast,
namely gs � 0 while gp � 4e2/h. This feature is the same as
what is observed in the case of the off-diagonal distortions.

The solid line in Fig. 13(a) denotes the contour for δe − δo =
π , on which the series conductance becomes zero. This contour
runs across the region of the three-electron occupancy almost
horizontally in an area with weak distortions �ε � 0.0. It
associated with a sharp valley of the series conductance, which
is typical of the SU(4) Kondo effect in the TTQD and is seen
also for the off-diagonal distortions. The SU(4) symmetry is
caused by the channel degeneracy restored along the line at
low energies,19 and the phase shifts take the values of δe �
5π/4 and δo � π/4. We can also see that the contour for
δe − δo = π is deformed significantly, in the trapezoidal S = 1
Kondo region, from the non-interacting form which is a simple
straight line shown in Fig. 4(a). This could happen, however,
continuously with increasing U , as the ground state evolves
adiabatically in the case that the quantum dots are coupled to
the leads.

The dotted lines in Fig. 13(a) denote the contours for δe −
δo = π/2 (above the solid line) and 3π/2 (below the solid line),
on which the series conductance takes the unitary-limit value

d

∋

π

π

(a) (b)

FIG. 14. (Color online) Difference between the even and odd
phase shifts � ≡ (δe − δo)(2/π ) for U/(2πt) = 1.0, �/t = 0.12 and
t ′ = t . The left panel (a) shows � as a function of εd/U for the
values of �ε/U = −1.0, −0.9, −0.8, . . . , and 1.4 (in steps of 0.1
from the top to the bottom). The right panel (b) shows � in the
εd/U vs �ε/U plane. The dotted lines in (b) are the contours for
(δe − δo)(2/π ) = 0.5, 1.0, 1.5, . . . , and 3.5 (in steps of 0.5 from the
top to the bottom).

gs = 2e2/h. It should be noted that a long and very sharp ridge
emerges in Fig. 13(a) for the series conductance at �ε/U �
−0.4 and −0.9 � εd/U � −0.6. This sharp ridge runs along
the lower end of the trapezoidal S = 1 Kondo region, and
reflects the singlet-triplet transition taking place in the isolated
TTQD cluster for � → 0.

3. Phase-shift difference: � = 2
π

(δe − δo) for �ε �= 0

Figure 14(a) shows the results of the phase-shift difference
� ≡ (δe − δo)(2/π ) as a function of εd/U for the values of
�ε/U varying from −1.0 to 1.4 in steps of 0.1. We can clearly
see that there are a number of plateaus near integer values of
� � 1.0, 2.0, and 3.0. Specifically, the height of the plateaus
approaches very close to exact integers in the present case
because the coupling between the leads and the TTQD is small.
Although we can recognize that some of them, for instance,
the ones near � � 3.0, still deviate from an exact integer, these
deviations can be controlled by tuning � to be small.19

In order to see the behavior of (δe − δo)(2/π ) in the
parameter space, the results are plotted also in the εd/U vs
�ε/U plane in Fig. 14(b). In this figure the dotted lines
denote the contours for �, particularly the thicker ones are the
contours for the half-integer values: � = 0.5, 1.5, 2.5, and 3.5.
Each of these thick dotted lines runs very closed to the phase
boundaries for the isolated TTQD shown in Fig. 6(b). These
thick contours, as a whole, cover almost all the boundaries.
These contour lines of �, however, evolve continuously from
the non-interacting forms as U increases. This is because the
ground state of the whole system evolve adiabatically from a
U = 0 spin singlet to a correlated singlet described the local
Fermi-liquid theory for finite �.

The sharp SU(4) Kondo valley of the series conductance
corresponds to a steep cliff standing at −0.8 � εd/U � −0.3
for small distortions �ε/U � 0.0 in Fig. 14(b). At the
edge of this cliff, (δe − δo)(2/π ) varies by an amount 2.0
approximately. It varies from � � 1.0 (for �ε � 0.0) to
� � 2.9 (for �ε � 0.0), taking the value of δe − δo = π

which corresponds to the zero point of gs in the middle of
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the cliff. The slope of this cliff determines the width of the
SU(4) valley, as that in the case of off-diagonal distortions.

We can see another sharp cliff in Fig. 14(b) at the bottom
of the S = 1 Kondo region for �ε/U � −0.4 and −0.9 �
εd/U � −0.6, where the singlet-triplet transition takes place
for the isolated cluster. Between the top and bottom of this
cliff, the phase difference � varies rapidly from 2.0 to 4.0,
which causes the sharp Kondo ridge of the series conductance,
seen in Fig. 13(a). Note that the slope of the cliff determines
the width of the sharp peak of gs. We can also see a narrow
cliff due to the singlet-triplet transition, at the top of the S = 1
Kondo region for �ε/U � 0.8 and εd/U � −1.2. At this cliff,
the value of � changes from 0.0 to 2.0 approximately.

VI. CHARACTERISTIC ENERGY SCALE

The ground-state properties, discussed in the above, are
determined by the behavior of the phase shifts for the quasi-
particles. At finite temperature T , for instance, the structure
of the plateaus and dips will be smeared gradually as T

increases. Nevertheless, the corrections due to finite T can be
still determined by the local Fermi-liquid theory for T � T ∗,
namely at temperatures lower than the characteristic energy
scale T ∗. Specifically, in the case the quantum dots have a
local moment, T ∗ can be regarded as the Kondo temperature
such that the moment is screened at T  T ∗. The value of T ∗,
however, depends sensitively on the parameters at each point
of the parameter space. Therefore, the actual temperature, at
which the Fermi-liquid behavior can be observed, is different
depending on the region in the parameter space.

In the NRG approach, the crossover from the high energy
to the low energy Fermi-liquid regime can be seen in
the trajectory of the low-energy levels of the discretized
Hamiltonian HN defined in Appendix C. The trajectory evolves
as the number of orbitals N of the conduction band increases.
In the present work we have estimated T ∗ through N∗ that is
a particular value of N , at which the trajectory almost enters
the low-energy regime, as

T ∗ = D −(N∗−1)/2. (17)

Therefore, T ∗ is the typical energy scale of the low-lying
excitations of a finite NRG chain with N = N∗. The values of
T ∗ determined in this way have some ambiguities, especially
in the case where the crossover is gradual, and our definition
tends to give a smaller value for the characteristic energy scale.
Nevertheless, the relative variations of T ∗ in the parameter
space can be extracted reasonably as shown in Figs. 15 and
18. We have also confirmed that T ∗ determined in this way is
consistent with the ones we had estimated from the entropy
in the previous work for the equilateral triangle.19 We will
see below that the variations of T ∗ can be understood roughly
through the distribution of the charge and spin in the even and
odd parity orbitals, described in Appendix B.

A. T ∗ vs off-diagonal distortions (t ′ �= t)

The results for T ∗ are plotted in Fig. 15 using a logarithmic
scale, as a function of εd/U and t ′/t for �/t = 0.25 and
U/(2πt) = 1.0. The phase diagram of the isolated TTQD
given in Fig. 5(b) is also superposed onto Fig. 15 with the

FIG. 15. (Color online) The characteristic energy scale T ∗ in the
εd/U vs t ′/t plane for �/t = 0.25, U/(2πt) = 1.0 and �ε = 0.
The results in the range of −20 < log10(T ∗/�) < 0 are painted
in the colors varying from blue to red. T ∗ becomes very small in
the purple region, and the solid lines there denote the contours for
log10(T ∗/�) = −20, −40, and −60. The dashed lines denote the
phase boundary in the limit of � → 0, corresponding to Fig. 5(b).

dashed lines, as a guide for the eye. We can see that the
variation of T ∗ in the parameter space also relates to the
plateaus of � [see Fig. 11 in Appendix B]. The energy scale
T ∗ is large in the case that the quantum dots have no local
moment, and it becomes smaller when the TTQD has a local
moment.

We can see, nevertheless, T ∗ is still relatively high in the
regions of Ntot � 1.0 and 5.0, in which the S = 1/2 Kondo
effect takes place. The S = 1/2 moment for Ntot � 1.0 is
caused by a single electron, which enters an even-parity state
and stays mainly at the a1 orbital adjacent to the leads [see
Fig. 21]. Thus the screening can be completed relatively easily
in this case. Figure 16 shows the occupation number Na0

(Na1) in the a0 (a1) orbital, as a function of t ′/t , for the
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FIG. 16. (Color online) Charge distribution in the isolated TTQD,
Na,i ≡ ∑

σ 〈na,iσ 〉 is plotted as a function of t ′/t for (a) Na0 the apex
site, and for (b) the even a1 orbital described in Appendix B. The
average is taken with respect to some of the eigenstates of Hdot ≡
H0

dot + HU
dot, and labeled by the occupation number, spin, and parity

(“N3S05:even” denotes, “Ntot = 3”, S = 1/2, and an even parity).
The parameters are chosen to be � = 0, U/(2πt) = 1.0, and εapex =
εd . Note that the occupation number takes the form Ntot = Na,0 +
Na,1 + Nb,1.
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limit of � → 0: note that a0 corresponds to the apex site.
The dashed line which is labeled “N1S05:even” shows the
average with respect to the lowest eigenvector in the subspace
with Ntot = 1, S = 1/2, and an even parity. We can see that
Na1 approaches to 1.0 as t ′/t increases. In the opposite case,
at t ′/t = 0.0, the occupation number for a0 and that for
a1 coincide Na0 = Na1 = 0.5, but still the charge and spin
fluctuations are not suppressed because these orbitals are still
at quarter filling.

In the five-electron region for t ′/t > 1.0, the eigenvector
|�(5)

odd〉 for the isolated TTQD can be expressed in the form of
Eq. (B14). The local moment in this case stays at the b1 orbital,
which is also adjacent to one of the leads [see Fig. 21], and the
conduction electrons can screen the moment through the usual
kinetic exchange mechanism. For another five-electron region
at 0 � t ′/t < 1.0, the eigenvector |�(5)

even〉 can be written in the
form of Eq. (B13). The averages Na0 and Na1 with respect
to this state coincide with those with respect to the Nagaoka
state |�(4)

odd〉 defined in Eq. (B12), and the results are plotted in
Fig. 16 with the dot-dash line labeled “N4S1:odd”. We can see
that for 0 � t ′/t < 1.0 a single hole with a spin 1/2 enters both
of the even orbitals, and for t ′/t → 0 these orbitals approach
to quarter filling in the hole picture. Therefore, the screening
is not suppressed so much also in this five-electron region.

The screening temperature becomes small in the three and
four electron regions, namely −1.1 � εd � −0.3 in Fig. 15.
We can see in the three electron region, however, T ∗ is still
much higher for t ′/t � 1.0 than for t ′/t � 1.0 despite the
local moment in the TTQD is S = 1/2 in both of the cases.
For t ′/t � 1.0, the ground state is an odd-parity state, and one
of the three electrons enters the b1 orbital, and the other two
electrons enter almost equally to the a0 and a1 orbitals. This
can be confirmed through the dotted line labelled “N3S05:odd”
in Fig. 16. We can also see in Fig. 17(a) that the third electron
enters the odd b1 orbital for t ′/t � 1.0 in the noninteracting
limit. In contrast, for t ′/t � 1.0 the ground state is an even
parity state, and the solid line labeled “N3S05:even” denotes
average with respect to this state. We see that Na1 approaches
to 2.0 as t ′/t increases, while the occupation of the apex site
is almost unchanged Na0 � 1.0, and thus the occupation of
the b1 orbital is decreasing in this case. Therefore, the local
moment is mainly due to the electron staying at the apex
site. Thus the screening is protracted significantly because
the charge and spin fluctuations are suppressed at the nearly

(a) (b)

FIG. 17. (Color online) Spectral functions in the noninteracting
case for (a) t ′/t = 0.6 and (b) t ′/t = 1.5. The solid line is the
even component −Im [Ga0(ω) + Ga1(ω)]/π , and the dotted line
is the odd component −Im Gb0(ω)/π , defined in Appendix B.
The other parameters are chosen to be �ε = 0.0, εd = 0.0, and
�/t = 0.25.

filled a1 orbital, over which the conduction electrons come
to screen the moment. We have also confirmed that along the
sharp conductance valley caused by the SU(4) Kondo effect, at
t ′/t � 1.0 and −0.8 � εd/U � −0.3, the energy scale T ∗ is
enhanced due to the orbital degeneracy. Note that the variations
in the spin and charge configurations near the SU(4) symmetric
point becomes wider in the TTQD than the double dot.

The properties of the local moment in the three-electron
region also reflect the feature of the one-particle state which
emerges as a peak of the conductances shown in Fig. 3,
and also the corresponding spectral function is shown in
Fig. 17. Specifically for t ′/t � 1.0 the orbital degeneracy is
lifted such that E(1)

o > E
(1)
e,+. Therefore, after two electrons

occupy the lowest even-parity orbital with the energy E
(1)
e,−,

the third electron enters the resonance state corresponding to
the excited even-parity orbital which appears in Fig. 17(b) as
the central peak. This state has a dominant spectral weight
in the apex site, and the resonance width is narrower than
� already in the noninteracting case [see also Eq. (B8) in
Appendix B]. It should also be noted that the width of this
resonance determines T ∗ in the noninteracting limit. For finite
U , this peak may evolve into a Kondo resonance whose width
is reduced further by the Coulomb interaction to the value of
the order of T ∗.

The wavefunction for the Nagaoka state has an odd parity,
and the charge distribution of this state is shown in Fig. 16,
with the dot-dash line labeled “N4S1:odd”. We can see that
Na0 and Na1 for the Nagaoka state are similar to those for the
three electrons state “N3S05:even”. The fraction of the local
moment stays at the apex site, and this explains the reason why
T ∗ is small also in this case. One extra electron enters mainly
the b1 orbital, and it provides half of the S = 1 moment which
can be screened at high temperature at the first stage of the
two-stage Kondo screening.19

B. T ∗ vs diagonal distortions (εapex �= εd)

The characteristic energy scale T ∗ for the TTQD with the
diagonal distortions is plotted in Fig. 18 using a logarithmic
scale, as a function of εd/U and �ε/U for U/(2πt) = 1.0. The
phase diagram of the isolated TTQD given in Fig. 6(b) is also
superposed onto Fig. 18. Note that the coupling between the
leads and quantum dots is chosen to be �/t = 0.12, which is
smaller than that we chose for the off-diagonal case. Therefore,
the absolute values of T ∗ become smaller than those in Fig. 15.
We saw in the above that the Kondo screening is sensitive
to the electronic structure of the TTQD for the off-diagonal
distortions t ′ �= t . In order to see the results in a similar way, the
charge distribution in the even and odd orbitals in the isolated
TTQD for � → 0 is also plotted in Fig. 19 as a function �ε

(≡ εapex − εd ).
We can see that T ∗ is suppressed also in the region of

Ntot � 1.0 at �ε � 0.0, which corresponds to the area of
εd/U � 0.3 at the right bottom of Fig. 18. In this parameter
region, the potential profile of the onsite energy is such that
εapex < EF and εd > EF , with the Fermi energy EF ≡ 0.0.
Therefore, the single electron enters mainly the apex site,
and the other two dots are almost empty. This can also be
confirmed through the charge distribution plotted with the
dashed line labeled “N1S05:even” in Fig. 19. For �ε � 0.0,
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FIG. 18. (Color online) The characteristic energy scale T ∗ in the
εd/U vs �ε/U plane for �/t = 0.12, U/(2πt) = 1.0, and t ′ = t .
The results in the range of −30 < log10(T ∗/�) < 0 are painted
in the colors varying from blue to red. T ∗ becomes very small in
the purple region, and the solid lines there denote the contours for
log10(T ∗/�) = −30, −60, and −90. The dashed lines denote the
phase boundary in the limit of � → 0, corresponding to Fig. 6(b).

the occupation number Na0 for the apex site approaches to
1.0 while that for the even a1 orbital, Na1, almost vanishes.
Therefore, the screening of the local moment is achieved
through a super-exchange process by the conduction electrons
which come to the apex site over the potential barrier at the
other two dots, and thus T ∗ decreases in this parameter region.

Similarly, T ∗ is suppressed also in the five-electron region
for �ε > 0.0, which corresponds to the area for εd/U � −1.2
at the top left of Fig. 18. The ground state in this parameter
region has an even parity, and in the limit of � → 0 the
eigenvector is given by |�(5)

even〉 in Eq. (B13). The average
number of electrons Na0 and Na1 for this state coincide with
those with respect to |�(4)

odd〉 defined in Eq. (B12). The results
are shown in Fig. 19, with the dot-dash line labeled
“N4S1:odd”. We can see that a single hole with a spin 1/2
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FIG. 19. (Color online) Charge distribution in the isolated TTQD,
Na,i ≡ ∑

σ 〈na,iσ 〉, is plotted as a function of �ε/U for (a) Na0 the
apex site, and for (b) the even a1 orbital described in Appendix B.
The average is taken with respect to some of the eigenstates of
Hdot ≡ H0

dot + HU
dot, and labeled by the occupation number, spin,

and parity (“N4S1:odd” denotes, Ntot = 4, S = 1, and an odd parity).
The parameters are chosen to be � = 0, U/(2πt) = 1.0, and t ′ = t .
Note that �ε ≡ εapex − εd , and the occupation number takes the form
Ntot = Na,0 + Na,1 + Nb,1.

FIG. 20. (Color online) Spectral functions in the noninteracting
case for (a) �ε = 0.5t and (b) �ε = −0.5t . The solid line is the
even component −Im [Ga0(ω) + Ga1(ω)]/π , and the dotted line is
the odd component −Im Gb0(ω)/π , defined in Appendix B. The other
parameters are chosen to be t ′/t = 1.0, εd = 0.0, and �/t = 0.12.

stays in the apex site for �ε � 0.0, and the other two dots are
almost doubly occupied. Therefore, T ∗ becomes very small
in this case. This can also understood from the feature of the
spectral function, shown in Fig. 20. The Fermi level for the
five electrons in this case is situated in the middle of the sharp
peak at ω � 1.2t in Fig. 20(a). The width of this resonance
corresponds to T ∗ in the noninteracting limit, and the peak
will become much narrower for finite Coulomb interaction U .
There is another five-electron region for � < 0.0, where the
eigenvector is given by |�(5)

odd〉 in Eq. (B14) for the isolated
TTQD. The local moment in this case stays at the b1 orbital,
which is close to one of the leads, and thus the screening can
be achieved by the usual kinetic exchange mechanism of the
S = 1/2 Kondo effect.

The screening temperature becomes small also in the three
region, and in the four electron region. In the three electron
region for �ε � 0.0 the ground state has an odd parity, and the
charge distribution for this state is plotted in Fig. 19, with the
dotted line labeled “N3S05:odd”. We can see that at �ε � 1.0
the three electrons distribute almost homogeneously as Na0 �
Na1 � 1.0, and thus Nb1 � 1.0. Then, as �ε increases, a single
electron in the apex site moves towards the even-parity a1

orbital, and the occupation numbers approach to Na0 � 0.0 and
Na1 � 2.0, keeping the occupation of the odd-parity orbital
almost unchanged Nb1 � 1.0. Therefore, T ∗ becomes larger
as �ε increases.

The ground state in the other three electron region, for
�ε � 0.0, has an even parity. The charge distribution with
respect to this state is shown with the solid line labeled
“N3S05:even” in Fig. 19, and in this case it is such that Na0 �
1.0, Na1 � 1.5, and Nb1 � 0.5 near �ε � 0.0−. Therefore,
the apex site is singly occupied, and the moment protracted.
The distribution varies as �ε decreases, and the fraction of the
local moment tends to stay close to the leads, as Na0 � 2.0,
Na1 � 0.5, and Nb1 � 0.5. We have also confirmed that T ∗
is enhanced near �ε � 0.0 and −0.7 � εd/U � −0.4, along
the sharp conductance valley caused by the SU(4) Kondo
effect. The local moment in the three-electron region also
reflects the properties of the one-particle state. Similar to the
t ′/t � 1.0 case discussed in the previous subsection, the orbital
degeneracy is lifted as E(1)

o > E
(1)
e,+ for �ε � 0.0. In this case

the third electron enters the resonance state corresponding
to the excited even-parity orbital, appearing in the middle of
Fig. 20(b). Since the spectral weight of this state is mainly
at the apex site, the resonance width becomes narrow already
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in the noninteracting case and it evolves into a sharp Kondo
resonance for finite U .

The S = 1 Kondo effect takes place in the four electron
region at −0.4 � �ε/U � 0.8 in Fig. 18. We can see that T ∗
varies significantly inside this region depending on whether
�ε � 0.0 or �ε � 0.0, although the S = 1 Nagaoka high-spin
state which has an odd parity evolves continuously as �ε

varies. The eigenvector in the limit of � → 0 is given by
|�(4)

odd〉, and the charge distribution with respect to this state is
shown in Fig. 19, with the dot-dash line labeled “N4S1:odd”.
We can see that Na0 and Na1 vary rapidly near �ε � 0.0,
keeping the filling of b1 orbital unchanged Nb1 = 1.0. For
�ε � 0.0, the local moment has a finite component in the
apex site. This component of the moment moves to the a1

orbital near the leads for �ε � 0.0. The variation of T ∗ inside
the S = 1 Kondo region reflects these changes in the charge
and spin distributions.

VII. SUMMARY

We have studied the effects of distortions which break the
full symmetry of an equilateral triangle of a TTQD connected
to two non-interacting leads, over a wide range of the gate
voltage εd . Two types of disorder have been considered, (i) an
inter-dot tunneling matrix element t ′ ( �= t), and (ii) a level
position εapex ( �= εd ) of the dot at the apex site. We have
concentrated on the low energy behavior, restricting attention
mainly to the regime with large Coulomb interaction U and
small hybridization � as this leads to several different types of
the Kondo effect.

We find that the key variables for characterizing the low
energy behavior are the total occupation number Ntot and the
phase difference � ≡ (δe − δo)(2/π ). The two phase shifts for
the renormalized quasi-particles, δe and δo, can be deduced
theoretically from the low energy NRG fixed point. The
phase shifts may be deduced experimentally through the
conductances and Ntot. Measurements of the AB oscillation
in a magnetic field may also give a clue to determine the phase
difference.

In the parameter space for large U we find plateaus with the
integer values of �, and at each plateau the occupation number
also approaches to an integer. These plateaus, therefore, can
be classified with the two integer set (Ntot,�) [see Figs. 11 and
14]. The structure of these plateaus of � determines the precise
feature of the Kondo ridges and valleys of the conductance [see
Figs. 8 and 13].

Different Kondo effects occur in different regimes. The
SU(4) Kondo effect takes place for weak distortions, along the
contour line for � = 2.0 which runs in the region of Ntot � 3.0
in the parameter space. This contour transverses the middle of
a steep cliff of �, standing between the plateau for � � 1.0
and that for � � 3.0. It can be observed as a sharp conductance
valley between the Kondo ridges on both sides, and the slope
of the cliff determines the width of the conductance valley.
The SU(4) Kondo behavior is sensitive to the perturbations
which lower the symmetry of the equilateral triangle. This is
caused by the fact that the SU(4) symmetry relies crucially
on the orbital degeneracy. Furthermore, the spin and charge
distributions inside the TTQD vary near the SU(4) symmetric
point, and it affects significantly the Kondo screening.

The S = 1 Kondo effect, taking place at the plateau of �

for (Ntot,�) � (4.0, 2.0), is robust against the breaking of the
symmetry of the equilateral triangle. This is mainly due to
a size effect: there is a finite energy separation between the
Nagaoka high-spin state and the excited local singlet state
in the isolated TTQD cluster. For large distortions a singlet-
triplet transition takes place. It becomes a crossover between a
Kondo and non-Kondo singlet state for finite �, and the series
conductance has a peak of the height of 2e2/h in the transient
regions. The width of the peak is determined by the slope of
the cliff of �, which appears at the crossover region.

Apart from the phase shifts which determine the conduc-
tance and occupation of the TTQD, another important renor-
malized parameter characterizing the low energy behavior is
the characteristic energy scale T ∗. For T � T ∗ the low-energy
properties can be described by the local Fermi-liquid theory.
In the cases where the quantum dots have a local moment, T ∗
can be regarded as the Kondo temperature. We have estimated
T ∗ from the region where the NRG levels crossover to the low
energy fixed point. The results for T ∗ reflect the distribution
of the charge and spin in the TTQD [Figs. 15 and 18].

Specifically, T ∗ tends to be small in the case where a partial
moment remains in the apex site, which has no direct coupling
to the leads. The screening of such a partial moment becomes
sensitive to the charge and spin on the other two dots because
the conduction electrons tunneling from the leads have to pass
through either of the two dots to get the apex site. In some
regions of the parameter space, we find that the tunneling of the
conduction electron is suppressed at these two dots, in a way
analogous to a super-exchange process caused by a potential
barrier between the local moment and leads. The characteristic
temperature T ∗ can be raised, however, by making the coupling
to the leads � stronger. Note that T ∗ depends on � not
only through the prefactor, but also through the higher order
contributions of the hybridization, which cause an exponential
dependence of T ∗ on � and other parameters. Specifically, T ∗
may become large for the TTQD with a small charging energy
U . Our results provide an overview of how characteristic
energy scale varies in the different the regions in the parameter
space.

A general point worthy of note is that the two types
of the distortions show a clear contrast in the form of the
charge distribution for some regions of the parameter space
[see Figs. 16 and 19]. The diagonal distortion (εapex �= εd )
affects directly the potential of the apex site, so that the charge
distribution is more sensitive to �ε than to the off-diagonal one
(t ′ �= t), and this difference affects the characteristic energy
scale T ∗ significantly in some regions of the parameter space.
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APPENDIX A: PHASE SHIFTS δe AND δo

The phase shifts for interacting electrons can be defined,
using the Green’s function

Gij (iωn) = −
∫ β

0
dτ

〈
Tτ diσ (τ ) d

†
jσ (0)

〉
eiωnτ . (A1)

Here, β = 1/T , djσ (τ ) = eτHdjσ e−τH, and 〈O〉 =
Tr[ e−βH O ]/Tr e−βH. The retarded Green’s function is given
by G+

ij (ω) ≡ Gij (ω + i 0+) via the analytic continuation,
and the self energy 
ij (z) due to the interaction HU

dot can be
described by the Dyson equation

Gij (z) = G
(0)
ij (z) +

ND∑
i ′=1

ND∑
j ′=1

G
(0)
ii ′ (z) 
i ′j ′(z) Gj ′j (z). (A2)

Here, the number of the dots is ND = 3 for the TTQD, and
G

(0)
ij (z) is the non-interacting Green’s function corresponding

to the free Hamiltonian H0 ≡ H0
dot + Hmix + Hlead.

At zero temperature T = 0, the series gs and parallel gp

conductances are determined by the Green’s functions at the
Fermi level ω = 0,26,28

gs = 2e2

h
4�R�L

∣∣G+
ND1(0)

∣∣2
, (A3)

gp = 2e2

h

[ − �L Im G+
11(0) − �R Im G+

NDND
(0)

]
. (A4)

Note that the contributions from the vertex correction do not
appear here due to the property that the imaginary part of
the self-energy vanishes Im 
±

ij (0) = 0 at T = 0 and ω = 0.48

Furthermore, for the symmetric coupling �L = �R (≡ �), the
Green’s functions can be expressed in the forms,

G+
11(0) = G+

NDND
(0) = 1

2�

[
1

κe + i
+ 1

κo + i

]
, (A5)

G+
ND1(0) = 1

2�

[
1

κe + i
− 1

κo + i

]
. (A6)

Here, κe = − cot δe and κo = − cot δo include all the many-
body corrections, through the real part of the self-energy
Re 
+

ij (0).28 Equations (6)–(8) follow from Eqs. (A3)–(A6).

APPENDIX B: EVEN AND ODD ORBITALS

The eigenstates of the Hamiltonian H defined in Eq. (1) can
be classified according to the parity in the case that the system
has an inversion symmetry, using the even-odd basis defined
by a0σ ≡ d2σ ,

a1σ ≡ d1σ + d3σ√
2

, b1σ ≡ d1σ − d3σ√
2

. (B1)

The labels 0 and 1 for the even-odd basis are assigned in
the way that is shown in Fig. 21. The odd parity b1 orbital
corresponds to the eigenstate for E(1)

o , defined in Eq. (15), for
the noninteracting TTQD cluster. Similarly the eigenstate for

FIG. 21. Even and odd orbitals: the onsite potential of each orbital
is given by εa0 = εapex, εa1 = εd − t ′, and εb1 = εd + t ′.

E
(1)
e,± is given by a linear combination of the even a0 and a1

orbitals. ∣∣�(1)
e,+

〉 = (u+ a
†
0σ + u− a

†
1σ )|0〉, (B2)∣∣�(1)

e,−
〉 = (−u− a

†
0σ + u+ a

†
1σ )|0〉. (B3)

Here, |0〉 is a vacuum. The coefficients are normalized such
that u2

+ + u2
− = 1,

u2
± = 1

2

(
1 ± �ε + t ′√

(�ε + t ′)2 + 8t2

)
(B4)

and u2
+ (u2

−) corresponds to the spectral weight for the a0 (a1)
component in the excited state |�(1)

e,+〉. When the TTQD is
coupled to the leads, these states become the resonance levels,
which can be described by the Green’s functions for the a0, a1,
and b1 orbitals

G
(0)
a0 (ω) = 1

ω − εapex − 2t2

ω−εd+t ′+i�

, (B5)

G
(0)
a1 (ω) = 1

ω − εd + t ′ + i� − 2t2

ω−εapex

, (B6)

G
(0)
b1 (ω) = 1

ω − εd − t ′ + i�
. (B7)

Specifically for �ε + t ′ > 0 the coefficients take the value of
u2

+ > 0.5 and u2
− < 0.5. In this case the even excited state

|�(1)
e,+〉 becomes a sharp resonance peak, the spectral weight

of which is mainly on the apex site, and the spectral function
near ω � E

(1)
e,+ takes the form

−Im G
(0)
a0 (ω) � u2

+
u2

−�(
ω − E

(1)
e,+

)2 + (u2−�)2
, (B8)

−Im G
(0)
a1 (ω) � u2

−
u2

−�(
ω − E

(1)
e,+

)2 + (u2−�)2
. (B9)

The Green’s functions near the lower level ω � E
(1)
e,− can also

be written in similar forms, just by replacing + (−) in the
suffix by − (+) in Eqs. (B8) and (B9).

The interaction Hamiltonian defined in Eq. (3) can be
expressed, in terms of these even-odd orbitals, in the form

HU
dot = Una,0↑ na,0↓ + U

2
(na,1↑ na,1↓ + nb,1↑ nb,1↓)

+ U

2

(
1

2
na,1 nb,1 − 2�Sa,1 · �Sb,1

)
+ U

2
(a†

1↑a
†
1↓b1↓b1↑ + b

†
1↑b

†
1↓a1↓a1↑). (B10)
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Here, �Sa,i = ∑
σσ ′ a

†
iσ �σ σσ ′aiσ ′/2, �σ the Pauli matrices,

na,iσ = a
†
iσ aiσ , and na,i = ∑

σ na,iσ . The operators nb,1σ and
�Sb,1 for the odd-parity orbital b1σ are defined in the same way.

The Hilbert space for the isolated TTQD cluster, described
by Hdot = H0

dot + HU
dot, can be constructed from the three

orbitals. For instance, the Nagaoka state for Hdot has an odd
parity. It has one electron in the b1 orbital, and the eigenvector
takes the form ∣∣�(4)

odd

〉 = α0 |I〉 + α1 |II〉, (B11)

|I〉 = b
†
1↑a

†
1↑a

†
0↑a

†
0↓|0〉, |II〉 = b

†
1↑a

†
1↑a

†
1↓a

†
0↑|0〉. (B12)

Here, α0 and α1 are the coefficients. The eigenvectors for five
electrons can be expressed in the form∣∣�(5)

even

〉 = b
†
1↓

∣∣�(4)
odd

〉
, (B13)∣∣�(5)

odd

〉 = b
†
1↑a

†
1↑a

†
1↓a

†
0↑a

†
0↓|0〉. (B14)

Therefore, the odd-parity b1 orbital is fully occupied for
|�(5)

even〉, while the even a0 and a1 orbitals are fully occupied
for |�(5)

odd〉. The distribution of the charge and spin in the three
orbitals affects significantly on the way the screening by the
conduction electrons is carried out for finite �, when the leads
are connected to the TTQD.

APPENDIX C: NRG APPROACH

We provide an explicit form of the discretized Hamiltonian
HN of the NRG in this appendix. The non-interacting leads are
transformed into the tight-biding chains in the NRG approach,
through the logarithmic discretization with the parameter .
Then, a sequence of the Hamiltonian HN with a finite size is
introduced in the form45,46

HN = (N−1)/2
(
H0

dot + HU
dot + Hmix + H

(N)
lead

)
, (C1)

Hmix = v̄
∑

σ

( f
†
0,Lσ d1,σ + d

†
1,σ f0,Lσ )

+ v̄
∑

σ

( f
†
0,Rσ dNC,σ + d

†
NC,σ f0,Rσ ), (C2)

H
(N)
lead = D

1 + 1/

2

∑
ν=L,R

∑
σ

N−1∑
n=0

ξn −n/2

× ( f
†
n+1,νσ fn,νσ + f †

n,νσ fn+1,νσ ). (C3)

Here, D is the half-width of the conduction band, and the other
parameters are defined by

v̄ =
√

2D �A

π
, A = 1

2

1 + 1/

1 − 1/
log , (C4)

ξn = 1 − 1/n+1√
1 − 1/2n+1

√
1 − 1/2n+3

. (C5)
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