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Nonlinear light propagation in a single-mode micron-size waveguide made of semiconducting excitonic
material has been theoretically studied in terms of exciton polaritons by using an analysis based on macroscopic
fields. When a light pulse is spectrally centered in the vicinity of the ground-state Wannier exciton resonance, it
interacts with the medium nonlinearly. This optical cubic nonlinearity is caused by the repulsive exciton-exciton
interactions in the semiconductor, and at resonance it is orders of magnitude larger than the Kerr nonlinearity
(e.g., in silica). We demonstrate that a very strong and unconventional modulational instability takes place, which
has not been previously reported. After reducing the problem to a single nonlinear Schrödinger-like equation,
we also explore the formation of solitary waves both inside and outside the polaritonic gap and find evidence of
spectral broadening. A realistic physical model of the excitonic waveguide structure is proposed.
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I. INTRODUCTION

The nonlinear phenomena of modulational instability (MI)
and solitons formation make the basis of modern nonlinear
fiber optics, where the Kerr (cubic) nonlinearities are mainly
used.1 MI consists in the exponential (“parametric”) growth
of equally spaced spectral sidebands from a continuous wave
pump, and is equivalent to the degenerate four-wave mixing.1 It
is a particularly useful phenomenon in microstructured fibers,
where it allows the generation of coherent light at frequencies
where lasers are not easily available.2 The MI instability is
strictly connected to the existence of solitons, or solitary
waves, that is, localized short pulses that are invariant in the
propagation, and the shape of which is determined by the
specific nonlinearity and the dispersive features of fiber.1,3

Plane waves tend to become unstable due to the fact that
the actual “normal modes” of the fiber are nonlinear optical
solitons.1,4 A particularly useful phenomenon connected to
solitons is the so-called supercontinuum generation, which
is the sudden and explosive spectral broadening of an input
energetic short pulse in the fiber.5

However, optical fibers are not the only media where MI and
solitons can be observed and used. The general investigations
of optical nonlinear effects in dielectrics and semiconductors
also have a history of several decades,6–13 and recently
many applied researches have been started to investigate the
potential of the solitary wave sector of semiconductor materials
near excitonic resonances, for example, in semiconductor
microcavities or semiconductor gratings.14,15 The dominant
optical cubic nonlinearity for the polarization field in excitonic
materials, which we investigate here, is caused by the exciton-
exciton Coulomb repulsive interactions and essentially differs
from the cubic Kerr nonlinearity for the electric field (e.g., in
silica). The excitonic nonlinearity is orders of magnitude larger
than the Kerr one, but it also possesses a resonant nature—as
we will see in the following, it substantially weakens when
the detuning of the central frequency of the pulse from
the exciton resonance increases. The first difference allows
one to expect the observation of MI and solitons formation

not on the kilometer (e.g., like in silica fibers), but on the
micrometer scale and for lower pulse intensities. This opens
up the possibility of on-chip integration of optical devices for
nonlinear frequency conversion based on waveguides made of
semiconducting excitonic materials.

In this work we theoretically study all the mentioned optical
nonlinear properties of such excitonic waveguides. In Sec. II
on the basis of the known nonlinear differential equation for
the complex envelope of macroscopic medium polarization
field8 and Maxwell’s equations for the light pulse we derived
a general set of equations, which govern the light propagation
in the excitonic waveguide. Further, we applied this set of
equations to investigate the instability of long light pulses
propagating in the excitonic waveguide with respect to small
perturbations and without any approximations discovered a
very strong modulational instability of the pulse spectrum
with enormous gain (Sec. III). This is completely confirmed
by the direct numerical simulation of the pulse spectrum
evolution using the general set of equations. Next, we reduced
the general set of equations to a single nonlinear differential
equation for the polarization field envelope, which in its turn
under the slowly varying envelope approximation (SVEA) was
reduced to the nonlinear Schrödinger equation with an exact
and complete set of coefficients. Within the so-called “tail
analysis” formalism6 all the parameters of the corresponding
solitonic solution of this equation have been obtained for light
pulses spectrally centered both outside and even inside the
polaritonic gap, where the propagation of linear plane waves is
forbidden, while solitons can nevertheless form and propagate
if the incident pulse intensity is large enough (Sec. IV). In this
way we have substantially generalized previous theories in the
existing literature6,13 without any additional approximations.
These analytical derivations are also supported by direct
numerical simulations using the general set of equations under
SVEA. Finally, the obtained results allowed us to propose
a realistic physical model of the excitonic waveguide and
discuss the experimental conditions for the observation of
above-mentioned effects using GaAs as the representative
excitonic material (Sec. V).
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II. NONLINEAR EQUATION FOR POLARIZATION
In Ref. 8 it was shown that the set of semiconductor Bloch

equations for the excitonic medium in the low excitation
regime can be reduced to a single nonlinear differential
equation for a macroscopic complex envelope P (z,t) of
the medium polarization P(r,t) = {P (z,t)M(r⊥) exp[ikz −
iωt] + c.c.}/2 coupled to the external electric field E(r,t) =
{E(z,t)F (r⊥) exp[ikz − iωt] + c.c.}/2, where z is the lon-
gitudinal coordinate and r⊥ are the transverse coordinates.
Here we assume the existence of a fundamental guided mode,
thus allowing a factorization of the dimensionless transverse
modal distributions M and F from their respective envelopes.
Maintaining the most essential nonlinear terms, after the
separation of variables this equation can be written in the
following form:

i∂tP + (�ωx + iγx)P − α�1|P |2P
+ ãεBE(�MF − β�2|P |2) = 0, (1)

where �ωx = ω − ωx is the detuning of the pulse spectrum
central frequency ω from the 1s-exciton resonance ωx , γx is the
exciton damping parameter introduced here phenomenologi-
cally, α and β are nonlinear coefficients, which are completely
defined by the microscopic (quantum) properties of the
excitonic medium (within the jellium two-band exciton model
one has, as in Ref. 8: α = 26ωb/3 and β = 7, where ωb is the
exciton binding frequency), εB is the bulk background dielec-
tric constant, and ã is the photon-exciton coupling parameter.
It is well known that the photon-exciton coupled state, the
so-called polariton, shows a region of forbidden frequencies
in its dispersion relation, the polaritonic gap, the width of
which is given by ã. The parameters � depend on the rela-
tion between F and M: �1 ≡ ∫ |M|4dr⊥/

∫ |M|2dr⊥, �2 ≡∫ |M|2M̄Fdr⊥/
∫ |M|2dr⊥, �MF ≡ ∫

M̄Fdr⊥/
∫ |M|2dr⊥.

The modal distributions F and M are localized functions1

therefore �1 � 1, �2 ∼ 1, and �MF � 1, while �FM � 1 as
the polarization field modal distribution M is completely
determined by that of the electric field F . The cubic term in
Eq. (1) originates from the repulsive Coulomb exciton-exciton
interactions in the semiconductor, while the square term is
responsible for the phase-space filling effect (also called the
Pauli blocking) when the density of excitons is comparable

to the Mott density (for which β|P |2 ∼ 1), which leads to a
decoupling of the external electric field from the polarization
field.

In the low excitation regime considered in Ref. 8 for exciton
densities far below the Mott density, one can approximate
Eq. (1) as

i∂tP + (�ωx + iγx)P − α�1|P |2P + ã�MF εBE = 0. (2)

We perform the following analytical derivations and numerical
simulations on the basis of Eq. (2) coupled to Maxwell’s
equations for the electric and magnetic field envelopes of
the incident pulse, H(r,t) = {H (z,t)F (r⊥) exp[ikz − iωt] +
c.c.}/2. In the most general dimensionless form this set of
equations is given by⎧⎪⎨

⎪⎩
∂xη = (iω′ − ∂T )(ψ + �FMλϕ) − ik′η,

∂xψ = (iω′ − ∂T )η − ik′ψ,

∂T ϕ = i([iγ ′
x + �ω′

x − |ϕ|2]ϕ + �MF ψ),

(3)

where the following redefinitions and scalings have been
applied: ψ = E/E0, ϕ = P/P0, η = H/H0, x = z/z0, T =
t/t0, ω′ = ωt0, γ ′

x = γxt0, �ω′
x = �ωxt0, λ = ãt0, k′ =

kz0, and P0 = 1/
√

�1αt0, E0 = P0/(εBãt0), H0 = nE0, z0 =
ct0/n, c is the velocity of light in a vacuum, n = √

εB is the
nonresonant background refractive index, and t0 is an arbitrary
time scaling parameter, which will be properly chosen in the
following.

III. MODULATIONAL INSTABILITY ANALYSIS

We now use system (3) to analyze the linear stability of a
long pulse (ideally a continuous wave) propagating in the ex-
citonic optical waveguide with respect to small perturbations.
This is the MI analysis, see also Ref. 1. By substituting the
perturbed field and polarization envelopes {ψ ; η; ϕ}(x,T ) =
({ψ0; η0; ϕ0} + {a; g; p}(x,T )) exp[iqx] into system (3),
setting the small perturbations as {a; g; p}(x,T ) =
{a1; g1; p1} exp[iκx − iδT ] + {a2; g2; p2} exp[iδT − iκx],
and imposing the solvability condition of system (3) one
can obtain within the first-order perturbation theory1 the
dispersion relation κ(δ) for perturbations

∣∣∣∣∣∣∣∣
(ω′ + δ)2 − (k′ + q + κ)2 0 �FMλ(ω′ + δ)2 0

0 (ω′ − δ)2 − (k′ + q − κ)2 0 �FMλ(ω′ − δ)2

�MF 0 �ω′
x + δ − 2ϕ2

0 −ϕ2
0

0 �MF −ϕ2
0 �ω′

x − δ − 2ϕ2
0

∣∣∣∣∣∣∣∣
= 0, (4)

where κ is the perturbation wave number, δ is
the detuning from the central pump frequency, and
q = ω′[1 + λ�MF �FM/(ϕ2

0 − �ω′
x)]1/2 − k′. Those frequency

regions where Imκ(δ) < 0 correspond to the exponential
growth of perturbations and this defines the MI gain spectrum
G(δ) = 2 max |Imκ(δ)|. Among all the solutions of Eq. (4),
which is of the fourth order in κ , we select, for a given δ, the
one with the maximum absolute value of the gain.

To confirm the above analytical results we performed
direct numerical simulations of the propagation of long pulses
in the excitonic waveguide by using system (3) without
any approximations and obtained the spectrum evolution
[see Fig. 1(a)] in complete accordance with the analytical
predictions on the MI gain maxima positions [see Fig. 1(b)].

A fourth-order Runge-Kutta algorithm for the magnetic,
electric and polarization fields has been employed with the
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FIG. 1. (Color online)(a) Numerically obtained spectral evolu-
tion of a long pulse propagating along the x axis (according to
system (3), the initial pulse is ψ(x = 0,T ) = ψ0 exp[−(2T/Tw)2m],
Tw = 50,m = 20,ψ0 = 10.2, and the other parameters are �ω′

x =
−1.1,γ ′

x � 0.11). (b) Corresponding analytical prediction on the MI
gain G(δ) peaks, given by Eq. (4). ω′ is positioned at the origin.

following initial conditions: ψ(x = 0,T ) is a wide super-
Gaussian pulse, η(x = 0,T ) = ±ψ(x = 0,T ) (for, respec-
tively, forward and backward propagation) and ϕ(x = 0,T =
0) = 0, which means that the medium is not polarized before
the field arrival. We choose t0 = 1/ã (for GaAs this is ∼8 ps)
as the natural temporal scale of the system. Here we set
k′ = ω′ and for the simulations removed the large number
ω′ ∼ ωx/ã from system (3) by multiplication of the two
first equations by λ/ω′ and space rescaling z0 → z0λ/ω′ ∼
c/(nω) ∼ 0.04 μm, which is the general physical space scaling
of the whole developed model (from now on GaAs is selected
as a representative material, for numbers see Sec. V). With this
scaling it can be seen from Fig. 1 that the MI gain at its maxima
reaches values ∼100 μm−1, which is enormous in comparison
with that for silica optical fibers possessing nonlinear Kerr
effect with the MI gain ∼10 km−1. This example clearly shows
that the nonlinear phenomena, which manifest themselves in
optical fibers on the kilometer distances, can be observed in the
excitonic waveguides when the incident pulse has propagated
for just a few microns.

It should be noted that in our model the excitonic damping
γ ′

x has been naturally taken into account not only in the
simulations but also in the analytical results by the redefinition
�ω′

x → �ω′
x + iγ ′

x . The increase of γ ′
x makes the MI peaks
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FIG. 2. (Color online) Dependence of the MI gain G(δ) on the
frequency detuning �ω′

x according to Eq. (4) for the fixed value
of external electric field amplitude ψ0 = (ϕ0/�MF )(ϕ2

0 − �ω′
x). The

used parameters are ψ0 = 5,γ ′
x � 0.019.

smaller in gain and spectrally wider. The dependence of MI
gain on the detuning �ω′

x with small fixed nonvanishing γ ′
x

is very unconventional and is shown in Fig. 2. Peaks with
unusually large gain appear in the spectrum because of the
resonant nature of the excitonic nonlinearity, which, of course,
affects the dispersion relation (4)—complex poles appear in
its roots. The positions of these resonant gain peaks shown
in Fig. 2 are completely determined by such poles, and the
magnitude of the gain is consequently much larger than in
nonresonant instabilities. In Fig. 2 also much lower central
peaks can be seen, which are almost flat in the scale of
Fig. 1(b). These peaks’ shapes are analogous to those observed
in the MI gain spectra of optical fibers in the vicinity of the
pump frequency, where only nonresonant Kerr nonlinearity is
present.1

IV. FORMATION OF SOLITARY WAVES
We have also studied the solitary wave formation under

intense and short pulse excitation of the excitonic waveguide
in the coherent regime (γx = 0). After the change of variables
ξ = x − V T (where V is the dimensionless soliton group
velocity) system (3) in analogy with Ref. 16 can be reduced
to a single third-order nonlinear differential equation for the
polarization envelope ϕ:

iρ1∂
3
ξ ϕ + ρ2∂

2
ξ ϕ + iρ3∂ξϕ − ρ4ϕ + σ1∂

2
ξ [|ϕ|2ϕ]

+ iσ2∂ξ [|ϕ|2ϕ] + σ3|ϕ|2ϕ = 0, (5)

where

ρ1 ≡ V (V 2 − 1),

ρ2 ≡ λ�V 2 − (V 2 − 1)�ω′
x − 2V (V ω′ − k′),

ρ3 ≡ 2V ω′λ� − 2�ω′
x(V ω′ − k′) + V (k′2 − ω′2),

ρ4 ≡ (k′2 − ω′2)�ω′
x + λ�ω′2,

σ1 ≡ V 2 − 1, σ2 ≡ 2(V ω′ − k′), σ3 ≡ k′2 − ω′2,

and λ� = λ�MF �FM . Under the slowly varying envelope
approximation1 (SVEA) because ρi+1 	 ρi,i = 1,2,3, and
σi+1 	 σi,i = 1,2, Eq. (5) can be reduced to the nonlinear
Schrödinger equation

ρ2∂
2
ξ ϕ − ρ4ϕ + σ3|ϕ|2ϕ = 0, (6)

where we also set ρ3 = 0 as the definition of group velocity.16

As is well known,17 Eq. (6) has the solitonic solution

ϕ = dsech[ξ/b], (7)

where d = √
2ρ4/σ3, and b = √

ρ2/ρ4. Therefore, the electric
field takes the form

ψ = ϕ/�MF (−iV /b tanh[ξ/b] − �ω′
x + |ϕ|2). (8)

It is important to note that here SVEA has been used only after
the reduction of the full system (3) to the single third-order
differential equation that, unlike Ref. 11, makes the coefficients
in Eq. (6) exact and keeps the most essential cubic term at σ3.

To explicitly obtain the dispersion relation and other
parameters of the propagating pulse we apply the so-called
“tail analysis” described, for example, in Ref. 6. Starting
from the full system (3) and looking for solutions in the form
{ψ ; φ; η}(ξ ) = {ψ0; φ0; η0} exp[−ξ/V ], which reproduces the
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FIG. 3. (Color online) (a) The amplitude of the |ψ | pulse soliton as a function of the detuning �ω′
x (in the units of dimensionless gap

λ�) for the different soliton temporal widths t0 = s/ã according to Eqs. (7)–(9). The exciton resonance is positioned at the origin, the gap is
indicated by the gray lines. (b) The corresponding temporal shapes of solitons both inside and outside the polaritonic gap in the case of s = 2.

exponentially localized shape of a soliton for ξ → ∞ (at its
“tail”), one can linearize the system (3) and finally obtain

k′ = ω′ζ
n

, V = ζn

ζ1
, d2 = 2

[
�ω′

x + λ�

ζ 2/εB − 1

]
,

b2 = V 2

ω′2
λ� − (1 − 1/V 2)�ω′

x − 2(ω′ − k′/V )

(k′2/ω′2 − 1)�ω′
x + λ�

,

ζ 2 = 1

2

[
ζ2 +

(
ζ 2

2 + 4ζ 2
1

ω′2

)1/2
]

, (9)

ζ1 = εB

[
1 + λ�

(
ω′2 − 2ω′�ω′

x − 1
)

2ω′(1 + �ω′2
x )

]
,

ζ2 = εB

1 + �ω′2
x

[(
1 − 1

ω′2

)(
1 + �ω′2

x − λ��ω′
x

) − 2λ�

ω′

]
.

The set of Eqs. (9) completely defines all soliton parameters
[the dispersion law k′(ω′), the group velocity V , the amplitude
d, the spatial width parameter b] and contains just a single
free parameter t0, which in this section is the soliton temporal
width. All the other parameters are fully determined by the
excitonic medium properties (ωx , ã, εB, etc.).

Although the developed model is valid for relatively wide
solitons (t0 � 1/ã), it generalizes previous theories present in
the literature,6,13 and allows one to calculate all the soliton
parameters for the incident pulses spectrally centered both

outside and even inside the polaritonic gap, where solitons
can also form if the incident pulse intensity is large enough
[see Fig. 3]. Previously (e.g., in Refs. 6 and 13), in- and out-
of-gap solitons were treated separately with some additional
approximations. It is clear from Fig. 3 that to form in-gap
solitary waves one should input an intensity, which is orders
of magnitude higher than in the case of the out-of-gap solitons.
The amplitude of the latter grows with the detuning because
far from the exciton resonance the nonlinearity is weaker (see
Sec. V) and for the observation of nonlinear effects the input
intensity should be increased.

By using system (3) under the SVEA [this is analogous
to what is done in Ref. 11 and valid only out of the gap,
where k′ → ω′ and σ2 tends to become the dominant nonlinear
coefficient in Eq. (5)]:

{
∂xψ = i�FMλϕ/2,

∂τϕ = i([iγ ′
x + �ω′

x − |ϕ|2]ϕ + �MF ψ),
(10)

where τ = T − x, we simulated the propagation dynamics of
a short, intense sech-shaped pulse in the excitonic medium
and demonstrated solitary waves formation for the out-of-gap
regime [see Fig. 4(a)] and an essential broadening of the
spectrum [see Fig. 4(b)]. In the case of ω � ωx this spectral
broadening, as well as the MI sidebands detuning from ω,
should be limited by the exciton binding frequency value to
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FIG. 4. (Color online) (a) The formation of well-separated out-of-gap solitary waves is numerically demonstrated for the short intense sech-
shaped |ψ | pulse propagation in the excitonic medium. (b) The evolution of corresponding spectrum with the essential broadening. Calculations
are performed by using system (10) and initial pulse ψ(x = 0,τ ) = ψ0sech(τ ),ψ0 = 20, while other parameters are �ω′

x = 1.2,γ ′
x � 0.19.
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avoid the excitation of band electrons. Here we employed a
numerical method similar to that used in Sec. III.

V. REALISTIC EXCITONIC WAVEGUIDE PARAMETERS

On the basis of the above results we can discuss now the
structure and parameters of a realistic excitonic waveguide and
the physical conditions (and constraints) for the observation
of the considered effects by the example of some specific
excitonic material.

As it was mentioned previously, GaAs was selected as the
representative semiconducting excitonic material, for which
at low temperatures and for high-quality samples:18–20 h̄ωx =
1515 meV, h̄ωb = 4 meV, h̄ã = 0.08 meV, h̄γx � 0.03 meV,
and εB = 12.56. The low temperature condition is mentioned
here because, as it was shown experimentally,19,20 for GaAs
the polaritonic effects take place only below ∼20 K. However,
for those samples and temperatures for which h̄ã < h̄γx (for
example, in the presence of inhomogeneous broadening), the
polaritonic gap will not be visible and only out-of-gap effects
can be observed.

According to Refs. 9 and 21 one can properly return dimen-
sionality to the macroscopic polarization field in the following
way: P → uP , where u = [2dcv/(πa3

0ε0)][ε0cn/2]1/2 (P is
measured in the units of intensity1), dcv is the interband dipole
matrix element, a0 is the 1s-exciton Bohr radius, ε0 is the
vacuum permittivity, and the spin summation is also taken
into account. Therefore, the nonlinear coefficients in Eq. (1)
take form {α; β} → {α; β}/u2, while the coupling parameter
becomes equal8 ã = 2d2

cv/(πa3
0h̄ε0εB) in complete accordance

with the polaritonic gap definition.22 For GaAs, a0 � 12 nm
and dcv/e � 0.4 nm. These parameters allow one to calculate
the corresponding nonlinear coefficients α � 2040 m2/(W · s)
and β � 2.33 · 10−10 m2/W. Now we can estimate the lim-
iting field intensities from the condition |P |2 ∼ 1/β: P 2

lim �
0.43 MW/cm2 and E2

lim � [αP 3
lim/(ãεB)]2 � 14.3 MW/cm2.

If the incident pulse intensity is well below this limiting one
the density of excitons in GaAs waveguide is small enough and
both Eq. (2) and the developed theory as a whole remain valid.
It should be noted here that the damage threshold for the chosen
material is even higher than E2

lim: about 40 MW/cm2 for a
20-ns incident pulse.23 As this threshold grows rapidly with
the reduction of incident pulse duration23 one can expect that it
is much higher for ps pulses considered in this work. Knowing
the nonlinear coefficient α one can also easily reproduce the
input pulse intensities, which are necessary to form solitons
in the excitonic waveguide. According to the used scaling of
electric field [E0 = 1/(

√
αt0ãt0εB)], for example, for solitons

with a temporal width t0 = 2/ã [see Fig. 3] these intensities
are ∼10–100 kW/cm2 for incident pulses spectrally centered
inside the polaritonic gap and ∼0.1–1 kW/cm2 for those
spectrally centered outside the gap (it is clear that in both
cases these intensities are well below the limiting ones).

Nonlinear effects such as solitons’ formation can be
observed, for example, in silica optical fibers possessing
a Kerr nonlinearity only at much higher pulse intensities1

(�1 MW/cm2). The source of this large difference in intensi-
ties can be found by the proper comparison of the nonlinear
coefficient α at the cubic term in Eq. (2) with the corresponding
coefficient of the Kerr effect in silica fibers1 (which is actually

the nonlinear refractive index n
SiO2
2 � 10−20 m2/W). As we

will see below, the excitonic nonlinearity is much stronger
than the Kerr one, however, it has a resonant nature—it
decreases rapidly with the increase of detuning. This can be
demonstrated by the example of plane wave propagation. In
this case, according to Eq. (2), the amplitudes of polarization
and electric field are related by the following expansion up to
the third order:

P ≈ − ãεB�MF

�ωx + iγx

E − αeffE
3, αeff ≡ (ãεB�MF )3�1

(�ωx + iγx)4
α.

This dependence clearly shows that the factor multiplying
the cubic nonlinear term decreases rapidly when the detuning
�ωx grows. In other words, if the incident pulse is spectrally
centered far enough from the exciton resonance the considered
nonlinearity becomes negligible, and the background Kerr
nonlinearity of the medium starts to play the main role. How-
ever, near the resonance (�ωx ∼ 10ã) for reasonable20 low-
temperature values of h̄γx � 0.03–0.3 meV one can estimate
Re αeff ∼ 1011–1010n

SiO2
2 that clearly indicates the domination

of excitonic nonlinearity in the vicinity of resonance.
It is also important to note that excitonic media efficiently

convert light into excitons, thus being optically highly absorp-
tive near the exciton resonance. Therefore, the incident pulse
spectrum central frequency should not be too close to ωx . One
can estimate the corresponding absorption length as22

l = c

ω

Re
√

ε

Im ε
, ε = εB

(
1 − ã�MF �FM

�ωx + iγx

)
, (11)

where ε is the polariton dielectric function in the linear
regime. In the case of GaAs, for reasonable values of the
detuning (a few times ã), this length is of the order of several
microns. This agrees well with the micron-scale lengths,
which are completely sufficient for the revelation of nonlinear
optical effects in excitonic waveguides (see Sec. III). However,
waveguide lengths of just a few microns are not sufficient to
actually guide light, and it is unlikely that one can produce
such a short waveguide made of pure semiconducting material.
One possible solution is to use a composite waveguide made of
material without excitonic resonances in its optical response
(e.g., silica) doped with macroscopic domains of semiconduc-
tor (for example, nanoparticles). But then a different theory
based on the Maxwell-Garnett formalism should be developed.
Another way is to use a waveguide in the form of sandwiched
semiconducting heterostructure with central working layer
made of semiconductor with an excitonic feature surrounded
by the semiconducting layers made of a different material
[see Fig. 5]. This cladding material should have no excitonic
resonances in the same range of frequencies than that in the
working layer so that the propagating light will not be affected
by the excitonic nonlinearity, but should possess almost the
same refractive index so that the optical guided mode is
well spread outside the working layer, and the photon-exciton
coupling is reduced accordingly.

Because of this special structure of the proposed waveguide,
the modal distribution F for the electric field will be much
wider than the distribution M for the polarization field.
Therefore, the transverse integral �FM in the main system
(3) becomes much smaller than unity, while still �MF � 1.
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~0.1 µm

~5-10 µm ~100 µm

~2 µm

FIG. 5. (Color online) Schematic drawing of a sandwiched semi-
conducting waveguide. The realistic length parameters are indicated
for the case of GaAs (central layer) surrounded by AlGaAs.

For example, by using the realistic AlGaAs/GaAs sandwiched
waveguide transverse parameters, which are indicated at Fig. 5,
one can obtain �FM � 1 and then get from Eq. (11) for
�ωx ∼ 10ã an absorption length l ∼ 100 μm. Of course, as
it follows from system (3), such a small �FM leads to a weak
coupling between the electric and polarization fields and thus
to a weak influence of the excitonic nonlinearity on the electric
field, but this is compensated by the long propagation distance.
Also the reduction of �FM results in the decrease of the gap
width λ� (see Sec. IV), therefore longer incident pulses should
be used to have a sufficiently narrow spectrum and efficiently
deliver the pulse energy into the polaritonic gap.

As a last point we should also note that low-
dimensional semiconductor structures, such as semiconductor
microcavities,14 certainly have a number of advantages with
respect to the bulk semiconductors considered here (e.g.,
larger exciton binding frequency, which translates into larger
optical nonlinearities). However, waveguides based on a
bulk semiconductor are preferable for the observation of
nonlinear processes associated with solitons because they are
weakly affected by diffraction, which is hard to overcome

in microcavities,14 and also because such waveguides can be
more easily produced and tested than guiding structures in
microcavities. A possibility to properly combine the excellent
waveguiding properties of an optical fiber with optical features
of pure bulk semiconductors in a single structure has been
very recently demonstrated—a silica optical fiber with a
semiconducting ZnSe core has been fabricated.24 This should
also stimulate further experimental investigations of nonlinear
optical properties of bulk semiconductor waveguides.

VI. CONCLUSIONS

In conclusion, we have carried out a MI analysis of
continuous waves propagation in semiconducting excitonic
media. Strong peaks of MI relatively far detuned from the
pump frequency have been found, possessing gain orders of
magnitude larger than that in the case of optical fibers. Our
analytical findings are supported by numerical simulations
of wide super-Gaussian pulses propagation. Moreover, the
solitonic sector shows evidence of out-of-gap and in-gap
solitons, the shape of which has been given analytically by
using SVEA in a unified formalism, greatly generalizing
previous theories. Last but not least, we have proposed
a simple way to overcome the problem of light-exciton
conversion absorption by employing a sandwiched excitonic
structure (by the example of AlGaAs/GaAs). Further work will
consider the complete set of semiconductor Bloch equations
in a semiclassical way (including the equation for inversion)
instead of Eq. (1). This will also allow to treat the evolution
of short (subpicosecond) and coherent pulses beyond the
approximation of low exciton density.
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057406 (2005); T. Höner zu Siederdissen, N. C. Nielsen, J. Kuhl,
M. Schaarschmidt, J. Förstner, A. Knorr, G. Khitrova, H. Gibbs,
S. W. Koch, and H. Giessen, Opt. Lett. 30, 1384 (2005).

13S. A. Darmanyan, A. M. Kamchatnov, and M. Neviére, JETP 96,
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