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Response properties of III-V dilute magnetic semiconductors including disorder, dynamical
electron-electron interactions, and band structure effects
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A theory of the electronic response in spin and charge disordered media is developed with the particular aim to
describe III-V dilute magnetic semiconductors like Ga1−xMnxAs. The theory combines a detailed k · p description
of the valence-band, in which the itinerant carriers are assumed to reside, with first-principles calculations of
disorder contributions using an equation-of-motion approach for the current response function. A fully dynamic
treatment of electron-electron interaction is achieved by means of time-dependent density-functional theory. It
is found that collective excitations within the valence-band significantly increase the carrier relaxation rate by
providing effective channels for momentum relaxation. This modification of the relaxation rate, however, has
only a minor impact on the infrared optical conductivity in Ga1−xMnxAs, which is mostly determined by the
details of the valence-band structure and found to be in agreement with experiment.
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I. INTRODUCTION

The idea of using both charge and spin of electrons
in a new generation of electronic devices constitutes the
basis of spintronics.1 The magnetic properties of the mate-
rial combined with its semiconducting nature makes dilute
magnetic semiconductors (DMSs) potentially appealing for
various spintronics applications.2 In particular, the effect of
carrier-mediated ferromagnetism opens up the possibility to
control the electron spin and magnetic state of a system or
device by means of an electric field. A lot of attention is
drawn to Ga1−xMnxAs due to the well-developed technology
of the conventional GaAs-based electronics and discovery of
its relatively high ferromagnetic transition temperature,2 with
a current record of Tc = 185 K.3

Unlike most other III-V DMSs, the nature of the itinerant
carriers in Ga1−xMnxAs is still under debate.4,5 It is widely
accepted that for low-doped insulating samples the Fermi
energy lies in a narrow impurity band. For more heavily
doped, high-Tc metallic samples there are strong indications
that the impurity band merges with the host semiconductor
valence band, forming mostly hostlike states at the Fermi
energy with some low-energy tail of disorder-related localized
states.6 First-principles calculations7–9 have so far not been
fully conclusive regarding the nature of the itinerant carriers
in this regime, and further theoretical studies continue to
be necessary. Meanwhile, attention has shifted to model
Hamiltonian approaches assuming either the valence-band10 or
impurity-band11 picture and their ability to adequately describe
the experimental results in Ga1−xMnxAs.

The extreme sensitivity of the magnetic and transport prop-
erties of Ga1−xMnxAs to details of the growth conditions12

and postgrowth annealing13–15 points to the crucial role played
by the defects and their configurations. This has stimulated in-
tense research on the structure of defects and their influence on
the various properties of the system.16 It is essential, therefore,
to develop a theory of electrical conductivity in DMSs with
emphasis given to disorder and electron-electron interactions,
without neglecting the intricacies of the electronic band
structure. Several previous theoretical studies of Ga1−xMnxAs,

based on the assumption of the valence-band nature of itinerant
holes, treat the band structure in detail, while disorder and
many-body effects are accounted for only by using simple
phenomenological relaxation-time approximations and static
screening models.17–19 Other studies of the magnetic and
transport properties of DMSs include microscopic treatments
of disorder effects,20–25 but use simplified model descriptions
of the band structure.

Here we present a comprehensive theory for the electron
dynamics in DMSswhich accounts for the complexity of the
valence-band structure of the semiconductor host material and
treats disorder and electron-electron interaction on an equal
footing. In previous work we used a simplified treatment of
the semiconductor valence band26,27 or considered only static
properties of the system.28 In this paper we simultaneously
account for the complexity of the valence band, use a first-
principles approach to describe disorder contributions, and
employ a fully dynamic treatment of electron interactions.

To account for the valence-band structure we use the
generalized k · p approach29 where a certain number of bands
are treated exactly while the contribution from the remote
bands is included up to second order in momentum. For our
purposes (in the optimally annealed regime, with itinerant
valence band holes) the k · p approach is an ideal compromise:
It captures the essential features of the band structure which
dominate the infrared response of Ga1−xMnxAs, while being
computationally much less expensive than a fully ab initio
treatment. The latter would be more appropriate for acceptor
levels that are spatially localized or deep in the gap.4

To describe disorder effects we use the equation of motion
for the paramagnetic current response function of the fully dis-
ordered system. This approach has some similarities to models
developed earlier using the memory function formalism.30–32

The advantage of our approach as compared with the memory
function formalism is the relative simplicity and transparency
of the derivation and the straightforward possibility to include
the spin degree of freedom. Another advantage is that our
formalism is expressed in terms of a current-current and
a set of density and spin-density response functions. This
enables us to use the powerful apparatus of time-dependent
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density-functional theory (TDDFT)33 to treat many-body
effects such as dynamic screening and collective excitations
of the itinerant carriers in principle exactly.

The paper is divided into two major sections and con-
clusions. For ease of reading, some of the derivations are
presented in appendices. The theory section (Sec. II) is
organized as follows. In Sec. II A we present our general
formalism based on the equation of motion of the current-
current response function of the disordered system. In Sec. II B
we describe the evaluation of the current-current, density and
spin-density response functions for the multiband system using
a generalized k · p perturbation approach. Next, in Sec. II C
we show the treatment of electron-electron interaction by
means of TDDFT. In Sec. III we first discuss the new features
that the valence-band character of itinerant carriers brings into
the system, namely the dominance of the long-wavelength
side of the single-particle excitation spectrum by the interband
spin transitions and the effective suppression of the collective
plasmon excitations within the valence band for the whole
range of momentum. Next, in Sec. III B we discuss the effect
of magnetic doping: spin and charge disorder in the system
and modification of the band structure in the magnetically
ordered phase. We show that the full dynamic treatment of
electron-electron interactions allows us to capture the effect of
collective excitations on the carrier relaxation time. We then
compare our results also with experimental data on infrared
conductivity. Finally, in Sec. IV we draw our conclusions.

II. THEORY

A. General formalism

We discuss a system described by the Hamiltonian

Ĥ = Ĥe + Ĥm + Ĥd, (1)

where Ĥe is the contribution of the itinerant carriers and Ĥm

represents the subsystem of localized magnetic spins. These
two terms constitute the “clean” part of the total Hamiltonian.
The last term in Eq. (1) describes disorder in the system:

Ĥd = V 2
∑

k

�̂U(k) · �̂ρ(−k), (2)

where the four-component charge and spin disorder scattering
potential,

�̂U(k) = 1

V

∑
j

⎛⎜⎜⎜⎜⎜⎝
Uj (k)

− J
2

(
Ŝz

j − 〈S〉)
− J

2 Ŝ−
j

− J
2 Ŝ+

j

⎞⎟⎟⎟⎟⎟⎠ eik·Rj , (3)

is coupled to the four-component vector of charge- and spin-
density operators of the itinerant carriers:

�̂ρ =

⎛⎜⎝ ρ̂1

ρ̂z

ρ̂+
ρ̂−

⎞⎟⎠ =

⎛⎜⎝ n̂

ŝz

ŝ+
ŝ−

⎞⎟⎠ , (4)

with the components

ρ̂μ(k) = 1

V

∑
q

∑
nn′

〈un′,q−k|σμ|un,q〉 â+
n′,q−k ân,q . (5)

Here, σμ (μ = 1,z, + ,−) is defined via the Pauli matrices,
where σ 1 is the 2 × 2 unit matrix, σ± = (σx ± iσ y)/2,
and |un,q〉 are the two-component Bloch function spinors
with wave vector q and band index n. The summation in
Eq. (3) is performed over all defects. Note that the mean-field
part of the p-d exchange interaction between itinerant holes
and localized spins is absorbed into the clean system band
structure Hamiltonian Ĥe; disorder in our model consists of
the Coulomb potential of charge defects and fluctuations of
localized spins around the mean-field value 〈S〉.

The general case of multiple types of defects, including
defect correlations, was considered in Ref. 26. For simplicity
we here include only the most important defect type, namely
randomly distributed manganese ions in gallium substitu-
tional positions (MnGa). Our model treats localized spins as
quantum mechanical operators coupled to the band carriers
via a contact Heisenberg interaction featuring a momentum-
independent exchange constant J . We use the value of V J =
−55 meV nm3, which corresponds to the widely used DMS
p-d exchange constant N0β = −1.2 eV.10 The z axis is chosen
along the direction of the macroscopic magnetization.

Earlier we developed a theory of transport in charge and
spin disordered media with emphasis on a treatment of disorder
and electron-electron interaction.27 It is based on an equation-
of-motion34,35 approach for the paramagnetic current-current
response of the full, disordered system:

χjpαjpβ
(r,r′,τ ) = − i

h̄
�(τ )〈[ĵpα(τ,r),ĵpβ (r′)]〉H , (6)

where

ĵpα(τ,r) = e
i
h̄
Ĥ τ ĵpα(r)e− i

h̄
Ĥ τ (7)

is the paramagnetic current-density operator in Heisenberg
representation and α,β = x,y,z are Cartesian coordinates.

During the derivation we assumed our system to be macro-
scopically homogeneous, which implies that the coherence
length of the electrons is much shorter than the system size.
In this case, summing over all electrons will leave us with
an averaged effect of disorder that does not depend on the
particular disorder configuration. For such macroscopically
homogeneous systems the response at point r depends only on
the distance |r − r′| to the perturbation and not on the particular
choice of points r and r′. The a posteriori justification for
this assumption is that we will apply our formalism in the
weak-disorder limit on the metallic side of the metal-insulator
transition in Ga1−xMnxAs.

Another major approximation involves the decoupling
procedure, where we neglect the influence of the itinerant
carriers on the localized spins. Therefore, our approach
does not include magnetic polaron effects and lacks the
microscopic features of carrier mediated ferromagnetism. The
latter, however, can be reinstated to some extent by introducing
a phenomenological Heisenberg-like term in the magnetic
subsystem Hamiltonian Ĥm. Details of the derivation are
presented in Ref. 27. Thus, instead of calculating the Curie
temperature for our DMS system, we take it as an input
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parameter to define the temperature-dependent magnetization
of the localized spin subsystem. The coupling to the itinerant
carriers then occurs via the fluctuations of the localized spins
that come in through the disorder potential, Eq. (3).

The final expression for the total current response reads

χJ
αβ(q,ω) = χc

jpαjpβ
(q,ω) + n

m
δαβ

+ V 2

m2ω2

∑
k

kαkβ

∑
μν

〈Ûμ(k) Ûν(−k)〉Hm

× (χρμρν (q − k,ω) − χc
ρμρν (−k)

)
, (8)

where χρμρν (k,ω) is the set of charge- and spin-density
response functions with respect to operators (4) and (5) and
the superscript “c” indicates quantities defined in the clean
system. By comparing Eq. (8) with the Drude formula in the
weak-disorder limit ωτ � 1,

χJ
D(ω) = n

m

1

1 + i/ωτ
≈ n

m
− in

mωτ
, (9)

we identify the tensor of Drude-like frequency- and
momentum-dependent relaxation rates of the form

τ−1
αβ (q,ω) = i

V 2

nmω

∑
k
μν

kαkβ〈Ûμ(−k) Ûν(k)〉Hm

× (χρμρν (q − k,ω) − χc
ρμρν (k,0)

)
. (10)

Note that the right-hand side of Eqs. (8) and (10) contains
the set of spin and charge response functions of the full,
disordered system. Therefore, strictly speaking, Eq. (8) should
be evaluated self-consistently36 with the continuity equations
closing the loop. Here we use a simplified approach based on
two approximations. First, taking the weak-disorder limit in
the right hand side of Eq. (10) we retain terms up to the second
order in components of the disorder potential. In other words,
the spin and charge response functions of the full system in
Eq. (10) are replaced by their clean system counterparts:

χρμρν (q − k,ω) → χc
ρμρν (q − k,ω). (11)

Next we assume that the paramagnetic current response
function of the full system may be expressed as the clean
system response function with a lifetime broadening given by
Eq. (10):

χjpαjpβ
(q,ω) ≈ χc

jpαjpβ

(
q,ω − iτ−1

αβ

)
. (12)

Equations (10)–(12) will be used in the following section.

B. Multiband k · p approach

To obtain the conductivity through Eqs. (10)–(12) we will
have to calculate the paramagnetic current response and spin-
and charge-density response functions of the clean system. To
properly describe the complexity of the semiconductor valence
band we are going to implement the multiband k · p approach.

First we derive the current and density response functions
in the formal basis of the Bloch states

|n,k〉 = 1√
V

eik·r|un,k〉, (13)

which diagonalize the clean system Hamiltonian

Ĥ =
∑
n,k

εn,k â+
n,kân,k. (14)

Within second quantization in basis (13), the paramagnetic
current in the system with a spin-orbit interaction is given by

ĵp(q) = 1

V

∑
n,n′,k

[
h̄

m0

(
k − 1

2
q
)

〈un′,k−q|un,k〉

+ 1

m0
〈un′,k−q| �̂π |un,k〉

]
â+

n′,k−qân,k, (15)

with

�̂π = p̂ + h̄

4m0c2
[σ̂ × ∇̂Uc], (16)

where Uc is the periodic crystal-field potential. Hereafter,
when performing the real space integration, we assume that
the envelope function varies slowly on the scale of a unit cell.

Introducing the time dependence of the creation and
destruction operators in Eq. (15), the paramagnetic current
response of the multiband system can be directly evaluated,
and one finds

χc
jpαjpβ

(q,ω) = 1

V m2
0

∑
n,n′,k

fn′,k−q − fn,k

εn′,k−q − εn,k + h̄ω + iη

×
[
h̄
(
kα − qα

2

)
〈un′,k−q|un,k〉

+〈un′,k−q|π̂α|un,k〉
][

h̄
(
kβ − qβ

2

)
×〈un,k|un′,k−q〉 + 〈un,k|π̂β |un′,k−q〉

]
. (17)

A similar procedure for the spin- and charge-density response
yields

χc
ρμρν (q,ω) = 1

V

∑
n,n′,k

fn′,k−q − fn,k

εn′,k−q − εn,k + h̄ω + iη

〈un′,k−q|σ̂ μ|un,k〉〈un,k|σ̂ ν |un′,k−q〉. (18)

All we need now for evaluating Eqs. (17) and (18) is to
determine the form of the periodic Bloch functions |un,k〉
that diagonalize the clean system Hamiltonian. The common
approach is to diagonalize the multiband k · p Hamiltonian
that treats certain bands exactly and treats contributions
from remote bands up to second order in momentum. The
derivation of such a Hamiltonian is outlined in Appendix A.
By diagonalizing the matrix of this Hamiltonian, however,
we obtain the eigenvectors of the modified Hamiltonian (A7).
Before evaluating the matrix elements between Bloch periodic
functions |un,k〉 in Eqs. (17) and (18) we therefore have to
perform the unitary transformation Eq. (A4). Details of these
calculations are presented in Appendix B.

The final expression for the paramagnetic current response
function in the long-wave limit q = 0 (since we are looking
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for the optical response) is given by

χc
jpαjpβ

(ω) = 1

V m2
0

∑
n,n′,k

fn′,k − fn,k

εn′,k − εn,k + h̄ω + iη

×
[∑

s ′s

B∗
s ′(n′,k)Bs(n,k)

m0

h̄

∂

∂kα

〈s ′|H̄ |s〉
]

[∑
s ′s

B∗
s (n,k)Bs ′ (n′,k)

m0

h̄

∂

∂kβ

〈s|H̄ |s ′〉
]

, (19)

where H̄ denotes the effective multiband k · p Hamiltonian
(A7) and B(n,k) is its eigenvector for the state with energy εn,k.
The charge- and spin-density response is approximated by

χc
ρμρν (q,ω) ≈ 1

V

∑
n,n′,k

fn′,k−q − fn,k

εn′,k−q − εn,k + h̄ω + iη

×
∑

s ′,s,τ,τ ′
B∗

s ′ (n′,k − q)Bτ ′(n′,k − q)

×Bs(n,k)B∗
τ (n,k)〈s ′|σ̂ μ|s〉〈τ |σ̂ ν |τ ′〉. (20)

If σ̂ μ = (σ̂ ν)+, i.e., for χnn, χszsz , and χs±s∓ , the second sum
is a real quantity. Then, the imaginary part is

[χc
ρμ(ρμ)+ (q,ω)

] = − π

(2π )3

∑
n,n′

∫
d3k(fn′,k−q − fn,k)

× δ[h̄ω − (εn,k − εn′,k−q)]

×
∣∣∣∣∑

s,s ′
B∗

s ′(n′,k−q)Bs(n,k)〈s ′|σ̂ μ|s〉
∣∣∣∣2.

(21)

It is seen that in the long-wavelength limit (q → 0) that the
imaginary part of the density response (σμ ≡ σ 1) vanishes
as a product of orthogonal states, while the imaginary part of
spin response is, in general, finite. We conclude from this that
the long-wavelength spectrum of single-particle excitations is
dominated by spin transitions.

The calculations were performed within an 8-band k · p
model. The basis functions and explicit form of the Hamilto-
nian matrix are presented in Appendix C.

C. Electron-electron interaction
A major advantage of our formalism is that it is expressed

in terms of current and density response functions. This allows
us to use the powerful apparatus of TDDFT to account for the
effects of electron-electron interaction.

Let us first examine the current response of the clean system.
In this paper we are considering the optical response, i.e., the

response to transverse perturbations. Since transverse pertur-
bations induce only a transverse response in a homogeneous
system, there are no density fluctuations directly created by
an electromagnetic field. The total current response of the
interacting system in this case can be expressed as

(χJ (q,ω))−1 = (χJ
0 (q,ω))−1 + 4πe

ω2 − c2q2
+ q2

ω2
vqGT +,

(22)

where χJ
0 is the response of the noninteracting system, vq

is the Coulomb interaction, and the local field factor GT +
represents corrections from the exchange-correlation (xc) part
of the electron interaction.

The corrections to the transverse current response function
caused by electron-electron interaction are relativistically
small in this case and can be neglected. So, for the trans-
verse current response of the clean system we will use the
noninteracting form.

The set of the density and spin-density response functions of
the clean system enters our expression (10) for the frequency-
and momentum-dependent relaxation rates. TDDFT allows
us to describe all the effects of electron interaction, including
correlations and collective modes, in principle, exactly. Within
the TDDFT formalism the charge- and spin-density responses
of the interacting system can be expressed as:37

χ−1(q,ω) = χ0
−1(q,ω) − v(q) − fxc(q,ω), (23)

where all quantities are 4 × 4 matrices and χ0 denotes the
matrix of response functions of the noninteracting system,
v(q) is the Hartree part of the electron-electron interactions,
and fxc represents xc corrections in the form of local field
factors. As a simplification we use only the exchange part of
fxc and apply the adiabatic local spin density approximation.
Explicit expressions for the local field factors of the partially
spin polarized system are given in Appendix D.

In general, fxc is a symmetric 4 × 4 matrix. If, however, the
z axis is directed along the average spin, then the ground-state
transversal spin densities vanish, ρ+ = ρ− = 0, and the matrix
fxc becomes block-diagonal:

fxc =

⎛⎜⎝f11 f1z 0 0
f1z fzz 0 0
0 0 0 f+−
0 0 f+− 0

⎞⎟⎠ . (24)

Performing the matrix inversion in Eq. (23) we obtain the
tensor of response functions of the interacting system in the
form

χ ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎝

χnn χnsz χns+ χns−

χszn χszsz χszs+ χszs−

χs+n χs+sz χs+s+ χs+s−

χs−n χs−sz χs−s+ χs−s−

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

χ0
nn − fzz�

εLFF

χ0
nsz + f1z�

εLFF
0 0

χ0
szn + f1z�

εLFF

χ0
szsz − (v(q) + f11)�

εLFF
0 0

0 0 0
χ0

s+s−

1 − f+−χ0
s+s−

0 0
χ0

s−s+

1 − f+−χ0
s−s+

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (25)
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EF

hh lh so

hh- lh

FIG. 1. (Color online) Schematic diagram of the possible single-
particle excitations in the valence band of a p-type semiconductor.
Dashed lines indicate intravalence-band excitations within the heavy-
hole band (hh), within the light-hole band (lh), and intervalence-band
excitations between heavey-hole and light-hole bands (hh-lh) and
between split-off and heavy hole and light hole bands (so).

where

εLFF = 1 − (v(q) + f11
)
χ0

nn(q,ω) − fzzχ
0
szsz (q,ω) − f1z(

χ0
nsz (q,ω) + χ0

szn(q,ω)
)+ (fzz(v(q) + f11)−f 2

1z

)
�,

(26)

� = χ0
nnχ

0
szsz − χ0

nszχ
0
szn = 4χ0

↑χ0
↓. (27)

III. RESULTS AND DISCUSSION

We now discuss applications of our formalism for the
specific case of GaMnAs DMSs. The band structure para-
meters used in our calculations correspond to those of the
GaAs host material: the band gap and spin-orbit splitting
are Eg = 1.519 eV and � = 0.341 eV, Luttinger parameters
are γ1 = 6.97, γ2 = 2.25, and γ3 = 2.85, the conduction-band
effective mass is me = 0.065 m0, the Kane momentum matrix
element is Ep = 27.86 eV, and the static dielectric constant is
K = 13. The s(p)-d exchange interaction constants within
the conduction and valence bands are N0α = 0.2 eV and
N0β = −1.2 eV, respectively.

A. Clean p-type GaAs

Before considering the effects of magnetic impurities and
associated charge and spin disorder on the transport properties,
we would like to discuss some new features that the valence
band character of the itinerant carriers brings into the system.
They stem from the complexity of the semiconductor valence
band: strong spin orbit interaction and the �-point degeneracy
of the p states.

The multiband nature of the valence-band gives rise to a
rich single-particle excitation spectrum. In Fig. 1 we show a
schematic representation of the valence band structure of a
p-type semiconductor. Arrows indicate the possible single-
particle excitations. In addition to the intraband excitations
within the heavy-hole band (analogous to the excitations
within the conduction band of n-doped semiconductors), here
we have intraband excitations within the light-hole band
as well as intervalence-band excitations between light- and
heavy-hole bands and between split-off and heavy- and/or
light-hole bands.

χ 
[e

V
-1

 Å
-3

]

-0.006

-0.004

-0.002

0

energy [eV]
0 0.2 0.4 0.6

q= 0.05 Å-1

Im [χ nn ]
Im [χ zz]

(b)

χ 
[e

V
-1

 Å
-3

]

-0.03

-0.02

-0.01

0

energy [eV]
0 0.2 0.4

q= 0.003 Å-1

Im [χ nn ]
Im [χ zz]

(a)

FIG. 2. (Color online) Imaginary part of the noninteracting
density and longitudinal spin response functions in p-doped GaAs
for different wave vectors (a) q = 0.003 Å

−1
and (b) q = 0.05 Å

−1
.

The hole concentration is p = 3.5 × 1020 cm−3.

The variety of the possible single-particle excitations sub-
stantially modifies the density and spin response of the system.
Some of the modifications are not very obvious. At the end of
the Sec. II B we already mentioned the significant difference
between spin and density responses in the long-wavelength
limit. Let us consider this in more detail. The spin response
of the noninteracting electron gas coincides with the density
response and can be expressed through the Lindhard function.
The spin-orbit interaction within the valence band breaks down
this correspondence.

In Fig. 2 we plot the imaginary part of the noninteracting
density and longitudinal spin response functions in p-doped
GaAs for different wave vectors. For a small wave vector
q = 0.003 Å

−1
the longitudinal spin response exhibits a strong

peak around 0.2 eV associated with intervalence-band spin
excitations between heavy- and light-hole subbands. The
corresponding density excitations are suppressed due to the
orthogonality of the initial and final states; see Eq. (21).
As a result, the density response for short wave vectors
is almost nonexistent. If we increase the wave vector to
q = 0.05 Å

−1
, the intraband excitations within the heavy-hole

band become noticeable in both density and spin responses.
The longitudinal spin response, however, still prevails in the
range of intervalence-band transitions.

This leads us to conclude that the long-wavelength spectrum
of the single-particle excitations in p-doped semiconductors
is dominated by the intervalence-band spin excitations. The
origin of this effect is in the spin-orbit interaction, which mixes
spin and orbital degrees of freedom. Without the spin-orbit
interaction, vertical spin excitations would be prohibited due
to the orthogonality of the orbital parts of Bloch functions.

Another interesting feature of p-doped semiconductors
is the effective suppression of the collective modes in the
valence band. In the conventional picture of the conduction
band, collective plasmon excitations are well defined on
the long-wavelength side of the excitation spectrum. With
increasing momentum, the collective mode approaches and
then enters the region of single-particle excitations, where it
becomes rapidly suppressed due to Landau damping.

The situation is different for the valence band. In
Fig. 3 we plot a schematic diagram of the excitation spectrum.
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FIG. 3. (Color online) Schematic diagram of the excitation
spectrum within the semiconductor valence band. Labels indicate
the edges of single-particle excitation regions within the heavy-hole
band (hh), within the light-hole band (lh), between heavy-hole and
light hole bands (hh-lh), and between the split-off band and heavy-
and light-hole bands (so); see Fig. 1. As a result, the plasmon mode
in the valence band lies entirely within the single-particle excitation
spectrum and is effectively suppressed due to Landau damping.

The excitation region for single-particle transitions within the
heavy-hole band is qualitatively similar to that of the conduc-
tion band. In the valence band, however, the single-particle
excitation spectrum is extended due to the intraband transitions
within the light-hole band and interband transitions between
heavy- and light-hole bands and between split-off and heavy-
/light-hole bands (red and blue arrows in Fig. 1). In Fig. 3
the corresponding regions of single-particle excitations are
shaded with different patterns. It can be seen that the collective
mode in the valence band falls entirely within the region of
single-particle excitations and, therefore, becomes suppressed
even at the long-wavelength side of the spectrum. Error bars
in Fig. 3 indicate the plasmon resonance broadening due to
Landau damping.

To illustrate the effect we have performed numerical calcu-
lations of the plasmon dispersion and the lifetime broadening
of the collective excitations in the valence band of p-doped
GaAs. The plasmon frequencies were determined as the zeros
of the real part of the random phase approximation (RPA)
dielectric function and the lifetime broadening is associated
with the imaginary part of the frequency poles. In Fig. 4
the black and red lines correspond to the dispersion and
the lifetime of the plasmon excitations, respectively. The
dotted lines indicate the regions of the intraband single-
particle excitations within the light-hole and heavy-hole bands;
compare with Fig. 3. At small wave vectors the plasmon mode
falls within the region of intervalence-band single-particle
excitations resulting in a lifetime broadening of the collective
resonance of about 5 meV. Once the plasmon dispersion enters
the region of single-particle excitations within the light-hole
band, the lifetime broadening substantially increases into the
30–40-meV range. An additional sharp rise in the damping
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FIG. 4. (Color online) Dispersion (dashed black) and lifetime
broadening (solid red) of the valence band plasmon calculated for the
p-doped GaAs with the hole concentration of p = 3.5 × 1020 cm−3.
Dotted lines correspond to the onset of the intraband single-particle
excitations within the light-hole and heavy-hole bands.

takes place when the collective mode enters the region of
heavy-hole intraband excitations.

We thus conclude that the collective response of valence-
band holes in GaAs is substantially different compared with
that of conduction-band electrons. We also mention recent
work by Schliemann,38,39 who pointed out several other
interesting features of the structure and response of interacting
hole gases in p-doped III-V semiconductors.

B. Magnetically doped GaMnAs

The introduction of magnetic impurities in GaAs has two
consequences. First, charge and spin disorder are brought
into the system and, second, the mean-field part of the p-d
exchange interaction between localized spins and itinerant
holes causes modifications of the valence-band structure once
the system enters the magnetically ordered phase.

Let us consider the effect of disorder first. In calculating
carrier relaxation rates, most theoretical models for GaMnAs
use a static screening approach, where all many-body effects
are reduced to the static screening of the Coulomb disorder
potential. Within our model, however, the momentum- and
frequency-dependent relaxation rates of Eq. (10) are expressed
through the set of density and spin-density response functions
that allow us to use the full dynamic treatment of electron-
electron interaction, thus accounting for the variety of many-
body effects including correlations and collective modes.

In Fig. 5 we plot the frequency dependence of the
total (charge and spin) relaxation rate calculated for
Ga0.948Mn0.052As within the static screening model and using
the full dynamic treatment of electron-electron interaction
according to Eq. (10). The difference between the two curves
in the static limit is due to the xc part of the electron-
electron interaction that affects both charge and spin scattering.
The most striking difference, however, is the pronounced
feature appearing between 0.2 and 0.5 eV associated with
the collective modes. Although we have seen above that the
collective excitations are significantly damped in the valence
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FIG. 5. (Color online) Total (charge and spin) carrier relax-
ation rate for Ga0.948Mn0.052As with hole concentration p = 3 ×
1020 cm−3. Dashed line: static screening model. Solid line: evalu-
ation of Eq. (10) with full dynamic TDDFT treatment of electron
interaction. See discussion in text.

band, they still play an important role in the transport properties
of the system, providing an effective channel for momentum
relaxation. Their contributions give up to a 50% increase
to the total carrier relaxation rate. Note that, due to their
longitudinal character, the plasmon modes do not directly
affect the optical response and enter only indirectly through
the tensor of frequency- and momentum-dependent relaxation
rates (10).

In Fig. 6 we compare our calculations of the infrared
conductivity of ferromagnetic Ga0.948Mn0.052As with the
experimental data of Singley et al.40 The calculations were
performed according to Eq. (12). The solid line corresponds
to a relaxation rate obtained through Eq. (10), and the dashed
line describes calculations with the fixed τ−1 = 230 ps−1. The
theory shows qualitative agreement with the experiment. The
insensitivity of the calculations to the frequency dependence
of relaxation rate (minor difference between solid and dashed
lines in Fig. 6) suggests that effects of the band structure play
the dominant role in determining the shape of the infrared
conductivity and overshadow the strong frequency dependence
of τ obtained within our model and presented in Fig. 5.

An alternative possible experimental probe that could reveal
the details of the frequency and momentum dependence of the
carrier relaxation rate in more explicit ways is measurement of
the position and line shape of the plasmon resonance itself. It
was shown in Ref. 31 that these quantities are sensitive to the
carrier relaxation time, with both real and imaginary parts of
τ and its dynamic nature being essential. Our approach seems
to fit well to describe such experiments.

As was mentioned before, the magnetic impurities bring
localized spins into the system, which interact with the itinerant
carriers through the p-d exchange interaction. The fluctuating
part of this interaction constitutes the spin disorder. The mean-
field part of exchange interaction, which we absorb into the
clean system band structure Hamiltonian Ĥe, is responsible
for the spin splitting of the valence bands once the system
enters the magnetically ordered state. Due to the spin-orbit
interaction within the valence band, this spin splitting strongly
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FIG. 6. (Color online) Infrared conductivity of ferromagnetic
Ga0.948Mn0.052As with hole concentration p = 3 × 1020 cm−3. Cal-
culations are performed according to Eq. (12), and using a relaxation
rate obtained through Eq. (10) (solid line) or a fixed τ−1 = 230 ps−1

(dashed line). Symbols are the experimental data of Ref. 40.

depends on both the magnitude and the direction of the wave
vector k.

In Fig. 7 we plot the band structure of ferromagnetic
Ga0.95Mn0.05As. Strong anisotropy of the valence-band spin
splitting is seen between directions along and perpendicular
to the magnetization of localized spins (z direction). The inset
shows a cut of the Fermi surface by the plane ky = 0. One
can easily see the distortion of the Fermi surface from the
spherical shape of the paramagnetic system (for clarity we have
neglected here the valence-band warping, but it is included in
our calculations). The modification of the Fermi surface and
the suppression of localized spin fluctuations are responsible
for the significant drop in static resistivity of GaMnAs during
the transition from the paramagnetic to the ferromagnetic state.
This effect was considered before.28,41

Here we point out that the modification of the valence-
band structure during the transition from the paramagnetic to
the ferromagnetic state also modifies energies and oscillator
strengths of intervalence-band optical transitions, affecting
thus the infrared conductivity as well. To better show the
underlying physics of temperature-induced changes, we plot
in Fig. 8 the infrared conductivity for the sample parameters of
Ref. 40, but with a small lifetime broadening of � = 5 meV.
In the paramagnetic state (solid line) three features can be
identified: a strong peak around 0.2 eV, corresponding to
the heavy-hole–light-hole transitions; a smaller peak with a
broad shoulder around 0.4 eV, associated with the split off to
light-hole transitions; and a wide background of split off to
heavy-hole transitions.

With the temperature going below Tc = 70 K, two main
phenomena occur. The first is the suppression of the high
energy shoulder of the split-off to light-hole transitions. The
second is the appearance of the transitions between the spin-
split heavy-hole and light-hole bands and the redistribution
of the oscillator strength among them. The lowest energy
peaks correspond to the transitions between spin-split bands.
Calculations were performed for light linearly polarized in the
plane perpendicular to the magnetization. Due to the spin-orbit
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interaction within the valence band, the transitions between the
spin-split states are optically allowed. The additional peak at
higher energy corresponds to heavy-hole–light-hole spin-flip
transitions. As the temperature goes down, the spin splitting
increases and the “spin-flip” transitions gain the intensities
at the account of “spin-conserving” heavy-hole–light-hole
transitions.

Real GaMnAs samples are much more disordered. In Fig. 9
we compare experimental data on infrared conductivity of
Ga0.948Mn0.052As from Ref. 40 with calculations using our
model of Eqs. (12) and (10). The large disorder-induced
lifetime broadening blankets most of the features discussed
above. The suppression of the high energy shoulder of split-off
to light-hole transitions in the ferromagnetic state is seen,
however, on both the experimental and theoretical plots.
Overall, for energies above the main peak position around
0.2 eV, the calculations are in good agreement with the
experimental results.
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broadening of � = 5 meV.
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Note also that, unlike in Ref. 19, our calculations do not
require incorporation of an impurity band within the energy
gap to avoid a drop in conductivity around 0.8–1 eV. At
energies below the main peak position the agreement with the
experiment is worse. We should mention, however, that this is
the region of ωτ � 1 where our calculations are less reliable
due to the approximate nature of expression (12). The self-
consistent evaluation of Eq. (8) should be used there instead.
Once the frequency goes to zero, the static conductivity
should more appropriately be calculated using an expression
derived from the semiclassical Boltzmann equation.18 We have
investigated this regime before28 to describe the drop in static
resistivity in the ferromagnetic phase.

IV. CONCLUSIONS

We have developed a comprehensive theory of transport
in spin and charge disordered media. The theory is based on
the equation of motion of the paramagnetic current response
function of the disordered system, treats disorder and many-
body effects on equal footings, and combines a k · p based
description of the semiconductor valence band structure with
a full dynamic treatment of electron-electron interaction by
means of TDDFT. We have applied our theory to the specific
case of GaMnAs.

We have shown that the multiband nature and spin-orbit
interaction within the valence band bring new effects for
p-doped GaAs as compared with the conventional n-type sys-
tems. The density and spin-density responses of noninteracting
carriers within the valence band are not the same anymore.
Moreover, the long-wavelength side of the single-particle
excitation spectrum is now completely dominated by the
intervalence-band spin excitations. Due to the extended region
of single-particle excitations within the valence band, the
collective plasmon mode entirely falls within the region of
these excitations and, therefore, is effectively damped for all
wave vectors.

For the magnetically doped system the mean-field part
of the p-d exchange interaction between itinerant holes and
localized spins substantially modifies the semiconductor band
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structure once the system enters a magnetically ordered phase.
This modification significantly affects energies and oscillator
strengths of the intervalence band optical transitions. Our
calculations are in good agreement with experimental data
for the temperature dependence of the infrared conductivity in
GaMnAs.

A full dynamical treatment of electron-electron interactions
is essential to capture the influence of the collective excitations
on the carrier relaxation rate. Our calculations show that, by
providing an effective channel of momentum relaxation, the
collective excitations within the valence band significantly (up
to 50%) increase the transport relaxation rate.

However, it turns out that the actual infrared absorption
spectra are not very sensitive to the details of the frequency
dependence of the relaxation rate, but are mostly determined
by the features of the band structure. Direct measurements of
the position and line shape of the plasmon resonance itself are
likely to be more sensitive to the details of the frequency and
momentum dependences of the carrier relaxation rate.

In this paper we considered optical response properties.
Since a transversal electric field does not directly couple
to longitudinal collective modes, plasmon excitations affect
the carrier dynamics of the system only indirectly through
the relaxation rates; see Eq. (10) and Fig. 5. It would be
interesting to consider the response to longitudinal fields,
where the collective modes would dominate the carrier
dynamics. The disorder-induced damping of such collective
modes in heterostructures would be of particular interest. This
requires a generalization of our formalism for inhomogeneous
or lower-dimensional systems.

The theory presented here, treating disorder and many-body
effects on an equal footing, provides a very general framework
for describing electron dynamics in materials. It can, in prin-
ciple, be made self-consistent and thus be applied beyond the
weak-disorder limit; it can accommodate many different types
of disorder, as well as band structure models. This should make
it well suited for further exploration of the optical and transport
properties of DMSs and other systems of practical interest.
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APPENDIX A: GENERALIZED k · p APPROACH

The derivation of the generalized k · p perturbation ap-
proach presented here is based on Ref. 29. First, the electronic
wave function is expanded in the Luttinger–Kohn basis.42

� =
∑
n,k

An(k)χn,k = 1√
V

∑
n,k

An(k)eikr|un,0〉, (A1)

where |un,0〉 are periodic parts of Bloch functions at k = 0
and An(k) are the expansion coefficients. This results in the
following matrix form of the Schrödinger equation:∑

n,k

An(k)

[(
εn,0 + h̄2k2

2m0
− ε

)
δn′,n + h̄

m0
k · πn′,n

]
= 0,

(A2)

where εn,0 are the band edge energies at k = 0.
The last term in Eq. (A2) mixes states with different n for

k �= 0. Now we separate the whole set of the bands {n} into
those whose contribution we are going to calculate exactly, {s},
and the remote bands {r} that we will treat up to the second
order in momentum. Equation (A2) can be represented as

(H0 + H1 + H2)A = εA, (A3)

where A is the vector of coefficients An(k), H0 is the diagonal
part of Hamiltonian, and H1 and H2 correspond to the block-
diagonal and off-block-diagonal parts of the k · π matrix with
respect to the included and remote bands. Next, we apply the
canonical transformation

A = eSB = eS1+S2 B, (A4)

with S1 and S2 being antihermitian operators of first and second
order in the perturbation, respectively. Matrix equation (A3)
then has the form

{e−S1−S2 (H0 + H1 + H2)eS1+S2}B = H̄B = εB. (A5)

By choosing

H2 + [H0,S1] = 0, [H0,S2] + [H1,S1] = 0, (A6)

where [...] denotes the commutator, we write up to terms of
second order in the perturbations H1 and H2;

H̄ ≈ H0 + H1 + 1

2
[H2,S1]. (A7)

The matrix elements between the Luttinger–Kohn periodic
amplitudes |un,0〉 ≡ |n〉 are

〈n|H0|n′〉 =
(

εn,0 + h̄2k2

2m0

)
δn,n′ , (A8)

〈s|H1|s ′〉 =
∑

α

h̄kαπα
s,s ′

m0
, (A9)

〈s|H2|r〉 =
∑

α

h̄kαπα
s,r

m0
, (A10)

〈s|S1|r〉 = − 〈s|H2|r〉
〈s|H0|s〉 − 〈r|H0|r〉

=
∑

α

h̄kαπα
s,r

m0

1

εr,0 − εs,0
. (A11)

For the last term in (A7) we can then write

〈s|[H2,S1]|s ′〉 =
∑

r

{
〈s|H2|r〉〈r|S1|s ′〉

− 〈s|S1|r〉〈r|H2|s ′〉
}

(A12)

=
∑
α,β

r

h̄2kαkβ

m2
0

(
πα

s,rπ
β

r,s ′

εs ′,0 − εr,0
+ π

β
s,rπ

α
r,s ′

εs,0 − εr,0

)
.

Here we used the fact that the H2 and S1 operators have
only off-block-diagonal matrix elements between the s and
r bands. Equations. (A8)–(A12) define the matrix of the
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effective Hamiltonian (A7). Nonvanishing matrix elements are
determined by the symmetry of the crystal.

APPENDIX B: EVALUATION OF THE MATRIX ELEMENTS
IN EQS. (17) AND (18)

In order to evaluate Eq. (17) we need to calculate the
following matrix element:

h̄
(
kα − qα

2

)
〈ui ′,k−q|ui,k〉 + 〈ui ′,k−q|π̂α|ui,k〉

=
〈
ui ′,k−q

∣∣∣h̄ (kα − qα

2

)
+ π̂α

∣∣∣ ui,k

〉
, (B1)

where |ui,k〉 is expressed through the amplitudes at the zone
center:

|ui,k〉 =
∑

n

An(i,k)|un,0〉. (B2)

From diagonalization of the effective Hamiltonian (A7),
however, we obtain coefficients Bn(i,k) related to An(i,k)
through Eq. (A4). Expanding eS ≈ 1 + S, we express

|ui,k〉 =
∑

s

Bs(i,k)|s〉 +
∑

s

∑
r

〈r|S(k)|s〉Bs(i,k)|r〉, (B3)

where we have used the fact that the coefficients Bn are nonzero
only for exact bands and S has only off-block-diagonal matrix
elements. The bra vector is

〈ui ′,k′ | =
∑
s ′

B∗
s ′ (i ′,k′)〈s ′| −

∑
s ′

∑
r ′

〈s ′|S(k′)|r ′〉B∗
s ′ (i ′,k′)〈r ′|,

(B4)

where we have used the antihermiticity of S. Matrix elements
of an arbitrary operator F̂ to the lowest order in S can then be
expressed as follows:

〈ui ′,k′ |F̂ |ui,k〉 =
∑
s ′s

B∗
s ′ (i ′,k′)Bs(i,k)

(
〈s ′|F̂ |s〉

+
∑

r

(〈s ′|F̂ |r〉〈r|S(k)|s〉 − 〈s ′|S(k′)|r〉〈r|F̂ |s〉) ). (B5)

Using Eq. (A11) for matrix elements of Ŝ1, we have

〈ui ′,k′ |F̂ |ui,k〉 =
∑
s ′s

B∗
s ′(i ′,k′)Bs(i,k)

(
〈s ′|F̂ |s〉 − h̄

m0∑
λ,r

(
kλ〈s ′|F̂ |r〉〈r|π̂λ|s〉

εr − εs

+ k′
λ〈s ′|π̂λ|r〉〈r|F̂ |s〉

εr − εs ′

))
. (B6)

Matrix element (B1) has thus the following form:

〈ui ′,k−q|h̄
(
kα − qα

2

)
+ π̂α|ui,k〉 =

∑
s ′s

B∗
s ′ (i ′,k − q)Bs(i,k)

×
[
h̄
(
kα − qα

2

)
δs ′s + 〈s ′|π̂α|s〉 + h̄

m0

∑
λ,r

(
kλπ

α
s ′,rπ

λ
r,s

εs − εr

+ (kλ − qλ)πλ
s ′,rπ

α
r,s

εs ′ − εr

)]
.

For q = 0 it reduces to〈
ui ′,k |h̄kα + π̂α| ui,k

〉 = ∑
s ′s

B∗
s ′ (i ′,k)Bs(i,k)

[
h̄kαδs ′s

+ 〈s ′|π̂α|s〉 + h̄

m0

∑
λ,r

kλ

(
πα

s ′,rπ
λ
r,s

εs − εr

+ πλ
s ′,rπ

α
r,s

εs ′ − εr

)]
. (B7)

By comparison with the expressions derived in Appendix A,
we find that this reduces to〈
ui ′,k |h̄kα + π̂α| ui,k

〉 = ∑
s ′s

B∗
s ′ (i ′,k)Bs(i,k)

m0

h̄

∂

∂kα

〈s ′|H̄ |s〉,

(B8)

where H̄ is the Hamiltonian (A7).
The matrix elements of the spin operator in Eq. (18) should

also be evaluated through Eq. (B6):

〈ui ′,k′ |σ̂ μ|ui,k〉 =
∑
s ′s

B∗
s ′ (i ′,k′)Bs(i,k)

(
〈s ′|σ̂ μ|s〉 − h̄

m0

∑
λ,r(

kλ〈s ′|σ̂ μ|r〉〈r|π̂λ|s〉
εr − εs

+ k′
λ〈s ′|π̂λ|r〉〈r|σ̂ μ|s〉

εr − εs ′

))
. (B9)

Let us look now at the sum over remote bands. Since the spin
operator acts only on the spin part of the basis functions, only
those remote bands whose orbital part has the same symmetry
as the exact bands will contribute to this sum.

If we are considering a 6 × 6 Hamiltonian and neglect
inversion asymmetry, the exact states are p-bonding states
that transform according to the F+

1 representation of the point
group Oh (�′

15 small representation). The momentum operator
transforms as F−

2 , and since the direct product F+
1 × F−

2 × F+
1

does not contain a unit representation, the sum over remote
bands vanishes. There may be a small contribution in Td

crystals, but it can be considered negligible.
If we are working in an 8-band k · p model, there are

possible contributions to the sum when |s〉 and |r〉 are �′
1

states and |s ′〉 is �′
15 and vice versa. Since there is only

a small admixture of the conduction-band amplitude to the
valence-band states, these contributions are expected to be
small and therefore can be neglected.

Because of this reasoning, we use the following approxi-
mation:

〈ui ′,k′ |σ̂ μ|ui,k〉 ≈
∑
s ′s

B∗
s ′ (i ′,k′)Bs(i,k)〈s ′|σ̂ μ|s〉. (B10)

APPENDIX C: 8 × 8 HAMILTONIAN

In the basis

|1〉 =
∣∣∣∣E, + 1

2

〉
= S ↑ ,

|2〉 =
∣∣∣∣E, − 1

2

〉
= iS ↓ ,

|3〉 =
∣∣∣∣HH, + 3

2

〉
= 1√

2
(X + iY ) ↑ ,

|4〉 =
∣∣∣∣LH, + 1

2

〉
= i√

6
[(X + iY ) ↓ −2Z ↑],
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|5〉 =
∣∣∣∣LH, − 1

2

〉
= 1√

6
[(X − iY ) ↑ +2Z ↓], (C1)

|6〉 =
∣∣∣∣HH, − 3

2

〉
= i√

2
(X − iY ) ↓ ,

|7〉 =
∣∣∣∣SO, + 1

2

〉
= 1√

3
[(X + iY ) ↓ +Z ↑],

|8〉 =
∣∣∣∣SO, − 1

2

〉
= i√

3
[−(X − iY ) ↑ +Z ↓],

the Hamiltonian matrix has the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Eg + h̄2k2

2m̃e

0
i√
2
V k+

√
2

3
V kz

i√
6
V k− 0

i√
3
V kz

1√
3
V k−

0 Eg + h̄2k2

2m̃e

0
i√
6
V k+

√
2

3
V kz

i√
2
V k−

1√
3
V k+

i√
3
V kz

− i√
2
V k− 0 P + Q L M 0

i√
2
L′ −i

√
2M ′

√
2

3
V kz − i√

6
V k− L∗ P − Q 0 M −i

√
2Q′ i

√
3

2
L′

− i√
6
V k+

√
2

3
V kz M∗ 0 P − Q −L −i

√
3

2
L′∗ −i

√
2Q′

0 − i√
2
V k+ 0 M∗ −L∗ P + Q −i

√
2M ′∗ − i√

2
L′∗

− i√
3
V kz

1√
3
V k− − i√

2
L′∗ i

√
2Q′ i

√
3

2
L′ i

√
2M ′ P ′ − � 0

1√
3
V k+ − i√

3
V kz i

√
2M ′∗ −i

√
3

2
L′∗ i

√
2Q′ i√

2
L′ 0 P ′ − �

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(C2)

with

k± = kx ± iky,

V = −i
h̄

m0
〈S|p̂x |X〉 =

√
Ep

h̄2

2m0
.

Interaction with remote bands results in the intravalence-band
terms,

P (′) = − h̄2

2m0
γ̃

(′)
1 k2,

Q(′) = − h̄2

2m0
γ̃

(′)
2

(
k2
x + k2

y − 2k2
z

)
,

L(′) = h̄2

2m0
i2

√
3γ̃

(′)
3 kzk−,

M (′) = − h̄2

2m0

√
3
[
γ̃

(′)
2

(
k2
x − k2

y

)− iγ̃
(′)
3 (kxky + kykx)

]
,

where renormalization leads to

1

m̃e

= 1

m∗
e

− 1

m0

Ep

3

(
2

Eg

+ 1

Eg + �

)
,

γ̃1 = γ1 − Ep

3Eg

,

γ̃ ′
1 = γ1 − Ep

3(Eg + �)
,

γ̃2 = γ2 − Ep

6Eg

,

γ̃ ′
2 = γ2 − Ep

12

(
1

Eg

+ 1

Eg + �

)
,

γ̃3 = γ3 − Ep

6Eg

,

γ̃ ′
3 = γ3 − Ep

12

(
1

Eg

+ 1

Eg + �

)
.

This reflects the fact that the interaction between conduction
and valence bands is taken in our Hamiltonian explicitly. In
writing matrix (C2) we have neglected small terms associated
with the lack of inversion symmetry in Td crystals.

The matrix of the mean-field part of the s(p)-d exchange
interaction, which is responsible for the band spin splitting in
the magnetically ordered phase, has the form
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−1

2
〈S〉xN0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α 0 0 0 0 0 0 0
0 −α 0 0 0 0 0 0
0 0 β 0 0 0 0 0

0 0 0 1
3β 0 0 i 2

√
2√

3
β 0

0 0 0 0 − 1
3β 0 0 −i 2

√
2√

3
β

0 0 0 0 0 −β 0 0

0 0 0 −i 2
√

2√
3
β 0 0 − 1

3β 0

0 0 0 0 i 2
√

2√
3
β 0 0 1

3β

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C3)

where the z axis is chosen in the direction of the magnetization
and N0α and N0β are the s-d and p-d exchange constants.

The mean-field value of localized spins, is determined as
the thermodynamic average

〈S〉 = 〈Ŝz〉 = 1

Z
Tr e− Ĥm

kT Ŝz, (C4)

with the partition function

Z = Tr e− Ĥm
kT . (C5)

Within the mean field approximation for uncorrelated spins
the spin Hamiltonian is

Ĥm = −Beff Ŝz, (C6)

with the effective field

Beff = 〈Ŝz〉J0, (C7)

and

J0 = 3kTc

S(S + 1)
. (C8)

The Curie temperature Tc is an input parameter of our model;
through transcendental equations (C4) and (C7) it determines
the mean field value of 〈S〉.

APPENDIX D: LOCAL FIELD FACTORS FOR PARTIALLY
SPIN-POLARIZED SYSTEMS

Expressions for local field factors of the partially spin
polarized electron gas were derived in Ref. 43, but in a different
spin basis. Here we will briefly rederive them in the basis of
Eq. (4).

In the adiabatic approximation (which ignores frequency
dependence), the components of the tensorfxc of the local
field factors in Eq. (23) have the form

fij = ∂2 [nexc(n,ξ )]

∂ρi∂ρj

, (D1)

where exc is the xc energy per particle, n ≡ ρ1 is the electron
density, and ξ is the spin polarization:

ξ ≡ |�ξ | = 1

n

√
ρ2

z + 1

2
(ρ+ρ− + ρ−ρ+). (D2)

We assume here that exc depends on only the absolute value of
|ξ |. Direct evaluation of Eq. (D1) gives

f11 = 2
∂exc

∂ρ1
− 2ξ

∂2exc

∂ρ1∂ξ
+ ρ1

∂2exc

∂ρ2
1

+ ξ 2

ρ1

∂2exc

∂ξ 2
,

f1i = ∂ξ

∂ρi

(
ρ1

∂2exc

∂ρ1∂ξ
− ξ

∂2exc

∂ξ 2

)
, i = (z, + ,−),

fzz = A + ρ2
z B,

fz+ = ρzρ−
2

B,

fz− = ρzρ+
2

B,

f++ = ρ−ρ−
4

B,

f−− = ρ+ρ+
4

B,

f+− = A

2
+ ρ−ρ+

4
B,

with

A = 1

ρ1ξ

∂exc

∂ξ
, B = 1

(ρ1ξ )2

(
ξ
∂2exc

∂ξ 2
− ∂exc

∂ξ

)
.

Note that fii ′ = fi ′i and, generally, the tensor of local field
factors is a symmetric matrix. If, however, the z axis is directed
along the average spin direction, so that the ground-state
transverse spin densities vanish (ρ+ = ρ− = 0), then the
matrix reduces to the block-diagonal form of Eq. (24).

We define the xc energy of the spin-polarized system in the
usual manner as43

exc(n,ξ ) = exc(n,0) + (exc(n,1) − exc(n,0))f (ξ ), (D3)

with

f (ξ ) = (1 + ξ )4/3 + (1 − ξ )4/3 − 2

2(21/3 − 1)
. (D4)

This is exact for the exchange part, but only approximately so
for the correlation part (which will be neglected anyway in the
following). With this, we get

∂exc

∂ξ
= (exc(n,1) − exc(n,0))

(1 + ξ )1/3 − (1 − ξ )1/3

3
2 (21/3 − 1)

,

(D5)
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∂2exc

∂ξ 2
=
(
exc(n,1) − exc(n,0)

) (1 + ξ )−2/3 + (1 − ξ )−2/3

9
2 (21/3 − 1)

.

(D6)

This completes the definition of the local field factors for a par-
tially spin-polarized system. The only remaining ingredients
we need to perform the actual calculations are the expressions
for the xc energy for unpolarized and fully spin polarized
system, exc(n,0) and exc(n,1). In this work for simplicity we
limit ourselves to the exchange part of exc:

ex(n,0) = −3e2

4K

(
3n

π

)1/3

, (D7)

ex(n,1) = 21/3ex(n,0), (D8)

where K is the static dielectric constant of the host material.
Direct evaluation gives the following expressions:

∂exc

∂n
= − e2

8K

(
3

π

)1/3

n−2/3 ((1 + ξ )4/3 + (1 − ξ )4/3) ,
∂2exc

∂n2
= e2

12K

(
3

π

)1/3

n−5/3
(
(1 + ξ )4/3 + (1 − ξ )4/3

)
,

∂2exc

∂n ∂ξ
= − e2

6K

(
3

π

)1/3

n−2/3
(
(1 + ξ )1/3 − (1 − ξ )1/3

)
.
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