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Self-energy and Fermi surface of the two-dimensional Hubbard model
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We present an exact diagonalization study of the self-energy of the two-dimensional Hubbard model. To
increase the range of available cluster sizes we use a corrected t-J model to compute approximate Green’s
functions for the Hubbard model. This allows to obtain spectra for clusters with 18 and 20 sites. The self-energy
has several “bands” of poles with strong dispersion and extended incoherent continua with k-dependent intensity.
We fit the self-energy by a minimal model and use this to extrapolate the cluster results to the infinite lattice. The
resulting Fermi surface shows a transition from hole pockets in the underdoped regime to a large Fermi surface in
the overdoped regime. We demonstrate that hole pockets can be completely consistent with the Luttinger theorem.
Introduction of next-nearest-neighbor hopping changes the self-energy strongly and the spectral function with
nonvanishing next-nearest-neighbor hopping in the underdoped region is in good agreement with angle-resolved
photoelectron spectroscopy in the cuprates.
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I. INTRODUCTION

Experiments on cuprate superconductors have shown a non-
trivial evolution of their Fermi surface with hole doping δ. In
the overdoped compound Tl2Ba2CuO6+δ , magnetoresistance
measurements,1 angle-resolved photoemission spectroscopy
(ARPES),2 and quantum oscillation experiments3 show a fairly
conventional Fermi surface which is consistent with local
density approximation (LDA) band-structure calculations that
take the Cu 3d electrons as itinerant and which covers a
fraction of the Brillouin zone of ≈(1 − δ)/2. In the under-
doped compounds the situation is more involved. ARPES
shows “Fermi arcs”4 which, however, are probably just the
intense part of hole pockets centered near (π

2 , π
2 ). This is

plausible because the sharp drop of the ARPES weight of
the quasiparticle band upon crossing the noninteracting Fermi
surface which must be invoked to reconcile the Fermi arcs
with the hole pocket scenario is actually well established
in insulating cuprates such as Sr2Cu2O2Cl2 (Ref. 5) and
Ca2CuO2Cl2,6 where this phenomenon has been termed the
“remnant Fermi surface.” Moreover, both the Drude weight
in La2−xSrxCuO4 (Refs. 7 and 8) and YBa2Cu3Oy (Ref. 8)
as well as the inverse low-temperature Hall constant in
La2−xSrxCuO4 (Refs. 8–11) and YBa2Cu3Oy (Ref. 8) scale
with δ, and the inferred band mass is constant throughout
the underdoped regime and in fact even the antiferromagnetic
phase.8 This would be a exactly the behavior expected for hole
pockets. On the other hand, for δ � 0.15 the Hall constant in
La2−xSrxCuO4 changes rapidly, which suggests a change from
hole pockets to a large Fermi surface.9 Quantum-oscillation
experiments on underdoped YBa2Cu3O6.5 (Refs. 12–15,) and
YBa2Cu4O8 (Refs. 16 and 17) show that the Fermi surface has
a cross section that is comparable to δ/2 rather than (1 − δ)/2.
Thereby the mere validity of the Fermi-liquid description
as evidenced by the quantum oscillations is clear evidence
against the notion of Fermi arcs: The defining property of a
Fermi liquid is the one-to-one correspondence of its low-lying
states to those of a fictitious system of weakly interacting
fermionic quasiparticles, and the Fermi surface of these

quasiparticles is a constant energy contour of their dispersion
and therefore necessarily a closed curve in k space. On the
other hand, the quantum oscillations cannot be viewed as
evidence for hole pockets either in that both the Hall constant18

and thermopower19 have a sign that would indicate electron
pockets in the normal state induced by the high magnetic fields
used in the quantum-oscillation experiments. Thereby, both the
Hall constant and the thermopower show a strong temperature
dependence and in fact a sign change as a function of
temperature. At the same time neutron scattering experiments
on detwinned YBa2Cu3O6.6 in the superconducting state show
anisotropy in the spin excitation’s spectrum below 30 meV
and at low temperatures.20 This indicates a rather complicated
reconstruction to take place, possibly to a “nematic” state
with inequivalent x and y directions in the CuO2 plane. Such
a nematicity which is also apparent in scanning tunneling
microscopy21 must modify the Fermi surface in some way
which may explain the unexpected sign. All in all, the data
may be interpreted as showing a change of the Fermi-surface
volume at around optimal doping from a small Fermi surface
with a volume ∝δ/2 to a large one with volume ∝(1 − δ)/2.

Exact diagonalization studies of the t-J model have shown
that the Fermi surface at hole dopings �15% takes the form
of hole pockets,22–24 that the quasiparticles have the character
of strongly renormalized spin polarons throughout this doping
range,25–27 and that the low-energy spectrum at these doping
levels can be described as a Fermi liquid of spin-1/2 quasi-
particles corresponding to the doped holes.28 A comparison of
the dynamical spin and density correlation function at low29,30

(δ < 15%) and intermediate and high (δ = 30%–50%) hole
doping, moreover, indicates31 that around optimal doping
a phase transition takes place. In the underdoped regime
spin and density correlation functions differ strongly, with
magnonlike spin excitations and extended incoherent continua
in the density correlation function,29,30 which can be explained
quantitatively by a calculation in the spin-polaron formalism.32

At higher doping, spin and density correlation functions
become more and more similar and both approach the self-
convolution of the single-particle Green’s function, whereby
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deviations from the self-convolution form can be explained
as particle-hole excitations across a free-electron-like Fermi
surface.31 We thus expect a transition between a low-doping
phase with a hole-pocket Fermi surface and quasiparticles
which resemble the spin polarons realized at half-filling and
a high doping phase with a free-electron-like large Fermi
surface. Here we want to further elucidate the issue of the Fermi
surface and the possible transition between the large and small
Fermi surfaces. To that end we study the electronic self-energy
�(k,ω) of the two-dimensional (2D) Hubbard model by exact
diagonalization.

II. MODEL AND METHOD OF CALCULATION

We study the Hubbard model on a 2D square lattice, defined
by the Hamiltonian

H = −t
∑
〈i,j〉

∑
σ

(c†i,σ cj,σ + H.c.) + U
∑

i

ni,↑ni,↓. (1)

Here c
†
i,σ creates an electron with z-spin σ in the orbital at

lattice site i and 〈i,j 〉 denotes a summation over all nearest-
neighbor pairs. We set t = 1 and, unless otherwise stated,
U/t = 10. The self-energy �(k,ω) is defined by the Dyson
equation

G−1(k,ω) = ω − εk − �(k,ω), (2)

where εk = −2t[cos(kx) + cos(ky)] is the free dispersion and

G(k,ω) = 〈
�

(N)
0

∣∣c†k,σ

1

ω − E
(N)
0 + H

ck,σ

+ ck,σ

1

ω − H + E
(N)
0

c
†
k,σ

∣∣�(N)
0

〉
(3)

is the single-particle Green’s function at zero temperature.33

Here |�(N)
0 〉 and E

(N)
0 denote the ground-state wave function

and energy with N electrons. In the present study the Green’s
function for finite clusters is evaluated numerically by means
of the Lanczos algorithm.34

Luttinger33 has derived the following spectral representa-
tion of the self-energy:

�(k,ω) = gk +
∑

ν

σk,ν

ω − ζk,ν

. (4)

In other words, �(k,ω) is the sum of a real constant gk (which
is equal to the Hartree-Fock potential—see Appendix A) and
a sum of poles on the real axis. In the thermodynamical limit
there may be both isolated poles and continua of poles ζk,ν . In
a finite system, however, the poles ζk,ν in principle are discrete
always. Since the real part of �(k,ω) assumes any value in
[−∞ : ∞] in between two successive poles, ζk,ν and ζk,ν+1, it
follows that the equation

Re G−1(k,ω) = 0 (5)

has exactly one solution in the interval [ζk,ν,ζk,ν+1]. If there
is an energy interval with zero spectral weight, i.e., a gap, in
the single-particle spectral function it follows that there must
be precisely one pole of the self-energy within in this gap. For

example, the Hubbard-I approximation35 for a nonmagnetic
ground state corresponds to

�(k,ω) = nU + n(1 − n)U 2

ω − (1 − n)U
, (6)

where n is the density of electrons per spin. This is a single k-
independent pole of strength ∝U 2 at approximately the center
of the Hubbard gap. In the neighborhood of a pole of �(k,ω)
the real part of the self-energy takes the form

�r (ω) + σk,ν

ω − ζk,ν

on the real axis, where �r (ω) is slowly varying. If the residuum
σk,ν is large, the real part is large as well and no solution of
ω − εk = Re �(k,ω) exists close to the pole. An isolated pole
with large residuum thus “pushes open” a gap of the spectral
density in its neighborhood. On the other hand, if σk,ν is small,
the real part will deviate from �r (ω) only in the immediate
neighborhood of ζk,ν . This implies that the corresponding
solution of ω − εk = Re �(k,ω) is pinned near ζk,ν . Moreover,
close to ζk,ν the slope of the real part of the self-energy is large
and negative, so that the spectral weight (1 − ∂�(k,ω)/∂ω)−1

is small. This rule will be seen frequently in the numerical
spectra: An isolated pole with a large residuum opens a gap in
the single-particle spectral function around itself, and a pole
with a small residuum has a pole of the single-particle Green’s
function with a small weight in its immediate neighborhood.
Finally, we note that a “band” of poles of the self-energy, i.e.,
ζk,ν with ν fixed, can never be crossed by a band of poles
of the Green’s function. Therefore, bands of isolated poles
of �(k,ω) define surfaces in the three-dimensional (kx,ky,ω)
space which cannot be crossed by quasiparticle bands in the
Green’s function. The only exception would be a zero of the
residuum σk,ν .

As already mentioned, we study the self-energy by com-
puting the Green’s function of finite clusters by means of
the Lanczos algorithm. Thereby we encounter a technical
problem concerning the dimension of the Hilbert space.
In a 4 × 4 cluster the dimension of the Hilbert space at
half-filling (i.e., with eight electrons of either spin direction
in the cluster) is 65 636 900, and in the half-filled 18-site
cluster it is already 2 363 904 400. Such large Hilbert space
dimensions make numerical calculations very difficult. By
contrast, the dimension of the Hilbert space of the Heisenberg
model—which is equivalent to the Hubbard model for large
U/t—in the 4 × 4 cluster is only 12 870, and in the 18-site
cluster it is 48 620. The Heisenberg model—and in the doped
case the t-J model—thus are much easier to study numerically,
and in fact the largest cluster for which exact diagonalization
studies for the Hubbard model have been performed36,37 is
4 × 4, whereas larger clusters are possible for the t-J model.
For a study of the self-energy, however, the t-J model cannot be
used due to its “projected” nature which, for example, implies
the absence of the upper Hubbard band.

On the other hand, various authors have derived effective
Hamiltonians which operate in the projected Hilbert space of
the t-J model but reproduce physical quantities of the Hubbard
model to order t/U .38–41 This is achieved by performing
a canonical transformation which eliminates the part of
the hopping term which creates and/or annihilates double
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FIG. 1. Spectral density A(k,ω) for a 4 × 4 cluster with two holes
computed with the true Hubbard model and with the strong-coupling
model. The ratio U/t = 10, η = 0.1.

occupancies. The crucial point thereby is that, not only the
Hamiltonian itself, but all operators whose expectation values
or correlation functions are to be calculated, have to be subject
to this canonical transformation as well, which usually leads
to correction terms of order t/U in all operators.41–43 If this is
done consistently, however, very accurate approximate spectra
for the Hubbard model can be calculated using “t-J-sized”
Hilbert spaces which allows to treat more clusters and thus
obtain additional information.43 So far this procedure has
been performed only for the lower Hubbard band, because
the study of the upper Hubbard band in the doped case
requires a considerable number of additional terms in the
Hamiltonian which describe the interaction between the
doped holes and the double occupancy created in the inverse
photoemission process.41 For the present study, however,
the complete Hamiltonian as given by Eskes et al.41 has

been implemented as computer code. A brief outline of the
procedure and expressions for the corrected photoemission
and inverse photoemission operators are given in Appendix B.
This procedure allows to calculate an approximate Green’s
function for the Hubbard model over the entire doping range
and on all clusters for which the t-J model calculations are
possible. For all these systems we evaluated the single-particle
Green’s function (3) by the Lanczos method and obtained the
self-energy from (2). To illustrate the accuracy that can be
expected, Fig. 1 compares the single-particle spectral function

A(k,ω) = 1

π
Im G(k,ω − iη) (7)

for the true Hubbard model and the strong-coupling Hamil-
tonian. While there are clearly some small differences, the
strong-coupling model reproduces the spectral function of
the Hubbard model quite well. The deviations between the
spectra calculated with the strong-coupling model and the true
Hubbard model are of order t3/U 2 for energies and t2/U 2

for the weights. This property in fact can be used to check
the correctness of the strong-coupling code by comparing
energies and weights of peaks at diferent U/t . The agreement
thus improves rapidly with decreasing t/U and already for
U/t = 20 the spectra become essentially indistinguishable.
It is therefore a useful check whether certain features of the
spectra are robust with decreasing t/U .

Lastly we mention that, for the sake of analysis and
extrapolation to the infinite lattice, the energies ζk,ν and residua
σk,ν of some poles will frequently be expanded in terms of
tight-binding harmonics of k, e.g.,

ζk,ν =
3∑

j=0

ζj,νγj (k), γ0(k) = 1,

γ1(k)=2 cos(kx) + 2 cos(ky), (8)

γ2(k) = 4 cos(kx) cos(ky), γ3(k)=2 cos(2kx) + 2 cos(2ky),

and similarly for the residua with coefficients σj,ν .

III. RESULTS FOR THE GREEN’s FUNCTION AND
SELF-ENERGY

Figures 2 and 3 show the single-particle spectral function
A(k,ω) and the imaginary part 1

π
Im �(k,ω − iη) at half-

filling. Particle-hole symmetry fixes the chemical potential at
μ = U/2. Figure 2 shows the entire energy range of the lower
and upper Hubbard band, whereas Fig. 3 shows a closeup of
the lower Hubbard band. Both figures combine spectra from
the 16- and 18-site cluster, which produces several k points
along each high-symmetry line.

As expected, �(k,ω) shows an intense peak within the
Hubbard gap, which has a quite substantial dispersion.
With the exception of the peaks at (π,π ) and (0,0) the
dispersion of this peak is remarkably consistent with an
inverted nearest-neighbor dispersion, i.e., ζk − μ = −εk =
2t[cos(kx) + cos(ky)], which is indicated in Fig. 2. There
are two possible interpretations for the deviating behavior
at (π,π ) and (0,0). It may be that the dominant pole has a
very rapid dispersion of its energy ζk,ν in the neighborhood
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FIG. 2. Spectral density A(k,ω) and imaginary part of the
self-energy �(k,ω) at half-filling, U/t = 10. The figure combines
spectra from the 16- and 18-site clusters; momenta from the 16-site
cluster are marked by asterisks. The spectra are computed
with η = 0.1, �(k,ω) is multiplied by 1/50. The dots indicate
the position of ζk = μ + 2t[cos(kx) + cos(ky)] for the respective
momentum.

of these momenta. A second possibility is that there are three
bands of poles—one with ζk − μ = −εk and two others with
energy 4t (−4t) at (π,π ) [(0,0)]—with a smooth dispersion
but rapidly varying σk,ν . The peaks at (π,π ) and ω ≈ −6t

would then belong to a second band of poles, which has an
appreciable residuum only near (π,π ), whereas the residuum
of the pole in the gap would suddenly drop to zero at (π,π ). A
calculation at U/t = 20 shows, however, that the dispersion
of the central pole including (π,π ) and (0,0) is almost exactly
the same, which makes the interpretation in terms of a single
central pole with rapid dispersion near these momenta more
plausible.
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FIG. 3. Spectral density A(k,ω) and imaginary part of the self-
energy �(k,ω) at half-filling, U/t = 10. The figure combines spectra
from the 16- and 18-site clusters; momenta from the 16-site cluster
are marked by asterisks. The spectra are computed with η = 0.05,
and �(k,ω) is multiplied by 1/5 and at (π,π ) by an extra factor of
0.25.

To understand the meaning of this form of the self-energy
let us consider a self-energy with a single dispersive pole,

�(k,ω) = U

2
+ η

ω − U
2 + εk

, (9)

where the first term U/2 is the Hartree potential at half-filling.
This yields the quasiparticle dispersion

E±,k = U

2
±

√
η + ε2

k. (10)

This is similar to spin-density-wave mean-field theory which
would be obtained by setting η = m2U 2/4. An expansion of
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the type (8) gives the constant term σ0 = 13.2 for U/t = 10
and σ0 = 84.1 for U/t = 20 so that we would obtain m = 0.53
for U/t = 10 and m = 0.84 for U/t = 20. On the other hand,
it is known from experiments that the dispersion of the spectral
weight of the quasiparticle band at half-filling is not consistent
with spin-density-wave theory in that the spectral weight drops
sharply in the outer part of the zone.5,6 This is due to additional
features in �(k,ω).

The closeup of the lower Hubbard band in Fig. 3 reveals
an additional structure in �(k,ω). For most momenta there
are two essentially dispersionless “humps” at −4t and −8.5t ,
with a broad continuum in between them. The upper peak
at −4t shows some oscillation. It turns out, however, that
the reason for this oscillation is that all peaks obtained in
the 16-site cluster are shifted by ≈−0.3t relative to those
from the 18-site cluster. This shift and hence the entire
oscillation may therefore be a finite-size effect. Together with
the dominant peak within the Hubbard gap the peak—or group
of peaks—at ≈−4t encloses the quasiparticle band at the top
of the photoemission spectrum. The intensity of the continuum
is minimal at (0,0) and increases toward the zone boundary.
Right at (π,π ), however, the continuum is more or less absent.
Also on this smaller scale �(k,ω) thus shows a very rapid
k dependence in the neighborhood of (π,π ). This behavior is
seen consistently in all clusters studied and is not an artefact of
one specific cluster geometry. The “band” of poles at ≈−4t is
the reason for the deviation from the simple spin-density-wave
form of the dispersion, Eq. (10). As can be seen in Fig. 3 the
quasiparticle peak at (0,0) is located immediately above the
respective pole of the self-energy which has relatively small
residuum. As discussed above, this implies a small weight
of the quasiparticle peak itself. The dispersionless band of
poles at ≈−4t thus reduces the bandwidth—because it cannot
be crossed by the quasiparticle band—and also the spectral
weight near (0,0) and (π,π ).

We proceed to the hole doped case and consider the spectra
for the cluster ground state with two holes, corresponding to
δ = 0.125 in 16 sites and δ = 0.11 in 18 sites. The dominant
pole within the gap still has a strong dispersion, although
the bandwidth is reduced as compared to half-filling and the
dispersion deviates from the simple inverted nearest-neighbor-
hopping dispersion. This can be seen in Fig. 4, which shows
the dispersion of this central peak for a few systems, and in
Table I, which gives the corresponding parameters ζi and σi

for a variety of clusters. The following trends can be realized
in Table I: For two holes the reduction of the bandwidth of
the pole saturates at ∼0.7 for large U/t . The deviations from
the simple inverted nearest-neighbor-hopping dispersion seem
to vanish in that limit. For 4 holes the same holds true, but
the saturation value for the reduction of the bandwidth is 0.4.
The bandwidth of the central pole thus decreases with doping,
and the deviations from the inverted nearest-neighbor hopping
dispersion vanish with increasing U/t .

The average residuum σ0 increases roughly as U 2. Unlike
the width of the dispersion, the weight of the central pole
seems to be rather independent on doping. Figure 4, moreover,
shows that already for two holes the peaks at (0,0) and (π,π )
fit in smoothly into the dispersion, and this holds true for all
doped systems.

-3

-2

-1

 0

 1

 2

 3

 4

(ζ
-U

/2
)/

t

(0,0) (π,π ) (π,0) (0,0)

2 holes
4 holes

2 holes, t’=-0.4t

FIG. 4. Dispersion of the central peak of �(k,ω) in the Hubbard
gap for various doped systems. The lines are fits to tight binding
harmonics with coefficients given in Table I. The value U/t = 10 for
all systems.

In addition to this large peak for two holes, a second band
of less intense poles of �(k,ω) appears in the neighborhood
of (π,π ). This can be seen in Fig. 5, which shows the spectral
function and the self-energy for the lower Hubbard band. The
pole in question starts out with the intense peak at ω ≈ μ − 2t

at (π,π ) and then rapidly disperses upward. The respective
peaks are very pronounced at ( 2π

3 , 2π
3 ) and (π,π

3 ), somewhat
less clear at (π,π

2 ). This new band of poles can also be seen in
Fig. 6, which shows the corresponding spectra for the 20-site
cluster with two holes. At (π,π ) itself the large peak is again at
approximately ω = μ − 2t and at the two momenta ( 3π

5 , 4π
5 )

and ( 4π
5 , 2π

5 ) near (π,π ) the intense peak is present as well.
Since this upward-dispersing band of poles can be identified
only near (π,π ), the residuum σk,ν of this pole must have

TABLE I. Expansion coefficients of the dispersion and residuum
of the central pole in the gap for different systems.

ζ0 ζ1 ζ2 ζ3

Two hole, U/t = 10 4.479 0.461 0.087 0.066
Two hole, U/t = 10a 4.302 0.511 0.152 0.079
Two hole, U/t = 20 9.600 0.697 0.023 0.028
Two hole, U/t = 20a 9.290 0.747 0.065 0.029
Two hole, U/t = 40 20.536 0.686 −0.022 −0.001
Four hole, U/t = 10 6.093 0.320 0.120 0.040
Four hole, U/t = 20 12.004 0.446 0.028 0.013
Two hole, U/t = 10b 4.328 0.273 0.135 −0.010

σ0 σ1 σ2 σ3

Two hole, U/t = 10 10.055 0.243 −0.981 −0.467
Two hole, U/t = 10a 9.580 0.171 −1.034 −0.526
Two hole, U/t = 20 81.686 0.634 −0.174 0.045
Two hole, U/t = 20a 81.367 0.910 −0.235 0.053
Two hole, U/t = 40 376.799 0.396 0.302 0.396
Four hole, U/t = 10 9.625 −0.023 −0.428 −0.420
Four hole, U/t = 20 80.216 −0.312 0.081 0.094
Two hole, U/t = 10b 8.489 −0.139 −0.762 −0.438

aData from the 20-site cluster.
bData with t ′/t = −0.4.
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FIG. 5. Spectral density A(k,ω) and imaginary part of the self-
energy �(k,ω) for the 16-site and 18-site clusters with two holes,
U/t = 10. The spectra are computed with η = 0.05, and �(k,ω) is
multiplied by 1/5.

a strong k dependence and decrease rapidly with increasing
distance from (π,π ). At (π,π ) itself there is now also a broad
incoherent continuum and the large peak at ω ≈ μ − 2t seems
to have merged with this continuum. As was the case for half-
filling, the intensity of the continuum increases from the center
to the edge of the Brillouin zone. Accordingly, the remnant of
the free-electron band can still be seen at (0,0)—this is the
broad hump at ≈ −4.5t in both Figs. 5 and 6—but is damped
out for all other momenta. There is actually one difference
between the 20-site cluster and the 16- and 18-site clusters:
One might assign a third band of poles of the self-energy at the
top of the incoherent continuum at ω ≈ μ − t in Fig. 5, seen
most clearly at (π/3,π/3) and (π,0). This band is completely
absent in the spectra for the 20-site cluster in Fig. 6. Figure 7
shows the spectral function and self-energy for the 20-site

-7 -6 -5 -4 -3 -2 -1  0  1  2

In
te

ns
ity

(ω-μ)/t

(0,0)

(2π/5,π/5)

(3π/5,4π/5)

(π,π)

(4π/5,2π/5)

(π,0)

(3π/5,-π/5)

(0,0)

A(k,ω)
Σ(k,ω)

FIG. 6. Spectral density A(k,ω) and imaginary part of the self-
energy �(k,ω) for the 20-site cluster with two holes, U/t = 10. The
spectra are computed with η = 0.05, and �(k,ω) is multiplied by
1/5.

cluster with two holes and U/t = 20. This is qualitatively the
same as in Fig. 6, but the bandwidth of the upward-dispersing
peak is reduced by approximately a factor of 2. The dispersion
of this peak thus obviously scales with J = 4t2/U and this is
confirmed by other systems.

The presence of an upward-dispersing band of poles of
�(k,ω) near (π,π ) and μ would be of crucial importance
for the Fermi-surface topology. Since the quasiparticle band
cannot cross a band of isolated poles of �(k,ω), this would
force the quasiparticle band to bend downward.44–46 The
low-energy inverse photoemission weight at momenta around
(π,π ) in the energy range 0.5t–2t in Fig. 5, on the other
hand, is now cut off from the quasiparticle band and has no
more connection with the states forming the Fermi surface.
This is a very plausible interpretation, because—as shown in
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FIG. 7. Same as Fig. 6 but with U/t = 20.

Ref. 47—this low-energy inverse photoemission weight is
not part of a quasiparticle band, but a spin-polaron shakeoff.
The downward bending of the quasiparticle band, in turn,
would lead to a band maximum and hence a hole-pocket-like
Fermi surface—as found by exact diagonalization of the
t-J model22–24 and various versions of cluster dynamical
meanfield theory.44–46 As will be seen in a moment, this
upward-dispersing band of poles in the self-energy is indeed a
special feature of the underdoped regime.

Figure 8 shows the spectral function and self-energy for
four holes, corresponding to δ = 0.25 in 16 sites and δ = 0.22
in 18 sites, and reveals a profound change in the self-energy.
More precisely, the upward-dispersing band of poles around
(π,π ) which was present in the underdoped case now has
disappeared. The small peaks close to μ which can be seen
at (π

2 , π
2 ), (π,0), and ( 2π

3 ,0) are probably a kind of finite-size
effect: At these momenta the quasiparticle peak is split between
photoemission and inverse photoemission, and since there is
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FIG. 8. Spectral density A(k,ω) and imaginary part of the self-
energy �(k,ω) for the 16-site and 18-site clusters with four holes,
U/t = 10. The spectra are calculated with η = 0.05, and �(k,ω) is
multiplied by 1/5.

always a finite-size gap between phtoemission and inverse
photoemission spectrum in a finite system, this results in a two-
peak structure in the Green’s function. This two-peak structure
of the Green’s function in turn necessitates a pole of the self-
energy in between. In an infinite system, however, there is
no splitting of a peak at μ by a finite amount, so that the
respective peak in �(k,ω) would be absent. Without these
small peaks, however, �(k,ω) has no significant peak above
≈μ − 0.8t . There are in fact some stronger peaks at the top
of the continuum, particularly so at (π,π ) and also at ( 2π

3 , 2π
3 )

and (π
2 , π

2 ), but if one wanted to assign a band this would
rather have a shallow maximum at (π,π ) and then disperse
downward as one moves toward either (0,0) or (π,0). The
upward-dispersing band of poles in �(k,ω) around (π,π ) seen
in the underdoped clusters thus is definitely absent, which
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implies a “connected” nearest-neighbor hopping band which
starts out at ω ≈ μ − t at (0,0) and reaches ω ≈ μ + 2t at
(π,π ). This band will produce a large Fermi surface but with
a band mass that is enhanced by a factor of ≈2.7.

The further development with doping then is not re-
ally interesting any more: The central peak persists un-
til hole dopings of 50% and becomes increasingly dis-
persionless, and the lower Hubbard band stays similar
to Fig. 8.

IV. EXTRAPOLATION TO THE INFINITE SYSTEM

Our next objective is to extrapolate the cluster results to
the infinite system. It has to be noted beforehand that the
results may not be expected to be quantitatively correct—this
will become apparent by various numerical checks—but rather
give a qualitative picture. This is simply a consequence
of the unavoidable limitations due to the small cluster
size.

We represent the self-energy by the following ansatz,

�(k,ω) = nU +
3∑

ν=1

σk,ν

ω − ζk,ν

+
3∑

λ=1

σc,λ(k) log

(
ω − emin,λ

ω − emax,λ

)
. (11)

The first term is the Hartree-Fock potential, the second
term describes—for the underdoped case—the three dominant
poles: The “central pole” in the gap (ν = 1), the upward-
dispersing pole near Q = (π,π ) (ν = 2), and the pole at the
top of the continuum (ν = 3). The last term is the contribution
from the incoherent continua which we model by a constant
spectral density between k-independent limits emin and emax

but with a k-dependent intensity σc(k). There are two such
continua in the lower Hubbard band, one below μ and the
other above μ, and a third one for the upper Hubbard band.
Since pole number 2, the upward-dispersing pole near Q, can
be seen only for a few momenta, we terminate the expansion
(8) after the second term for this pole, i.e., ζ2,2 and ζ3,2 are

taken to be zero from the beginning. This pole, moreover,
shows a strong variation of its residuum σk,2, which rapidly
decreases with the distance from (π,π ) so that the pole cannot
be identified anymore for more distant momenta. Accordingly
we approximate σk,2 as

σk,2 = σ0,2e
−f (k)/α,

(12)

f (k) = 4

[
cos2

(
kx

2

)
+ cos2

(
ky

2

)]
.

Finally, the amplitude of the incoherent continua is written as

σc(k) = σc,0 + σc,1

(
1 ± γ1(k)

4

)
, (13)

where the + (−) sign refers to continua in the lower (upper)
Hubbard band. For the overdoped regime we use the same
ansatz (11) but without the upward-dispersing pole. The pole
at the top of the continuum (ν = 2 in this case) has a rapid
variation of its residuum as well so we use expression (12). The
coefficients which describe the dispersion of the central pole
ν = 1 are given in Table I, and the remaining coeffcients are
listed in Table II. Figure 9 compares the fitted self-energy in the
underdoped case with the cluster spectrum, Figure 10 shows
the same comparison for the overdoped vase. The agreement
is not perfect but the fitted self-energy reproduces the essential
features. The assignment of “bands” in the self-energy clearly
involves some degree of arbitrariness. It should also be noted
that the dispersion of the pole ν = 2 has no significance in
those regions of k space where its residuum is small. Those
parts which have a large residuum, however, appear to be
fitted roughly correctly. The fact that the band ν = 2 crosses
the chemical potential leads to additional inaccuracies: In a
small cluster there is always an artificial finite gap between the
photoemission and inverse photoemission spectrum, because
the respective electron densities differ by a finite amount.
This artificial gap can be up to 0.5t in the clusters studied
and necessarily affects the dispersion of any band which
crosses μ. This is certainly one reason for the inaccuracies
of the fit for the band ν = 2. It therefore has to be kept
in mind that the fitted self-energies may not be expected to

TABLE II. Coefficients of the model self-energy for δ ≈ 12% (top) and δ ≈ 24% (bottom). The
coefficients for the pole ν = 1 are given in Table I. The constant terms ζ0,ν and the edges of the
continua are relative to μ.

ζ0,ν ζ1,ν ζ2,ν ζ3,ν σ0,ν α

ν = 2 0.670 0.683 3.347 1.777
ζ0,ν ζ1,ν ζ2,ν ζ3,ν σ0,ν σ2,ν σ3,ν

ν = 3 −1.118 0.013 −0.131 −0.088 0.407 −0.054 −0.051
εmin εmax σc,0 σc,1

−6.0 −1.0 0.035 0.7
1.4 3.0 0.020 0.4
7.0 12.0 0.050 1.0
ζ0,ν ζ1,ν ζ2,ν ζ3,ν σ0,ν α

ν = 2 −1.617 −0.101 0.130 −0.028 2.500 2.000
εmin εmax σc,0 σc,1

−6.0 −1.5 0.36 0.32
1.0 6.0 0.30 0.0

205137-8



SELF-ENERGY AND FERMI SURFACE OF THE TWO- . . . PHYSICAL REVIEW B 83, 205137 (2011)

-7 -6 -5 -4 -3 -2 -1  0  1  2

In
te

ns
ity

(ω-μ)/t

(0,0)

(π/2,0)

(2π/3,0)

(π,0)

(π,π/3)

(π.π/2)

(π,π)

(2π/3,2π/3)

(π/2,π/2)

(π/3,π/3)

(0,0)

Exact
Fit

ν=2
ν=3

FIG. 9. �(k,ω) for U/t = 10 and two holes in the 16- and 18-site
clusters compared to the fit (11). The spectra are computed with
η = 0.05, and �(k,ω) is multiplied by 1/5. The dots indicate the
dispersion of the poles ν = 2 and ν = 3.

be quantitatively correct—rather, the purpose of the fit is to
illlustrate the consequences of the form of the self-energy in a
more qualitative fashion.

Next, we use the model self-energies to obtain approximate
single-particle spectra for the infinite system. For the under-
doped (overdoped) regime we choose the electron density per
spin to be n = (1 − δ)/2 with δ = 0.12 (δ = 0.24). We fix the
chemical potential μ by demanding that the integrated spectral
weight up to μ to be equal to n:

1

N

∑
k

∫ μ

−∞
A(k,ω)dω = 1 − δ

2
. (14)

It turns out that the μ values obtained in this way deviate
only slightly (deviation �0.2t) from the chemical potentials
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FIG. 10. Self-energy for U/t = 10 and four holes in the 16- and
18-site clusters compared to the fit.

of the cluster spectra. Figure 11 then shows the single-particle
spectral density for δ = 0.12. The upper Hubbard band has
been omitted because we represented the self-energy in this
energy range only by a continuum and did not attempt to fit any
fine structure. We note first that the spectral density in Fig. 11
is in very good agreement with the spectral density obtained by
quantum Monte Carlo (QMC) simulations of the underdoped
Hubbard model—see, e.g., Fig. 9 of Ref. 48. The two-band
structure of the valence band, the flat high-intensity part around
(π,0), and the apparent nearest-neighbor hopping band in the
energy range [−t : t] are completely consistent with QMC.
The intensity of the upper band in the photoemission spectrum
is low at (0,0) and increases as the Fermi energy is approached,
whereas the lower band at −3t has a high intensity at (0,0) and
rapidly loses weight as it moves away from this momentum.
This is in agreement with the QMC spectra as well.
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FIG. 11. (Color online) Single-particle spectral density A(k,ω)
computed with the fitted self-energy (11) for the underdoped case
δ = 0.12, the spectra are calculated with η = 0.05.

Figure 12 shows a Brillouin zone map of the spectral weight
at μ. The Fermi surface obviously takes the form of a “hole
ring” along the surface of the antiferromagnetic Brillouin
zone. Since the free dispersion εk is degenerate along the
line (π,0) → (0,π ) there is no hole pocket but a hole ring.
Calculations for a single hole in the t-J model usually give—for
moderate J/t—a very small dispersion along this line and
a shallow maximum at (π

2 , π
2 ).49–52 If this band is filled with

holes this results in hole pockets centered at (π
2 , π

2 ). The reason
for the maximum is hole hopping along a spiral path, as first
discussed by Trugman.49 The present calculation either misses
this fine detail or it is not relevant in the doped system so
that no maximum exists and the pockets are deformed into a
ring. In any way, the Fermi surface clearly is “small” in that
it covers only a tiny fraction of the Brillouin zone. This is
ultimately the consequence of the upward-dispersing pole of

 0
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FIG. 12. (Color online) Single-particle spectral density at μ

computed with the fitted self-energy (11) for the underdoped case,
δ = 0.12. The value of η is 0.05.
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FIG. 13. (Color online) Single-particle spectral density at μ

computed with the fitted self-energy for the overdoped case.

�(k,ω) near (π,π ). The fraction of the Brillouin zone covered
by the ring is 17.3%. This is much larger than the value of
δ/2 = 6%. The latter value would be obtained if the doped
holes are modeled by spin-1/2 fermions as suggested by exact
diagonalization28 and as predicted in a recent theory for lightly
Mott insulators.53 It is quite obvious, however, that small
changes in the parameters characterizing the fitted self-energy
may change this value strongly. The too large area of the ring
thus probably simply shows the limited accuracy of the fit.
One notable feature is the small spectral weight of the Fermi
surface facing (π,π )—this is very similar to the remnant Fermi
surface.

Next, we consider the overdoped case and set n = 0.38.
Since there are no bands of poles close to μ and in particular the
band of poles near (π,π ) is absent we expect a free-electron-
like Fermi surface. This is indeed the case as can be seen
from the Fermi surface map in Fig. 13. The fraction of the
Brillouin zone covered by the large electron-like Fermi surface
around (0,0) is 0.382, which is in very good agreement with
the Luttinger theorem when the carriers are electrons. Taken
together, the data thus indicate a phase transition in between
underdoping and overdoping from a phase with hole pockets—
or a hole ring in the present case—to one with a large Fermi
surface.

V. THE SELF-ENERGY IN THE UNDERDOPED REGIME

We have seen that a key feature of the underdoped system is
the presence of an additional upward-dispersing band of poles
in �(k,ω) near (π,π ), i.e., the band ν = 2. In the following
we discuss some consequences of this band. We set

εk + �(k,ω + μ) = ε̃k + σ

ω − ζk
, (15)

where the first term on the right-hand side is the sum of εk,
gk and the contribution from the other poles in �(k,ω) and
the second term represents the upward-dispersing band ν = 2.
We assume that ε̃k is a smooth function of k and for simplicity
neglect its frequency dependence. In the absence of the isolated
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FIG. 14. Bare dispersion ε̃k intersecting with a band of poles of
the self-energy ζk.

pole, ε̃k therefore would be the quasiparticle dispersion. If
additional poles of �(k,ω) are sufficiently far away we obtain
the two bands

ω1,2 = 1
2 (ε̃k + ζk ±

√
(ε̃k − ζk)2 + 4σ ), (16)

which are shown in Fig. 14. There is a gap of 2
√

σ between
these bands. Far from the crossing point ε̃k = ζk the bands
take the form

ω1,2 = ε̃k + σ

ε̃k − ζk
, ω1,2 = ζk − σ

ε̃k − ζk
. (17)

The two resulting bands thus partially trace the quasiparticle
band ε̃k and partially the dispersion of the pole ζk. The spectral
weight of the respective branches is

Z−1 = 1 − ∂ε̃k

∂ω
+ σ

(ε̃k − ζk)2
,

(18)

Z−1 = 1 − ∂ε̃k

∂ω
+ (ε̃k − ζk)2

σ
,

where the upper (lower) line refers to the band portion tracing
ε̃k (ζk). Since far from the crossing point (ε̃k − ζk)2 
 σ the
spectral weight Z assumes its usual value for the band portion
tracing ε̃k, but it is σ

(ε̃k−ζk)2 � 1 for the band portion tracing
ζk. This behavior can be seen along (0,0) → (π,π ) and along
(π,0) → (π,π ) in Fig. 11. The upward-dispersing band of
poles in �(k,ω) also has a major significance for the validity
of the Luttinger theorem.54 To see this we derive a slightly
modified version of the theorem which allows for an appealing
physical interpretation. We consider

S = 1

2πi

∑
k

∫
C

dωG(k,ω)
∂�(k,ω)

∂ω

= 1

2πi

∑
k

∫
C

dω

(
G(k,ω) + 1

G(k,ω)

∂G(k,ω)

∂ω

)
,

(19)

where C is a curve in the complex ω plane which encloses the
part of the real axis with ω < μ in a counterclockwise fashion.

All singularities of the integrand are located on the real axis.
The first term on the second line of the equation will give the
total electron number per spin. The second term has two kinds
of singularities: poles and zeros of G(k,ω). Near a pole we
have

1

G(k,ω)

∂G(k,ω)

∂ω
≈

− Zk,ν

(ω−ωk,ν )2

Zk,ν

(ω−ωk,ν )

+ · · ·

= − 1

(ω − ωk,ν)
+ · · · , (20)

whereas near a zero we have

1

G(k,ω)

∂G(k,ω)

∂ω
≈ σk,j

σk,j (ω − ζk,j )
+ · · ·

= 1

(ω − ζk,j )
+ · · · . (21)

It follows that

Ne = 2S + 2
∑

k

mk,

mk =
∑

ν

�(μ − ωk,ν) −
∑

j

�(μ − ζk,j ). (22)

If we assume that S = 0, we find that the number of electrons
can be obtained by computing the number of “occupied”
poles of the Green’s function and subtracting the number of
“occupied” poles of the self-energy. A band of poles of the self-
energy which crosses μ—such as the band ν = 2 introduced in
the fit of the self-energy above—therefore produces a “negative
volume Fermi surface” because the number of momenta within
this surface has to be subtracted in the computation of the
electron number.

To arrive at the known form of the theorem we note that,
as discussed in Sec. II, there is exactly one pole of G(k,ω)
between any two successive poles of �(k,ω). Moreover, it is
easy to see that there is always precisely one pole of G(k,ω)
below the lowest pole of �(k,ω). Accordingly mk = 0 if the
topmost singularity below μ is a pole of the self-energy for
the respective k point and mk = 1 if the topmost singularity
is a pole of the Green’s function. Since in the first case
Re G(k,μ) < 0 whereas in the second case Re G(k,μ) > 0,
we obtain

Ne = 2
∑

k

�[Re G(k,μ)], (23)

which is the “generalized” Luttinger theorem given by
Dzyaloshinskii.55 The equivalence of (22) and (23) has
previously been noted by Ortloff et al.56 The importance of
poles of the self-energy—or zeros of the Green’s function—for
the application of the Luttinger theorem has previously been
stressed by Yang et al.57 and Konik et al.58 We also note
that the validity of the Luttinger theorem in the Hubbard
and t-J model has been studied numerically in Ref. 59. It
is then easy to see that, contrary to widespread belief, hole
pockets can in fact be completely consistent with the Luttinger
theorem. We again consider Fig. 14, which shows a situation
where the dispersion ε̃k is intersected by an upward-dispersing
band of poles of the self-energy ζk, resulting in the two
quasiparticle bands ω1,k and ω2,k. The lower of these bands,
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ω1,k, crosses the Fermi energy—indicated by the horizontal
dashed line—and produces two Fermi-level crossings at points
1 and 2 which form the hole pocket. In between (0,0) → 1 we
have mk = 1 because the topmost pole below μ is the pole
ω1,k of the Green’s function. Along 1 → 2, mk = 0 because
no pole of either Green’s function nor self-energy is below μ.
Additional singularities at lower energies do not change this:
Since the topmost singularity below ω1,k must be a pole of the
self-energy, the total contribution to mk from all singularities
including this one is zero. Along the short piece 2 → 3 we
have again mk = 1, but along 3 → (π,π ) we have mk = 0
because the topmost pole below μ now is one of the self-energy
ζk. The piece 2 → 3 will be very short if the residuum σ

is small. The piece 3 → (π,π ) corresponds precisely to the
negative volume Fermi surface discussed above because here
the topmost singularity is a pole of the self-energy. Assuming
that the total volume of the hole pockets is VBZδ/2—as
suggested by a recent theory of the lightly doped Mott
insulator53—the fraction of the Brillouin zone outside the
pockets is VBZ(1 − δ/2). Then, if the negative volume Fermi
surface is VBZ/2, the occupied part of the Brillouin zone in
the sense of the Luttinger theorem would be VBZ(1 − δ)/2,
i.e., corresponding precisely to the electron density. Hole
pockets therefore would be completely consistent with the
Luttinger theorem if this is applied correctly. For example, an
evaluation of (23) with the fitted self-energy for two holes—
where the Fermi surface takes the form of a hole ring; see
Fig. 12–gives Ne = 1.032N , whereas the correct value would
be Ne = 0.88N . The deviation of ≈15% shows the limited
accuracy of the fitted self-energy, but is far smaller than the
difference in Fermi-surface volume.

VI. COMPARISON TO ARPES EXPERIMENTS

ARPES experiments on underdoped cuprate superconduc-
tors show a number of interesting features, and the next
point is a comparison of the extrapolated cluster spectra to
these experiments. Here an important point is to introduce
longer-range hopping terms. More precisely, we introduce
an additional hopping term which connects next-nearest [i.e.,
(1,1)-like] neighbors. We choose the matrix element for this
term to be t ′ = −0.4t . This value is somewhat large but
we simultaneously omit a hopping term between (2,0)-like
neighbors because this would lead to a strong increase in the
number of three-site terms in the strong-coupling Hamiltonian.
We performed the calculation only for the 16- and 18-site
clusters with two holes because introduction of this additional
hopping term increases the number of possible three-site
combinations in the Hamiltonian considerably, so that the
calculations become too difficult for the 20-site cluster with
two holes and the 18-site cluster with four holes. It turns out
that the ground states of the two clusters with the t ′ term in the
Hamiltonian have somewhat unusual quantum numbers: The
ground state of two holes in the 16-site cluster has momentum
(π,0) and spin S = 0, and the ground state of the 18-site
cluster with two holes has momentum ( 2π

3 ,0) and spin S = 1.
This means that the ground state (GS) of the 16-site cluster is
twofold, and that of the 18-site cluster is 12-fold degenerate.
This presents no real problem in that expression (3) should
be viewed as the zero temperature limit of a grand canonical
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FIG. 15. Spectral density A(k,ω) and imaginary part of the self-
energy �(k,ω) for the 16-site and 18-site clusters with two holes.
The value t ′ = −0.4t . The spectra are calculated with η = 0.05, and
�(k,ω) is multiplied by 1/5.

average, so that in the case of GS degeneracy one simply has
to average over all degenerate GSs.

From Fig. 4 and Table I it can be seen that the dispersion of
the central pole within the gap (ν = 1) is changed somewhat
by the presence of t ′. In particular, the deviations from the in-
verted nearest-neighbor-hopping dispersion become stronger.
Figure 15 shows the single-particle spectrum and self-energy
in the presence of the t ′ term. By comparison with Fig. 5 it is
obvious that the t ′ term introduces several pronounced changes
in �(k,ω): The residuum of the pole near (π,π ) (ν = 2) has
decreased considerably, and in fact, this pole cannot seen
anymore but takes the form of broad humps at the top of
the incoherent continua, whose upper edge has moved closer
to μ. Instead there are now poles with large residuum at (π,0)
and (π,π

3 ). And finally there is no more pole at the top of
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the incoherent continuum and the intensity of the incoherent
continua themselves has increased. To fit the self-energy we
use the same ansatz (11) but drop the pole ν = 3 at the top
of the incoherent continuum. The second difference concerns
the strong pole near (π,0). We assume that this pole actually
belongs to the band ν = 2, and to model this we change the
residuum of this band of poles by adding a second term:

σk,2 = σ0e
−f (k)/α + σde

γ 2
d /β2

γ 2
d (k),

(24)
γd (k) = cos(kx) − cos(ky).

The dispersion of this pole is again expanded with respect
to only two harmonics, the constant γ0(k) and the nearest-
neighbor-hopping harmonic γ1(k). As already mentioned, the
poles near (π,π ) cannot really be resolved in the calculated
self-energies. Our main justification for keeping this band is
the behavior seen for t ′ = 0.

Table III then gives the respective coefficients and Fig. 16
compares the numerical self-energy and the fit. The coefficient
of γ1(k) is positive. If only the term ∝σd were kept in (24), the
exponential eγ 2

d /α2
2 replaced by unity, and ζ0,ν be set to zero in

this term, the resulting self-energy would be identical to the
phenomenological self-energy introduced by Yang et al.57 On
the other hand, the residuum clearly has an extremely strong k
dependence so that the exponential cannot be neglected in the
present fit.

Figure 17 then shows the single-particle spectral density
obtained with the fitted self-energy. Along (0,0) → (π,π )
the quasiparticle band disperses toward the Fermi energy.
Consistent with experiment, the intensity of the band thereby
increases as μ is approached.

After crossing μ the band turns downward sharply and
immediately crosses μ, again whereby its spectral weight
drops. This is precisely the situation shown in Fig. 14. Along
(0,0) → (π,0) the band disperses upward as well but does not
reach μ. The ARPES spectrum thus shows a “pseudogap,” but
this is a trivial consequence of the Fermi surface being a hole
pocket centered at (π

2 , π
2 ) (see below). Roughly at ( 4π

5 ,0) there
is a maximum of the dispersion with high spectral weight and
the band turns downward and loses weight beyond this point.
This behavior may actually have been observed by Chuang
et al.,60 who interpreted this as indicating a Fermi-level
crossing at ≈( 4π

5 ,0). Chuang et al. observed this behavior in an
underdoped compound—see Fig. 2(i) of Ref. 60—but also in
overdoped samples where it is unclear if it can be compared to
the present calculation. In contrast, the spectral weight around
(π,0) is small. This is consistent with experiment where a

TABLE III. Coefficients of the model self-energy for U/t = 10,
δ ≈ 10%, t ′/t = −0.4. The constant term ζ0,2 and the edges of the
continua are relative to μ. A comparison of the model self-energy
and the numerical spectrum can be seen in Fig. 13.

ζ0,ν ζ1,ν σ0 α σd β

ν = 2 0.143 0.325 0.400 6.8 0.0184 1.15
εmin εmax σc,0 σc,1

−5.0 −0.5 0.25 0.5
0.5 3.0 0.020 0.4
7.0 12.0 0.025 1.0

-7 -6 -5 -4 -3 -2 -1  0  1  2

In
te

ns
ity

(ω-μ)/t

(0,0)

(π/2,0)

(2π/3,0)

(π,0)

(π,π/3)

(π.π/2)

(π,π)

(2π/3,2π/3)

(π/2,π/2)

(π/3,π/3)

(0,0)

Exact
Fit

ν=2

FIG. 16. Imaginary part of the self-energy �(k,ω) for the 16-site
and 18-site clusters with two holes and fit. The value t ′ = −0.4t .

quasiparticle band around (π,0) is usually not observed in the
normal state of underdoped cuprate superconductors. Along
the line (π,0) → (π,π ) the band seems to disperse upward at
first, but then again bends sharply and disperses away from μ.
At the turning point the spectral weight drops. This is again
due to the avoided crossing of the quasiparticle band with the
upward-dispersing band of poles of �(k,ω) near (π,π ), i.e.,
the band ν = 2, in Fig. 14. A very similar behavior has in fact
been observed experimentally in underdoped La2−xSrxCuO4;
see Fig. 5 of Ref. 61. In this compound the quasiparticle band
is sufficiently far from μ at (π,0) so that the absence of a
Fermi-level crossing is obvious for x = 0.05 and 0.10. A very
similar avoided crossing has been observed as “backbending”
of bands in Bi2201 in Ref. 62. If such an avoided crossing
would occur sufficiently close to μ, however, it may look very
similar to a true Fermi-level crossing. Apparent experimental
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FIG. 17. (Color online) Single-particle spectral density A(k,ω)
for δ = 0.12, U/t = 10, and t ′/t = −0.4 obtained by using the
interpolated self-energy for the infinite lattice.

Fermi-level crossings along (π,0) → (π,π ) thus should be
considered with care.

The actual Fermi surface of the underdoped system is shown
in Fig. 18 and takes the form of a hole pocket, centered
near (π

2 , π
2 ). The pocket is shifted slightly toward (0,0) and

the part facing (π,π ) has a smaller spectral weight and less
curvature than the part facing (0,0). The pockets covers 1.86%
of the total Brillouin zone which would correspond—assuming
twofold spin degeneracy and four equivalent pockets—to a
quasiparticle density of 14.9%. This is close to the hole
concentration of 12%. On the other hand, the electron density
as computed from the Luttinger theorem (23) is 1.25 so that
the inaccuracies of the self-energy clearly are substantial and
the close agreement for the quasiparticle density may be
fortuitous.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

(0,0)

(0,π)

(π,0)

FIG. 18. (Color online) Single-particle spectral density at μ

for δ = 0.12, U/t = 10, and t ′/t = −0.4 obtained by using the
interpolated self-energy for the infinite lattice.

VII. DISCUSSION

In summary, we have presented an exact diagonalization
study of the self-energy �(k,ω) in the 2D Hubbard model.
Larger clusters than usual could be used because, instead of
studying the true Hubbard model, we considered its strong-
coupling limit which requires much smaller Hilbert spaces.
For dopings less than 30%, i.e., the doping region in which
cuprate superconductivity takes place, several distinct features
can be identified: first, a pole with large residuum ∝(U/t)2

and a dispersion of width ∝t in the center of the Hubbard gap,
which is present throughout this doping range. Second, a pole
with smaller residuum and an upward dispersion ∝J around
(π,π ) which is present only in the underdoped regime. And
third, several broad incoherent continua of width ∝t . The top
of the lowest of these incoherent continua may be formed by a
third pole. All features in the spectral representation of �(k,ω)
show a pronounced k dependence, both with respect to their
dispersion and their residuum. This implies that in real space
the self-energy is long ranged and oscillatory.

The key difference between the underdoped and overdoped
system is the presence of a dispersive pole of �(k,ω) around
(π,π ). This pole cuts through the quasiparticle dispersion
and changes the Fermi-surface topology completely. In the
underdoped hole concentration range the Fermi surface takes
the form of a hole ring for t ′ = 0 or hole pockets centered near
(π

2 , π
2 ) for t ′ = −0.4t and changes to a large free-electron-like

Fermi surface in the overdoped case. We have shown that the
hole pockets can be completely consistent with the Luttinger
theorem. The residuum of the upward dispersing pole near
(π,π ) thus plays the role of an order parameter for the phase
transition between the two different ground states.

The single-particle spectra obtained with the fitted self-
energies agree very well with both quantum Monte Carlo
simulations (for t ′ = 0) and ARPES on underdoped cuprates
(for t ′ = 0.4t). In particular, the spectra reproduce a hole-
pocket-like Fermi surface of similar shape and location as in
experiments and also the characteristic strong asymmetry of
the spectral weight of the parts of the pocket facing (0,0)
and (π,π ). Quite generally, the spectra show that all parts of
the quasiparticle band which deviate from the noninteracting
electron band structure have a very small weight. The reason
is that these band portions closely follow the dispersion of a
band of poles of �(k,ω) and “borrow” their spectral weight
from the quasiparticle band. The data suggest in particular that
some Fermi-level crossings observed in ARPES along the line
(π,0) → (π,π ) actually may not be true Fermi-level crossings
but sharp bends at the intersection of the quasiparticle disper-
sion and a band of poles in �(k,ω). An example where such
pseudocrossings can be clearly recognized is La2−xSrxCuO4.61

In this compound the shift in the quasiparticle band is
sufficiently far from μ near (π,0) so that the absence of
a Fermi-level crossing is clear—if the quasiparticle band
is closer to μ, however, there pseudocrossing may well be
mistaken for a real Fermi-level crossing.

An interesting question is the physical meaning of the
upward-dispersing pole near (π,π ). One immediate conse-
quence of this pole is that the part of the inverse photoemission
spectrum belonging to the lower Hubbard band consists of
two disconnected components. The first component is the
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unoccupied part of the quasiparticle band, which forms the cap
of the hole pockets around ( π

2 , π
2 ), and the second component

is a disconnected part around (π,π ). This two-component
nature of the inverse phtoemission spectrum was discussed in
Ref. 47, where it was shown that the disconnected component
around (π,π ) actually consists of spin-polaron shakeoff, i.e.,
spin excitations which are released when a hole dressed by
antiferromagnetic spin fluctuations is filled by an electron. The
disconnected nature of the low-energy inverse photoemission
spectrum thus is a quite natural consequence of the hole
pockets and the spin-polaron nature of the quasiparticles.

The transition then may be understood as follows: In a
Mott insulator the electrons are localized and retain only their
spin degrees of freedom. Upon doping most electrons are
still tightly surrounded by other electrons as in the insulator
and thus remain localized—the ground-state wave function
therefore should optimize the energy gain due to delocalization
of the holes, and since the holes are spin-1/2 fermions this can
be achieved by forming hole pockets with a volume ∝δ around
the ground-state momentum of a single hole, i.e., (π

2 , π
2 ). This

picture leads to a simple theory53 in which the number of
noninteracting particles is equal to the number of doped holes.

When the density of holes becomes sufficiently large so
that the electrons are sufficiently mobile, a phase transition
occurs at a state which optimizes the kinetic energy of the
electrons themselves and this means the formation of a Fermi
surface with a volume ∝1 − δ. A rough estimate for the hole
concentration where the transition occurs would be δc ≈ z−1,
with z the coordination number because then each electron
has one unoccupied neighbor on average. The vanishing of the
upward-dispersing pole in the self-energy then corresponds to
this phase transition. Experimentally it seems that the phase
transition between pockets and the free-electron-like Fermi
surface occurs right at optimal doping. This suggests that
superconductivity is also related to this transition.
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APPENDIX A

Here we prove that the real constant gk in (2) is equal to
the Hartree-Fock potential. Considering the limit of large ω,
expanding the two expressions for the Green’s function, (2)
and (3), in powers of ω−1, thereby using (4) one obtains by
comparing the terms ∝ω−2:63,64

εk + gk = 〈�0|[ck,σ [H,c
†
k,σ ]]+|�0〉, (A1)

where [· · ·]+ denotes the anticommutator. Using a standard
Hamiltonian of the form

H =
∑
k,σ

εkc
†
k,σ ck,σ

+ 1

2

∑
k,k′,q

∑
σ,σ ′

V σσ ′
k+q,k,k′−q,k′c

†
k+q,σ c

†
k′−q,σ ′ck′,σ ′ck,σ ,

this gives

gk =
∑
k′,σ ′

V
σ,σ ′

k,k′,k′,k〈nk′,σ ′ 〉 −
∑

k′
V

σ,σ
k,k′,k,k′ 〈nk′,σ 〉, (A2)

where 〈· · ·〉 denotes the ground-state expectation value.

APPENDIX B

The canonical transformation which reduces the full Hub-
bard Hamiltonian to the strong-coupling Hamiltonian takes the
form

O ′ = eSOe−S, (B1)

where O denotes an operator in the original Hilbert space and
O ′ is the transformed operator. The antihermitean generator S

is

S = −
∑
i,j

∑
σ

tij

U
(d̂†

i,σ ĉj,σ − ĉ
†
i,σ d̂i,σ ),

(B2)
d̂
†
i,σ = c

†
i,σ ni,σ̄ , ĉ

†
i,σ = c

†
i,σ (1 − ni,σ̄ ).

The strong-coupling Hamiltonian or corrected t-J model is
obtained by transforming the Hubbard Hamiltonian according
to (B1) and discarding terms of second or higher order in 1/U .
The complete—and somewhat lengthy—Hamiltonian is given
in Eq. (14) of the paper by Eskes et al.41 The transformed
version of the electron annihilation operator is

eSci,↑e−S = ci,↑ −
∑

j

tij

U
(d̂†

j,↓ − ĉ
†
j,↓)ci,↓ci,↑

+ (ĉj,↓ − d̂j,↓)S−
i + ni,↓(2ni,↑ − 1)ĉj,↑

− (1 − ni,↓)(2ni,↑ − 1)d̂j,↑) (B3)

where again terms of higher order in t/U have been neglected.
By collecting the terms which give a nonvanishing result
when acting on a state without double occupancies and do
not produce a double occupancy themselves, we obtain the
operator for photoemission in the lower Hubbard band:41

c̃i,↑ = ĉi,↑ −
∑

j

tij

U
(ĉj,↑ni,↓ − ĉj,↓S−

i ). (B4)

Since the transformed creation operator is the Hermitean
conjugate of (B3), the operator for inverse photoemission with
final states in the lower Hubbard band is just the Hermitean
conjugate of (B4). The operator for inverse photoemission with
final states in the upper Hubbard band is obtained by taking
the Hermitean conjugate of (B3) and collecting terms which
create a double occupancy but do not annihilate one:

c̃
†
i,↑ = d̂i,↑ +

∑
j

tij

U

[
ĉj,↓c

†
i,↓c

†
i,↑

+ d̂
†
j,↓S+

i + d̂
†
j,↑(1 − ni,↓)(2ni,↑ − 1)

]
. (B5)
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