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Split Hubbard bands at low densities
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We present a numerical scheme for the Hubbard model that throws light on the rather esoteric nature of the
upper and lower Hubbard bands, which have been invoked often in literature. We present a self-consistent solution
of the ladder-diagram equations for the Hubbard model, and show that these provide, at least in the limit of low
densities of particles, a vivid picture of the Hubbard split bands. We also address the currently topical problem
of decay of the doublon states that are measured in optical trap studies, using both the ladder scheme and also an
exact two-particle calculation of a relevant Green’s function.
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I. MOTIVATION AND INTRODUCTION

Hubbard’s introduction of split bands in Ref. 1, i.e., the
so-called upper Hubbard band (UHB) and the lower Hubbard
band (LHB), is one of the most important qualitative ideas in
the theory of correlated electrons. Their origin is the idea
that since the energy levels of the atomic limit show two
sets of states, one at ω ∼ 0 and another at ω ∼ U as in
Eq. (8) below, the formation of a crystal would broaden
these levels into two sets of sub-bands. These sub-bands
were originally discussed by Hubbard using a nonperturbative
technique, which has the advantage of being exact in the
limit of vanishing bandwidth W → 0, i.e., the atomic limit.
However, the technique failed to produce a Fermi liquid for
weak couplings, as one expects physically. This failure led to
severe early criticism of Hubbard’s work.2 The problem of
reconciling Fermi liquids with the local picture developed by
Hubbard, leading to the split bands, is of great importance
in the physics of strong correlations. The one exception is
the dynamical mean-field theory that gives a good account
of the sub-band formation, especially in the proximity of
half-filling.3,4 However, away from half-filling, the picture
is obscure and remains largely unresolved. It is this task
that we address in this paper. We study the ladder diagrams
that are argued to be exact at low densities, sharpen the
argument for their validity in terms of the self-energy, and
show that, at least in this limit, the concept of the split bands
is completely consistent with the Fermi liquid picture. The
numerical solution of the ladder diagrams is carried out in a
self-consistent way and shows the emergence of the Hubbard
split bands for large enough U/W . These merge for weak
couplings and our results give a vivid picture of the crossover
from weak to intermediate to strong coupling. While we can
not access the physically important regime near half-filling,
our results throw light on the nature of the Green’s functions
and the momentum occupation numbers that are unavailable
by other means.

The self-energy is momentum and also frequency depen-
dent in the ladder scheme and, for low densities, provides
a full picture of the renormalization processes that occur at
arbitrarily large interaction scale U . In particular, we see
that the spectral function shows a low-lying feature and a
high-energy ∼O(U ) feature, with spectral weights that are
equal to 1 − n

2 and n
2 , respectively. It is seen that every

single added particle thus depletes the weight of the LHB
and adds to the UHB, thereby accomplishing a “long-range
spectral transfer,” which has been described in literature as
“Mottness.”5,6

The momentum-space occupancy m(k) = 〈c†kσ ckσ 〉 is com-
puted and it is usefully broken up into three parts [Eq. (16)]:
the occupied part m1(k) in Eq. (16), corresponding to occupied
states that are automatically inside the LHB, the unoccupied
LHB part m2(k) corresponding to unoccupied LHB states, and
the unoccupied UHB part m3(k). In the limit of U → ∞, only
m1 and m2 survive, and this projection gives an exact view
of the physics of the t-J model as well in the low-density
limit. At low densities, we find that the ladder diagrams lead
to a Luttinger-Ward compliant Fermi surface, and this Fermi
surface survives the limit U → ∞. Thus, even in this limit
of extreme correlations U → ∞, adiabatic continuity to the
Fermi gas holds. Therefore, we have a useful and concrete
alternative to the extreme coupling ideas proposed in work
by one us,7 where a different Fermi volume emerges at all
densities, including the lowest ones.

One contemporary context for the Hubbard split bands is
the problem of high-Tc superconductors; here, Anderson8 has
eloquently argued that, for large U , one can confine attention
to carriers in the LHB, with the UHB pushed out of the range
of relevant states. Given this projection to the LHB, the charge
carriers inherit exotic properties such as spin charge separation,
and also a new interaction, namely, the super exchange that
comes with a scale of t2/U . We see that at least at low densities
where the ladder scheme is valid, the LHB does separate out
cleanly for U � W , but the carriers are yet subject to Fermi
liquid behavior.

Another recent context for motivating this work is the study
of the Hubbard model far away from equilibrium with cold
atom realization,9,10 where the carriers in the UHB are optically
excited, and their lifetime studied by measuring the overlap of
the excited state with the initial state. We find that a calculation
of a related correlation function is possible in the Fermi liquid
at low densities, albeit in a close to equilibrium situation unlike
the experiments. We are also able to exhibit the correlation
function exactly for a pair of particles in the Hubbard band.
Interestingly, the resulting lifetimes show some similarity in
functional dependence to those found in experiment, although
with a very different time scale.
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II. LADDER-SCHEME EQUATIONS AT
LOW DENSITY

The ladder scheme for the Green’s function (Refs. 11–13,
14, and 15) corresponds to convoluting a particle-particle
ladder scattering amplitude �(Q) with a single Green’s
function G(k) to form the self-energy �(k) as follows:

�(Q) = U

1 + U�(Q)
,

�(Q) = 1

βNs

∑
p

G(p)G(Q − p), (1)

�(k) = 1

βNs

∑
p

G(p)�(k + p).

Here, Ns,Ne are the number of sites and electrons, n = Ne/Ns

is the electron number density, and we use the notation k =
(�k,iωk) with imaginary odd frequencies ωk = π 1

β
(2k + 1) of

the finite-temperature field theory16 for fermions, and reserve
the capital letters for bosonic frequencies, e.g., Q = ( �Q,i	ν)
and 	ν = 2π 1

β
ν. Here, the summation over p represents a sum

over the vector component and also the imaginary frequency. A
paramagnetic state is assumed and the spin label is suppressed
for brevity. In addition to Eq. (1), we have the Dyson equa-
tion G−1(k) = G−1

0 (k) − �(k) with the usual noninteracting
Green’s function G−1

0 (k) = iωk − εk + μ. Thus, the ladder
scheme is a self-consistent nonlinear scheme that needs to
be solved numerically for the various objects G(k), �(k), and
�(K). We can solve for the Dyson equation in the ladder
scheme iteratively:

G−1(k) = G−1
0 (k)

− 1

βNs

∑
p

G(p)
U

1 + U
βNs

∑
q G(q)G(k + p − q)

.

(2)

For example, in the first step, we can calculate the scattering
amplitude (and self-energy) using G0 and use Dyson’s equa-
tion to obtain a new Green’s function we call G1:

G−1
1 (k) = G−1

0 (k) − 1

βNs

×
∑

p

G0(p)
U

1 + U
βNs

∑
q G0(q)G0(k + p − q)

.

(3)

We may continue and compute G2(k) using G1(k) to recom-
pute the self-energy [i.e., the second term in Eq. (3)], and repeat
this process iteratively to obtain G(k) = limn→∞ Gn(k). The
difference between G1(k) and the fully self-consistent G(k)
arises from the repeated renormalizations implicit in the full
equations, and this brings about the self-consistent broadening
of several sharp features that arise in G1(k). In Fig. 3, we
discuss the difference in the spectral functions from these two
theories as an illustration of this phenomenon.

Alternatively, we start by introducing spectral representa-
tions for the various quantities of physical interest16,17:

G(�k,iωk) =
∫

dν
ρG(�k,ν)

iωk − ν
,

�(�k,iωk) = U
n

2
+

∫
dν

ρ�(�k,ν)

iωk − ν
, (4)

�( �Q,i	Q) = U +
∫

dν
ρ�( �Q,ν)

i	Q − ν
.

The spectral functions ρ�( �Q,ν), etc., have a compact support
and are therefore convenient for numerical integration on
a suitably discretized grid of frequencies. The numerical
solution is performed after using a spectral representation for
various physical quantities. We first turn the Dyson Eq. (2)
into a nonlinear integral equation for the spectral function
from Eq. (4) as follows:

ρ�(�k,ω) = 1

Ns

∑
�p

∫
dν ρG(p,ν) ρ�( �p

+ �k,ν + ω) [f (ω) + nB(ω + ν)],

ρ�( �Q,	)) =
∑

�q

∫
dν ρG(q,ν) ρG(Q − q,	 − ν) [f (ν)

+ f (	 − ν) − 1],

ρ�( �Q,	) = −U 2ρ�( �Q,	)

[1 + URe�( �Q,	)]2 + [πUρ�( �Q,	)]2
, (5)

with f (ω) and nB(ω) as the Fermi and Bose distribution
functions [exp βω ± 1]−1, and Re�( �Q,	) defined as the
Hilbert transform of ρ�( �Q,ν), i.e.,

Re�( �Q,	) = P
∫

dν
ρ�( �Q,ν)

	 − ν
.

A. Low-density limit and self-energy sum rule

The original argument for the ladder scheme11,12 is that it
is exact in the low-density limit. Specifically, the ground-state
energy and some derived static quantities such as susceptibili-
ties are argued to be exact. This argument is borrowed from the
theory of nuclear matter, where Brueckner18 originally argued
that at any order n of perturbation theory for the ground-state
energy (i.e., the Goldstone diagrams), the dominant diagrams
are those with the smallest number of downward lines of
holes. Topologically, there need to be at least two such hole
lines in the free-energy diagrams. The particle-particle ladder
diagrams have only two hole lines at any order. Thus, the ladder
diagrams dominate all others at each order in perturbation
theory. Importantly for nuclear matter, this logic shows that
the large (divergent) two-body interaction is not a problem, it
is cut off by these ladders, giving in the end an expansion in a
dimensionless parameter obtained by combining the two-body
scattering length with the average interparticle separation. A
parallel argument for bosons was provided by Lee, Huang,
and Yang.19 The Kanamori- Galitskii papers implement this
idea for the Feynman diagrams, where one has hole-hole
scattering in addition to particle-particle ladders, for structural
reasons that distinguish the Feynman from the Goldstone
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FIG. 1. (Color online) The zeroth moment of the self-energy
versus the density normalized to the exact value U 2 n(2−n)

4 . These
data are in two dimensions with U = 10, W = 2. The inset shows
the k independence of the sum rule along the (11) direction for the
case n = 0.04, with variations in the sixth significant figure.

diagrams. However, these extra terms do not detract from the
particle-particle ladders that cohabit the Feynman series and
provide a particular O(n2) correction term.

The reader would note that the above argument is rather
indirect; in particular, it gives us no clue as to why we should
accept the self-energy that emerges from this scheme as exact.
In this context, it is useful to note that the self-energy satisfies
an exact series of sum rules6,20,21 of which the lowest is

s0(k) ≡
∫

dν ρ�(�k,ν) = U 2 n(2 − n)

4
, (6)

where the right-hand side is independent of �k. Note that this
sum rule is valid for arbitrarily large U and at all densities. We
can use this as a check of our calculation by testing for the �k
independence of the computed left-hand side, and also monitor
its weight relative to the right-hand side. The self-consistent
solution of the ladder diagrams contains the low-density limit
and also provides some uncontrolled results at higher densities,
and it is important to know the limit on density to which we
can trust these results. Figure 1 gives details of this test for
the ladder diagrams. For higher densities, the ladder-diagram
theory is systematically wrong for the O(n2) term since we
can show analytically that, at large U and low density, s0(k) =
U 2 n(1−n)

2 + O(U ) in contrast to Eq. (6). Our results for the
self-energy thus provide a more stringent test for the ladder
diagrams than, say, the ground-state energy, and show that
there are systematic corrections already to first order in density
to sum rules such as s0(k). We will see other examples of these
deviations from exactness at low densities in several examples
presented below, such as Fig. 7, and provide concrete limits
to the extent to which one can trust the ladder scheme. On the
positive side, however, the momentum independence of the
sum rule, as seen in the inset of Fig. 1, is encouraging and
suggests that the qualitative features of the ladder scheme are
reliable at low densities.

B. Atomic limit

We discuss briefly the atomic limit, i.e., a limit where
U remains finite but the bandwidth W → 0. This limit is a
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FIG. 2. (Color online) High-frequency (UHB) density of states
in two dimensions, n = 1/20. As the hopping is decreased from
t = 1

2 , 1
8 , 1

32 at a fixed U = 10, the UHB consists of a sharp peak and
a broad k-independent background that maintains a width of O(U ).
The sharp k-dependent peak does narrow as the hopping decreases.
In Fig. 3, the broad UHB of the full band can be seen with the G1

from Eq. (3) superimposed. Here, the UHB feature is broadened by
η and the LHB is suppressed for clarity.

highly singular one since the ground state becomes enormously
degenerate and is not expected to be reached in a smooth way
from a finite hopping situation starting with a liquidlike state.
However, this is a limit where one can solve for the Green’s
function exactly quite simply if one performs an unbiased
average over all the degenerate ground states:

�atomic = U
n

2
+ U 2

n
2

(
1 − n

2

)
iω + μ − U

(
1 − n

2

) , (7)

Gatomic = 1 − n
2

iω + μ
+

n
2

iω + μ − U
. (8)

The breakup of the Green’s function into two parts, with
energies ∼0 or ∼U and weights 1 − n/2 and n/2 is, of
course, the fundamental factor that leads one to the picture
of upper and lower Hubbard bands. Hubbard’s contribution1

was to provide a Green’s function for finite hopping W

using an equation-of-motion method that extended the atomic
limit, although the details of his treatment came in for severe
criticism2 due to the failure of his scheme to ever yield a Fermi
liquid with the Luttinger-Ward22 ordained Fermi surface. It is
interesting to study the t → 0 limit in the present scheme of
ladder diagrams in Fig. 2 where the local density of states
1
Ns

∑
k ρG(k,ω) is shown for various values of U/W . We

observe a sharp peak accompanied by a broad background
term of width O(U ) that remains intact as t → 0.

C. Emergence and structure of the split bands of Hubbard

In the ladder diagrams, it is straightforward to identify the
origin of the upper Hubbard band: the scattering amplitude
�(Q) at frequencies 	Q ∼ U has a pole in the first iteration,
i.e., at the level of G1 with

�1(Q) ≡ �(Q; [G0]) ∼ U 2(1 − n)

i	 − U (1 − n)
. (9)
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FIG. 3. (Color online) Two dimensions, U = 10, W = 2.5, and
n = 1/20. The spectral function at three values of the wave vector
(0,0), ( π

2 , π

2 ), (π,π ) in blue (square), red (circle) and gold (triangle)
colors. Aside from the quasiparticles, we observe three features
emerging in each spectral function. Most obvious is the UHB feature
that lies at a ω ≈ O(U ) and integrates to a weight of n/2 + O(n2).
This feature is dramatically broadened in the self-consistent G also
becoming less k dependent. On each edge of the quasiparticle band,
we observe small dispersing features. Reference 15 has previously
identified the negative frequency feature as a two-hole antibound
state, while Ref. 24 has discussed a particle-hole antibound state
just above the quasiparticle band. These features are essentially
unchanged in going from G1 from Eq. (3) to the exact G.

This pole was noted very early in works (Refs. 13 and 23)
that identified this pole as the origin of strong correlations
and Gutzwiller-type factors. In Fig. 3, we see that the spectral
function obtained from the first iteration, i.e., G1, shows a sharp
feature at a higher energy of O(U ) that arises from this pole.
This peak disperses and may be viewed as a “baby version” of
the upper Hubbard band. Next, a self-consistent treatment of
this theory with �(Q; [G]) evaluated with G (rather than G0)
broadens the upper band substantially, as seen in Fig. 3. It is
interesting that the lower Hubbard band, i.e., the structure at
energies below U , is stable with respect to the iterations, and
is hardly different between the first iteration scheme and the
final one.

We also see in Fig. 3 the existence of two features that
have been commented upon in literature. The feature near the
band bottom that disperses is the so-called hole-hole bound
state noted by Randeria and Englebrecht (Ref. 15), whereas
the hump near the leading edge is a particle-hole bound-state
feature noted by Anderson (Ref. 24). These features coexist
with the other, dominant ones, namely, the quasiparticle peak
of the Fermi liquid and the broadened upper Hubbard band
peak. If we replace the log-linear scale in Fig. 3 with a linear-
linear scale as in Fig. 6, the UHB becomes almost negligible
compared to the LHB feature.

D. Frequency-dependent self-energy

We next display the self-energy in the ladder scheme. The
spectral density for the self-energy is given in Eq. (5), and it
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FIG. 4. (Color online) Two dimensions, U = 0.25, U = 10, W =
2, and n = 0.049. The local ρ�(ω) divided by U versus ω. The two
chosen values of U are in the weak-coupling (blue (circle) U = 0.25)
and strong-coupling (red (square) U = 10) ranges, respectively. We
see at the lowest temperatures that the the self-energy curves overlap
when scaled by U displaying a characteristic quadratic dip at the
chemical potential.

is possible to obtain an equation for its momentum sum, i.e., a
local self-energy density

1

Ns

∑
k

ρ�(k,ω) =
∫

dνρG,loc(ν)ρ�,loc(ν + ω)

× [f (ω) + nB(ω + ν)]. (10)

For comparison, we note that the local self-energy in the atomic
limit considered in Sec. II B is given by a single delta function
centered at U (1 − n

2 ) − μ as

ρ�, atomic(ω) = U 2 n

2

(
1 − n

2

)
δ

[
ω − U

(
1 − n

2

)]
. (11)

We also note the form of this object for a Fermi liquid at
finite T :

ρ
Fermi liquid
�, local (ω) = a ω2 + fbackground(ω), (12)

a simple second-order self-consistent theory (corresponding
to truncating the ladders at the first rung) gives the picture of
this in a Fermi liquid (Fig. 4).

We see in Fig. 5 that the ladder scheme inherits both a
quadratic minimum at ω = 0 from the Fermi liquid and a large
and broad feature near ω ∼ U from the emergent Hubbard
upper band. The inset emphasizes the Fermi liquid aspect, and
the reader will observe that the absolute scale of this function
is dominated by the UHB feature. In Fig. 6, the density of
states (DOS) of the Green’s function ρG(�k,ν) is illustrated,
along with the real and imaginary parts of the self-energy. The
small feature in the DOS at the energy scale U is the UHB. We
see that the real and imaginary parts of the self-energy reflect
its presence in a profound fashion, which would be hard to
guess from the size of the peak. In detail, it is interesting that
the real part of the self-energy does display a linear behavior
in ω with a known slope as one expects in the intermediate
frequency range 0 
 ω 
 U from the theory of extremely
correlated electronic systems in Refs. 7 and 25.

When W = 0, the UHB has a weight that is independent
of momentum. However, for finite W , momenta near the top
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FIG. 5. (Color online) The local self-energy spectrum in two
dimensions, U = 10, W = 2, and n = 0.05. The log-scale plot shows
the full scale of the UHB. The inset highlights the quadratic minimum
at low energies. The quadratic minimum drops below the scale of η,
so it can be said to represent an infinite lifetime.

of the band will transfer weight more readily to the UHB.
Figure 7 illustrates this progression. We show in Fig. 8 that
the behavior of the local spectral function 〈ρ�( �Q,ν)〉Q closely
follows that of the local self-energy ρ�(ν).

If we look at large ω such that we can make the
approximation ω + ν ≈ ω, the integral for ρ�(k,ω) in Eq. (5)
reduces to

1

Ns

∑
k

ρ�(k,ω) ∼ n

2
ρ�,loc(ω), (13)

accounting for the similarity of these in Fig. 8.
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FIG. 6. (Color online) The two-dimensional DOS, i.e., the
momentum-averaged spectral function ρG(�k,ν) and the momentum-
averaged ρ�(�k,ν). The LHB feature is the sharp peak near ω ∼ 0. The
UHB feature in the DOS is nearly invisible here but lies just below
the feature in ρ� scaled down by a factor of ω2. The real part of the
self-energy for ω � 0 initially drops linearly with frequency over a
range W 
 ω ∼ U

2 , as required in the limit of extreme correlations
(Refs. 7 and 25). It then flips at the threshold of the UHB, rising
across the range of the UHB until, at the highest energy, it begins to
decay down toward the Hartree term at infinite energy.
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FIG. 7. (Color online) The integrated spectral weight over the
UHB is called m3(k). It is plotted here for W

U
= 1.6, 0.56, 0.196,

0.0686, 0.024, and 0.0085. In this case, n = 0.15. We observe that
the weight of the UHB exceeds n/2 by O(n2) and becomes flat as
U/W tends to infinity.

E. Momentum occupancy

We next turn to the momentum occupancy mk =
〈c†(k)c(k)〉; this can be obtained from the Green’s function
or ρG(k,ν) by integration over the frequencies. In order to
understand and illustrate the nature of the LHB and UHB
breakup of this important object, we carry out the integration
up to the center of the Hubbard-Mott gap. Thus, we define
three objects mj (k) (with j = 1,2,3):

m1(k) =
∫ 0

−∞
dω ρG(k,ω), (14)

m2(k) =
∫ ωg

0
dω ρG(k,ω), (15)
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FIG. 8. (Color online) From the convolution structure of ρ�(k,ω),
we see that the local objects of � and � are related by the ratio
n/2 when ω > W for all values of W/U . In the strong-coupling
limit, where the upper band is essentially independent of k, this
relationship will be approximately true for each wave vector. On the
negative frequency side, the thermal function acts differently such
that the ratio for ω < −W is approximately (1 + n

2 ).
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FIG. 9. (Color online) One-dimensional U = 10, W = 0.56
(dashed line), W = 0.196 (solid line), n = 0.15, and T = 0.005. Here,
m1 is essentially the zero-temperature quasiparticle occupation, while
m2 accounts for the LHB particle addition spectrum. The sharp step
in occupation occurs precisely at the Luttinger Fermi surface, which
satisfies the Luttinger-Ward sum rule. The sum of m1 and m2 is less
than one due to the weight transferred to the upper band. The total
lower band weight approaches 1 − n/2 as U/W goes to infinity.

m3(k) =
∫ ∞

ωg

dω ρG(k,ω). (16)

Here, m1(k) represents the momentum-space occupancy of
the occupied states that lie below the chemical potential.
These are automatically in the LHB for energetic reasons
and satisfy the sum rule

∑
k m1(k) = n/2 × Ns with a sum

over the entire Brillouin zone (BZ). Next, m2(k) represents the
LHB contribution to the unoccupied states since the chemical
potential lies within the LHB. If we send U → ∞, then we
are left with only the LHB, and in that limit, we expect the
sum m1(k) + m2(k) = 1 − n

2 pointwise at each k. However,
for finite but large U , this sum differs from 1 − n

2 by terms
of O(t/U ), and the UHB comes into play. Indeed, m3(k)
refers to precisely the UHB contribution to the momentum
occupation, and its momentum average over the BZ is n

2 .
These are displayed for typical parameters in Fig. 9. The sum
of all three m functions should add to unity for each wave
vector. However, due to the finite frequency resolution of our
numerics, this sum rule is only approximately satisfied. We
limit the error to <1% by reducing our frequency step dω.
The error is concentrated near kf , where the spectral function
is sharpest.

In Fig. 9, we display the k dependence of the three
occupancy functions for a typical set of parameters. It is clear
that the Luttinger-Ward Fermi surface controls the variations
of the functions m1 and m2, which complement each other so
that the sum is almost a constant.

III. DOUBLONS AND THEIR DYNAMICS

A. Doublon decay in the low-density limit

In recent experiments,9,10 the lifetime of doublons created
by optical excitation of the trapped atoms has been measured,

providing us with an added impetus for this study. The ex-
periments actually study the decay of a highly nonequilibrium
initial state |ψinitial〉 with a finite fraction of excited doublons,
i.e., 〈ψinitial|D̂|ψinitial〉 ∝ Ns , where the doublon number D̂ =∑

i ni↑ni↓. The object studied is the time evolution of such a
state followed by a measurement of D and then a projection
on to the evolved state, i.e.,

ξ (tr ) = 〈ψinitial| exp {itrH } D̂ exp {−itrH } |ψinitial〉. (17)

Here and below, we use the symbol tr to denote real
(Schrödinger) time, thus distinguishing it from the band
hopping parameter t . Such a correlation function is not usually
amenable to study near-equilibrium-type situations studied in
many-body physics. The initial state is itself quite far from
being an equilibrium (ground) state. However, in the limit
of very low densities, one can approximately view the initial
state as the vacuum or few-particle state with a few doublon
excitations; within this picture, we may ask how a single
doublon decays. This is roughly the question of the lifetime
of a state in the upper Hubbard band, and thus related to our
general theme in this paper.

We are able to calculate the lifetime of a doublon within
the ladder scheme and, hence, presumably an exact answer at
low densities as argued here. We next provide a discussion of
the function γ in a low-density Fermi liquid. We start with
the correlation function defined for Matsubara time τ � 0 in
terms of the two-particle Green’s function16

γ (r,τ ) ≡ GII
↑,↓,↓,↑(rτ,rτ ; 0,0)

= 〈cr,↑(τ )cr,↓(τ )c†0,↓(0)c†0,↑(0)〉, (18)

and an analogous expression for real times γ (r,tr ). This object
can be expressed in terms of the scattering amplitude26 as

γ (r,tr ) =
∑
Q

∫
d	ρ�(Q,ν)[1 + nB(ν)]e−iQr−iνtr . (19)

In Fig. 10, we display γ (0,tr ) within the ladder scheme. As
the density is increased, the UHB becomes broader and less k

dependent; however, sharp k-dependent features persist with
weight that decreases as t/U goes to zero. The k-dependent
pieces remain sharp and determine the rate of the long-time
exponential decay. On the other hand, the k-independent
pieces, being broad, determine the short-time decay. Due to
our finite frequency resolution, these numerics do not see
the long-time exponential decay becoming infinitely long
once t < η.

We have also computed the off-site correlation function
γ (1,tr > 0); Fig. 11 shows that even the site directly adjacent
to the created doublon has a very small amplitude.

B. Exact solution of the doublon decay problem
for two particles

In addition to the discussion of the low-density case, we
are able to solve exactly the admittedly simple problem of the
dynamics of a single doublon in the Hubbard model, and from
this study provide some feeling for the validity of the ladder
scheme. The single doublon problem is solvable since, for two
particles of opposite spin, we have a total momentum quantum
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FIG. 10. (Color online) The doublon dynamics breaks into two regimes: a sharp decay at early times followed by a long exponential tail.
The magnitude of the initial decay depends strongly on the density. In the limit n → 0, the initial decay disappears, indicating that the UHB
is comprised of sharp features only in the limit of vanishing density. In the right panel, the U dependence of the long-time decay is shown, it
slows down, and is finally limited by the level broadening η assumed in our numerics. Here, γ consists of a UHB piece and a LHB piece that
interfere, causing oscillations. For large U/W , the LHB piece becomes small and, hence, there is no interference.

number and, in each sector of this, we have a single-particle-
type Schrödinger equation to solve. Let us first outline this
problem and its solution with regard to the correlation function

γ (r,tr ) = 〈0 |cr,↑(tr )cr,↓(tr )c†0,↓(0)c†0,↑(0) |0〉. (20)

Here, the average is with respect to the vacuum state with
no particles, although below we will use the average over the
thermal distribution function for a low-density Fermi liquid.
In the case of two particles, it is in fact possible to show that
γ (r,tr ) is related to the correlator ξ (tr ) in Eq. (17) exactly
through

ξ (tr ) =
∑

r

|γ (r,tr )|2. (21)

This follows upon using the fact that, with only two particles
in the system, the destruction operator cr,↑(tr )cr,↓(tr ) can only
connect to the vacuum state. We expect this relation to be
only approximately true for a dense Fermi system but useful
since it can be computed with relative ease by one of several
techniques. It is also dominated by the term r = 0, as shown
explicitly below in Fig. 11, and hence it is useful to regard
|γ (0,tr )|2 as an estimator of ξ (tr ).

Reference 10 estimates γ (0,tr ) by an argument that is
appropriate in an incoherent Fermi system, and argue that
this function decays on a time scale that is given as

h

τ
= At exp

{
−B

U

W

}
. (22)

The vanishing of the rate as W → 0 is expected in view of the
conservation of the doublon number in the absence of electron
hopping, the coefficients are estimated from experiments on
the three-dimensional cubic lattice (W = 12t) as A ∼ 0.9 ±
0.5 and B ∼ 1.6 ± 0.16.

For the two-particle problem, we have exact analytical and
numerical solutions. In the interesting case of U > W in d-
dimensional hypercubes with nearest-neighbor hopping, we

can write

γ (0,tr ) = γL(0,tr ) + γU (0,tr ),
(23)

γU (0,tr ) ∼ e−i(U+4d t2

U
)tr J d

0

(
4t2

U
tr

)
,

where the LHB contribution γL ∼ O((W/U )2) and negligible.
The second term arises from the UHB, and for intermediate
W 
 U , is related to the Bessel function J0 whereby it
decays as a power law rather than as an exponential. This is
understandable since the two-body problem is an integrable
system, and we expect that, in the low-density limit, this
power law would be replaced by an exponential-type decay.
The function |γ |2 can be found easily (see the Appendix) by
numerical means, and Figs. 12 and 13 give us a picture of the
decay.

In Fig. 14, we show that the half width at half maximum
(HWHM) of the computed γ (0,tr ) leads to a rate h̄

τHWHM
, which
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FIG. 11. (Color online) The inset shows that γ (1,tr ) goes to zero
at early times since there is no mechanism to hop at small times. On
a longer time scale, we see the development of an exponential decay.
The small magnitude of the correlation is due to fact that the UHB is
largely k independent.
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FIG. 12. (Color online) Doublon decay on a cubic lattice with
U = 15 and W = 12. The shape of |γU (Utr )|2 (red dashed curve)
initially deviates slightly from the exact numerical result (blue curve)
due to the neglect of the γL term, which decays much more quickly
than the UHB contribution.

has a behavior that is similar to that in the experiments fit by
Eq. (22).

IV. CONCLUSIONS

In conclusion, we have shown that the self-consistently
computed ladder diagrams provide a detailed picture of the
split bands for the Hubbard model. The UHB has a distinct
shape that is captured here and related to the shape of the
two-particle scattering amplitude. We have delineated how the
lower Hubbard band occupation is influenced by the passage
to large U . Here, the background momentum occupance found
in variational studies of the Gutzwiller approximation27 arises
here dynamically. Finally, we have shown that the decay of
the doublon in such a system can be calculated by the ladder
diagrams as well as by exact methods for very low densities,
and the shapes of these curves are fairly close to those found
in recent experiments on atomic traps performed under very
different physical conditions.
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FIG. 13. (Color online) Doublon decay on a cubic lattice with
U = 5 and W = 12. In the case U < W , it is much more difficult to
find an exact analytical form, so only the numerical result is displayed.
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FIG. 14. (Color online) Two theoretical calculations, from ladder
diagrams of Eq. (19) in two dimensions (Solid) and the exact
two-particle solution from Eq. (21) and Eq. (A10) in two and three
dimensions (long dash and short dash). These are compared to the
experiment Eq. (22) in three dimensions (dot dash), scaled to coincide
at weak coupling by a factor 26.4. The theory and experiment are in
very different limits of physical parameters, but have a similar shape,
except at large U/t .
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APPENDIX: EXACT CORRELATION FUNCTIONS FOR
THE TWO-PARTICLE HUBBARD MODEL

We consider the Hubbard model with two particles, one
spin up and the other spin down. Our goal is to calculate the
following correlation function:

γ (tr ) = 〈0 |ci↓ci↑e−iH tr c
†
i↑c

†
i↓ |0〉 = γU (tr ) + γL(tr ).

(A1)

The two parts arise from intermediate states that are in the two
split bands. Thus,

γU (tr ) =
∑

νεUHB

| 〈ν |c†i↑c
†
i↓ |0〉 | 2e−iEν tr ,

(A2)
γL(tr ) =

∑
νεLHB

| 〈ν |c†i↑c
†
i↓ |0〉 | 2e−iEν tr .

We now calculate the eigenvalues and eigenstates for the two-
particle Hubbard model. As our basis, we take momentum
eigenstates

|Q,k〉 ≡ c
†
Q−k↑c

†
k↓ |0〉, (A3)

where Q is the total momentum of the state, and both Q and k

can be any vector in the first Brillouin zone. The Hamiltonian
acts on the basis in the following way:

H |Q,k〉 = Ek |Q,k〉 + U

Ns

∑
p

|Q,p〉, (A4)

where Ek = (εQ−k + εk). The Hamiltonian conserves total
momentum. Thus, we can diagonalize each total momentum
sector independently. Each sector will have Ns eigenstates,
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where Ns is the size of the lattice. We now fix Q and work in a
particular total momentum sector. The basis states now depend
on a single index k. The Ek’s will in general be degenerate,
and we take an E with degeneracy n, i.e., deg(E) = n,
corresponding to states |Q,k1〉, . . . , |Q,kn〉. From these, we
can make an n − 1 dimensional degenerate eigenspace of the
Hamiltonian with energy E, which we shall call |ψ〉deg:

|ψ〉deg =
n∑

i=1

αi |Q,ki〉,
∑

i

αi = 0. (A5)

One can see that these are eigenstates with energy E since the
potential energy term goes to zero due to the condition

∑
i αi =

0 and the kinetic energy term gives E times the state. Suppose
that there are p unique values of E in this total momentum
sector:

deg(E1) + · · · + deg(Ep) = Ns. (A6)

By forming states in the way described above, we can obtain
Ns − p eigenstates |ψ〉deg that are independent of U . We ob-
tain the remaining nontrivial (i.e., U dependent) p eigenstates
by plugging the following state into the Hamiltonian:

|ψQ〉 =
∑

k

�Q(k) |Q,k〉 and H |ψQ〉 = �Q |ψQ〉.

(A7)

Here, we consider states with a fixed total momentum Q since
this object is conserved. This yields the following results:

�Q(k) = 1

cQ

√
Ns

1

�Q − Ek

, cQ

=
(

1

Ns

∑
k

1

(�Q − Ek)2

) 1
2

,
U

Ns

∑
k

1

�Q − Ek

= 1.

(A8)

We can see explicitly from Eq. (A8) that 〈ψQ |ψ〉deg = 0 since
basis states with equal E have equal coefficients, and therefore
the condition

∑
i αi = 0 makes this state orthogonal to the

degenerate manifold of states in Eq. (A5). There are p − 1
solutions of Eq. (A8) that lie in-between the p distinct E’s.
The corresponding states are in the lower Hubbard band. The
|ψ〉deg found earlier also lie in the lower Hubbard band since
these states are independent of U . There is one solution of
Eq. (A8) for which �Q > Emax and is of order U if U > W .
The corresponding state lies in the upper Hubbard band. Thus,
for each fixed Q sector, there is one state in the upper Hubbard
band. We now consider the doublon state

|ψ〉d = c
†
i↑c

†
i↓ |0〉 = 1

Ns

∑
Q,k

e−iQ·Ri |Q,k〉. (A9)

We can rewrite

γ (tr ) =
∑
Q

| 〈ψQ |ψ〉d | 2e−i�Qtr , (A10)

where the Q in the above sum stands for the p states
described by Eq. (A8) in the total momentum sector Q. Since
〈ψd |ψ〉deg = 0, we did not have to take the degenerate

states into account when calculating the correlation function.
Furthermore, we see that

| 〈ψQ |ψ〉d | 2 = 1

Nsc
2
QU 2

, (A11)

where cQ is from Eq. (A8) and

γU (tr ) =
∑

QεUHB

1

Nsc
2
QU 2

e−i�Qtr . (A12)

In the above sum, each Q now represents only one state, since
there is only one UHB state in each total momentum sector.
We first evaluate this in one dimension, and then generalize to
multiple dimensions. The sum can be turned into an integral

γU (tr ) = 1

π

∫ π

0

1

c2
QU 2

e−i�Qtr dQ. (A13)

By converting Eq. (A8) into integrals, we find that

�Q =
(

U 2 + 16t2 cos2 Q

2

) 1
2

, (A14)

c2
Q = 1

U 3

(
U 2 + 16t2 cos2 Q

2

) 1
2

. (A15)

For U > W , we keep corrections of O( t2

U 2 ) in �Q and drop all
corrections in c2

Q, yielding

γU (tr ) ∼ 1

π

∫ π

0
e
−iU (1+8 t2

U2 cos2 Q

2 )tr dQ, (A16)

γU (tr ) ∼ e−i(U+4 t2

U
)tr J0

(
4t2

U
tr

)
. (A17)

In two dimensions, Eq. (A8) becomes an elliptic integral so
there is no closed-form answer for the upper band eigenvalues
in terms of elementary functions. However, for U > W ,
keeping corrections to the same order as we did in deriving
Eq. (A16), we can easily generalize to higher dimensions

�Q = U

(
1 + 8

t2

U 2
�d

i=1 cos2 Qi

2

)
, (A18)

c2
Q = 1

U 2
, (A19)

γU (tr ) ∼ e−i(U+4d t2

U
)tr J d

0

(
4t2

U
tr

)
. (A20)

The other contribution to γ (tr ) is γL(tr ). However, from
degenerate perturbation theory, we know that provided U >

W , |〈ν|ψ〉d |2 is O( t2

U 2 ) smaller for νε LHB than it is for the
upper Hubbard band. Hence, γL(tr ) is a small correction to
γU (tr ):

γ (tr ) ≈ γU (tr ), (A21)

|γ (tr ) | 2 ≈ J 2d
0

(
4t2

U
tr

)
. (A22)

In conclusion, the doublon decay in the two-particle
Hubbard model in the regime U > W is dominated by γU

with the much faster decaying γL giving a small correction.
To a good approximation, the shape of the decay of |γ (tr ) | 2

is J 2d
0 ( 4t2

U
tr ).
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