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Perturbation theory for plasmonic modulation and sensing
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We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic
nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma
frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory’s
accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole
fit of silver’s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in
such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical
sensing and optical modulation and future active metamaterial applications.
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I. INTRODUCTION

To design active optical devices such as sensors, switches,
and modulators, one needs to calculate how a small change
in refractive index affects the device response function. For
active devices based on dielectric structures1–5 described by
a frequency-independent dielectric constant distribution ε(r),
the effect of an index change can be understood in terms of a
frequency shift ω1 of the eigenmodes of the system, which is
given by first-order perturbation theory as2,6

ω1 = −ω

2

∫
dr�ε(r)|E(r)|2∫
drε(r)|E(r)|2 . (1)

The numerator in Eq. (1) only has contributions from the
perturbed regions as described by �ε(r). The shift in the
eigenfrequency thus depends on the overlap of the modal
electric field energy with the perturbed region.

In recent years, there has been substantial interest in
using plasmonics for active devices. While surface-plasmon
sensors are already prominent in biochemical sensing
applications,7,8 remarkable improvements in device perfor-
mance have been achieved using plasmonic nanostructures and
metamaterials.9–11 Active plasmonic devices have also been
implemented for modulation and switching.12–16 Given these
developments, it is essential to develop a general photonic
perturbation theory for plasmonic nanophotonic structures
to firmly ground the analysis and characterization of next-
generation devices.

Equation (1), however, is not applicable for plasmonic
systems. For example, ε(r) can be negative in a metal system,
and hence directly applying Eq. (1) could lead to a prediction
of infinite sensitivity, which is unphysical. Moreover, in plas-
monic systems, recent experiments have successfully varied
the plasma frequency of the metal as well,17–19 introducing
a new degree of freedom that requires formal theoretical
treatment.

In this paper we build upon a formulation recently
developed to model the photonic band structure of dispersive
material systems20 to construct a perturbation theory that can
predict modal frequency shifts due to changes in the dielectric
constants of dispersive systems involving both metals and

dielectrics. We also show that a similar perturbation theory
can be developed when the plasma frequency of the dispersive
metal is modulated and highlight new physical behavior
related to such modulation. Our theory thus allows us to
treat variations in key parameters of both metal and dielectric
components of plasmonic nanostructures.

The paper is organized as follows. In Sec. II we review
the photonic band theory previously developed to describe
dispersive metamaterials and plasmonic nanostructures. We
develop a general perturbation theory in Sec. III to describe
the effect of small parameter changes on the optical modes of
dispersive nanostructures. We consider the specific cases of
refractive-index variation in Sec. IV and plasma frequency
variation in Sec. V, and demonstrate the accuracy of this
perturbation theory numerically for both cases by comparing
them to direct calculations. Finally, we conclude in Sec. VI.

II. REVIEW OF DISPERSIVE METAMATERIAL
BAND THEORY

As the basis for the developments of this paper, we
first briefly review the theory recently developed to model
the photonic modes of dispersive material systems.20 This
theory is applicable for a nanophotonic structure containing
a dispersive material with a dielectric function:

ε(ω) = ε∞ + ε∞
N∑

n=1

ω2
p,n

ω2
0,n − ω2 + iω�n

. (2)

This is the standard N -pole Lorentz-Drude dielectric
function widely used to fit the permittivities of dispersive
materials such as metals. For many metals in the optical
wavelength range, it is essential to use multiple poles in order
to capture contributions to the dielectric functions from both
intraband and interband transitions. The intraband transition
gives rise to free-electron behavior that is characterized by a
Drude pole, whereas the interband transition gives rise to a
Lorentz pole. In this paper we use a N = 3 fit of silver in all
numerical simulations.

205131-11098-0121/2011/83(20)/205131(7) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.205131


AASWATH RAMAN AND SHANHUI FAN PHYSICAL REVIEW B 83, 205131 (2011)

To describe such a dispersive material, for the nth pole in
the dielectric function one introduces a polarization field Pn

and a polarization velocity field Vn, satisfying

∂Pn

∂t
= Vn (3)

∂Vn

∂t
= ω2

p,nε∞E − ω2
0,nPn − �nVn. (4)

These auxiliary fields21,22 are then coupled to Maxwell’s
equations through

∂H
∂t

= − 1

μ0
∇ × E (5)

∂E
∂t

= 1

ε∞

(
∇ × H −

N∑
n=1

Vn

)
. (6)

For steady state with fields varying as exp(iωt),
Eqs. (3)–(6) become

iωH = − 1

μ0
∇ × E (7)

iωE = 1

ε∞

(
∇ × H −

N∑
n=1

Vn

)
(8)

iωPn = Vn (9)

iωVn = ω2
p,nε∞E − ω2

0,nPn − �nVn, (10)

and thus define an eigenvalue problem for ω.
Equations (7)–(10) also define a total energy density:

W0 = 1

4
(ε∞|E|2 + μ0|H|2)

+
N∑

n=1

1

4ε∞ω2
p,n

(
ω2

0,n|Pn|2 + |Vn|2
)
. (11)

The spatial integral of Eq. (11), which represents the total
energy of the system, is conserved when �n = 0 for all poles.
Furthermore, defining x = (H,E,P1,V1, · · · ,PN,VN )T, which
represents a multicomponent vector field varying over the
whole space, we can write Eqs. (7)–(10) as

ωAx = Bx, (12)

where A = diag(μ0,ε∞, · · · ,ω2
0,N/ω2

p,Nε∞,1/ω2
p,Nε∞) and

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 i∇× · · · 0 0
−i∇× 0 · · · 0 i
...

. . .
...

0 0 · · · 0 −i
ω2

0,N

ω2
p,N ε∞

0 −i · · · i
ω2

0,N

ω2
p,N ε∞

i �N

ω2
p,N ε∞

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (13)

Finally, by defining y = √
Ax, we can rewrite this as an

eigenvalue equation for ω:

ωy = (
√

A)−1B(
√

A)−1y. (14)

For the lossless case, �n = 0, Eq. (14) becomes a Hermitian
eigenvalue equation which results in an orthogonality condi-
tion:

∫
dr

[
1

4
(ε∞E∗

a · Eb+μ0H∗
a · Hb)

+
N∑

n=1

1

4ε∞ω2
p,n

(
ω2

0,nP∗
a,n · Pb,n+V∗

a,n · Vb,n

)]=δab. (15)

III. PERTURBATION THEORY

In this section we develop a general perturbation theory
based on the generalized eigenvalue equation for the photonic
bands of dispersive nanostructures [Eq. (12)]. We start from
the unperturbed system

ω0A0x0 = B0x0. (16)

In the presence of a perturbation, the system matrices become
A = A0 + A1 and B = B0 + B1, and as a result we have

(ω0 + ω1)(A0 + A1)(x0 + x1) = (B0 + B1)(x0 + x1). (17)

Using Eq. (16) and keeping only first-order terms in Eq. (17),
we have

ω0A0x1 + ω1A0x0 + ω0A1x0 = B0x1 + B1x0. (18)

Equation (16), in its most general form, describes a lossy
system and cannot be written as a Hermitian eigenvalue
problem. Thus, to calculate ω1 we also need to determine
the left eigenvector z0 that satisfies

ω0z0A0 = z0B0. (19)

Multiplying z0 through Eq. (18) and solving for ω1, we find

ω1 = z0B1x0 − ω0z0A1x0

z0A0x0
. (20)

Equation (20) is the main result of this paper. In the following
sections we apply this equation to two relevant examples of
perturbations in plasmonic systems.

IV. APPLICATION I: DIELECTRIC REFRACTIVE-INDEX
MODULATION

In this section we consider the specific case of a small
change [�ε(r)] in the dielectric constant of a dielectric region
in a nanostructure consisting of both metal and dielectric
regions. The metal region is assumed to be unperturbed. In
this case the perturbation takes the form

A1 = diag[0,�ε(r), · · · ,0,0], (21)

while B1 = 0. We now determine the change in modal
frequency for the cases when the metal in the metal-dielectric
nanostructure is lossless and lossy.
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A. Lossless case, �n = 0

For the lossless case [Eq. (12)] both A0 and B0 are
Hermitian. In this case from Eq. (19) we have z0 = x†0. Thus
Eq. (20) reduces to

ω1 = −ω0
x†0A1x0

x†0A0x0

= −ω0

∫
dr�ε(r)|E(r)|2∫

drW0
. (22)

For the lossless dispersive system, we thus obtain a result
that has the same form as Eq. (1) that is now appropriate
for a system with dispersion, provided that we consider the
total energy density in the system including contributions
from the auxiliary mechanical fields. The expression for total
energy, Eq. (11), has contributions from multiple Lorentz poles
and is a multipole extension of the energy density expression
previously derived by taking electric polarization into account
explicitly.23,24 For the lossless case this reduces to the usual
expression for energy density in metals,23

W0 = 1

4

[
d(ωεε∞)

dω

]
|E|2 + μ0

4
|H|2. (23)

B. Lossy case, �n �= 0

For the lossy case, the matrix B0 in Eq. (16) is no longer
Hermitian and z0 �= x†0. Thus Eq. (20) in this case reduces to

ω1 = −ω0
z0A1x0

z0A0x0
. (24)

While no explicit expression analogous to Eq. (1) can be
written for the lossy case, Eq. (24) still allows one to calculate
the frequency shift due to a dielectric refractive index change
in the presence of a lossy metal, an important ability in realistic
plasmonic sensing schemes.

Equation (24) represents the technically correct way to do
perturbation theory, where one needs to determine both the left
and right eigenvectors of the generalized eigenvalue problem.
Moreover, the denominator in Eq. (24) cannot be interpreted
as an energy integral. Empirically, on the other hand, we find
numerically that in fact z0 ≈ x†0, even for metals with realistic
loss parameters, and thus the denominator of Eq. (24)

z0A0x0 ≈
∫

drW0, (25)

where W0 is the energy density of the mode for the lossy system
as defined in Eq. (11), which includes contributions from the
mechanical auxiliary fields. We note that in a lossy system
when multiple poles are involved, there is no simple relation
such as Eq. (23) that can be used to describe the total energy.
Instead, the definition of Eq. (11), which explicitly takes into
account contributions from the auxiliary mechanical fields,
must be used.

C. Numerical example

We now numerically verify the accuracy of the perturbation
theory results presented. Motivated by a recent experiment,9

we consider as our model system a two-dimensional (2D)
periodic array of square plasmonic rods in air that are
uniform along the third z direction and numerically solve its

FIG. 1. (Color online) (a) Comparing tabulated data for the real
part of silver’s permittivity25 against the Drude model and three-pole
fit used in this paper at optical wavelengths. The three-pole fit is
accurate to 250 nm. (b) The imaginary and real parts of this three-pole
fit over relevant normalized frequencies.

eigenmodes. The system has periodicity a = 130 nm and the
rod has a side length of s = 0.45a = 58.5 nm.

1. Metal dielectric function fit

The plasmonic metal’s dielectric function is defined by
fitting silver’s tabulated permittivity25 with two Lorentz poles
and a Drude pole [Eq. (2)]. In Fig. 1(a) we see that using these
three poles is more accurate than using the Drude model alone
for modeling silver’s dielectric function at optical frequencies.
This fit is accurate to 250 nm, or ω = 0.52(2πc/a).

The Lorentz poles in this fit are defined by the parameters
in Table I, where we note that ε∞ = 2.3646. All frequencies in
the numerical examples are normalized to 2πc/a. A plot of the
real and imaginary parts of this fit over the relevant normalized
frequency range is presented in Fig. 1(b). In the formalism of
Sec. II, the Drude pole has zero resonant frequency and hence
requires only the V field as its auxiliary field. Thus, in our
system we describe the effects of dispersion in terms of five
auxiliary fields: P1, V1, P2, and V2 for the Lorentz poles, and
V3 for the Drude pole.

2. Theory verification

We analyze the TM and TE modes (with their electric and
magnetic fields respectively polarized along the z dimension)
of this system in Fig. 2. These band structures are calculated
by implementing a finite-difference spatial discretization of
the fields with a Yee grid and then solving the eigenvalue
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TABLE I. Parameters of the three-pole fit of silver’s dielectric
function used for all numerical examples in this paper, where ε∞ =
2.3646 and units are normalized frequency (2πc/a).

n ω0,n ωp,n �n

1 0.4593 0.1676 0.0587
2 0.5434 0.3293 0.115
3 0 0.6253 0.0079

equation using the Arnoldi method.20 In our finite-difference
implementation, we have truncated the finite-difference grid
appropriately at the metal-air interface to ensure that boundary
conditions for the tangential field components are satisfied at
these interfaces.26,27 For the TM case we find that a stop band
exists below a cutoff frequency ωc = 0.3252. In the TE case
we note the presence of dispersionless flatbands in regions
where the fit’s ε → −1 that correspond to surface plasmon
modes, and modes that have substantial group velocity which
correspond to nonsurface modes. For both cases we observe
these clusters of low-group-velocity modes right below ω0,1

and ω0,2 (Ref. 28) in regions where Re[ε] > 0.
To verify the accuracy of our perturbation theory approach

we highlight a region of the TE band structure featuring both a
surface and nonsurface mode in Fig. 3. We alter the dielectric
constant of the dielectric region by �ε = 0.02 and calculate
the resulting shift in the eigenfrequency using perturbation
theory, for both lossy and lossless cases. The effect of loss
on mode lifetimes was discussed in previous work.20 In this
paper we numerically examine the effect of perturbations
in both lossless and lossy systems on the real part of the
eigenfrequency.

For the lossless system we set �n = 0 and use Eq. (22).
For the lossy system we can use the exact perturbation theory
result of Eq. (24), as well as the approximation in terms of
energy density in Eq. (25). The results from these two forms
of perturbation theory are nearly identical to each other. The
results from both lossy and lossless forms of the perturbation

F
re

qu
en

cy

Wavevector Wavevector

Figs. 3 & 5

(a) (b)

Fig. 6

FIG. 2. (Color online) Computed band structures for a square
lattice of 2D plasmonic rods (s = 0.45a) in air for the (a) TM and
(b) TE polarization between (kx = 0,ky = 0) and (kx = π/a,ky = 0)
points. We note the presence of low-group-velocity modes in both
TE and TM band structures and flat surface modes in the TE band
structure.

(a) (b)

FIG. 3. (Color online) Comparing the perturbation theory pre-
diction (Perturbed) and direct solution (Direct) of ω1 in the region
identified in Fig. 2(b) for dielectric �ε(r) = 0.02. The (a) lossless
metal (�n = 0) and (b) lossy metal cases show excellent agreement
for both the flat surface mode and nonsurface mode.

theory are then compared to the band structure obtained by
directly solving Eq. (12) for the perturbed system. As can be
seen in Fig. 3, the results from the perturbation theory show
excellent agreement with results from the direct calculation
for both the lossless and lossy systems.

3. Practical application

As an illustration of the practical significance of this result,
we analyze a potential refractive-index sensing scheme by
calculating the reflection/transmission spectrum of 50 layers
of the plasmonic rod system considered above using a full-field
2D finite-difference frequency-domain (FDFD) simulation.29

The plasmonic metal, corresponding as before to the three-pole
fit of silver’s dielectric function, is assumed to be lossless
for the purposes of this illustration. For the TM case, below
the cutoff frequency ωc [Fig. 1(a)] no propagating modes are
supported. Thus the structure is strongly reflecting. The lowest
frequency dip in the reflection spectrum (Fig. 4) corresponds to
the first mode supported by the system, identified previously in
Fig. 2(a) at ωc. We can then examine the shift in this reflectivity
dip when the dielectric surrounding the rods is changed by
�ε (due to, for example, the introduction of a biochemical
analyte). We observe a shift of the dip by �ω = −9.89 ×
10−5 for �ε = 1 × 10−3. Using Eq. (22) we calculate the shift
of the lowest frequency mode at k = 0, for the same �ε, to
be ω1 = −9.55 × 10−5, which matches well with the shift
observed in the full-field simulation. Thus the perturbation
theory with respect to the eigenmodes of the system can be used
to predict shifts in features of the same system’s transmission
and reflection spectra.

V. APPLICATION II: METALLIC PLASMA FREQUENCY
MODULATION

In this section we demonstrate that we can also treat small
changes in the plasma frequency of a metal present in a
plasmonic nanostructure. This is of interest given a recent
experimental work with ITO,18 where an applied electric field
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FIG. 4. (Color online) Reflectivity spectrum of a finite 2D square
lattice of square plasmonic rods (s = 0.45a) in air, consisting of 50
layers. The results are obtained with a full-field FDFD simulation
(shown in the inset schematic) and show a reflectivity dip corre-
sponding to the lowest frequency propagating mode in the system [the
mode at ωc in Fig. 2(a)]. By altering the air region by �ε = 1 × 10−3

to simulate a perturbation, a shift of �ω = −9.89 × 10−5 in the
dip is observed, matching the theoretical prediction of Eq. (22),
ω1 = −9.55 × 10−5, well.

induced a change in carrier concentration, thereby changing
its plasma frequency and behavior at optical frequencies. In
other recent work, the infrared plasmonic resonance of a
metallic nanostructure (split-ring resonators) immersed in an
electrolyte was affected by applying a voltage that altered the
structure’s average electron bulk density.17

To derive an expression for the modal frequency change
in such situations, without loss of generality we assume that
only the N th pole experiences a plasma frequency modulation.
Then we note that to first order the effect of �ωp,N affects our
matrix elements by ω2

p,N → ω2
p,N + 2ωp,N�ωp,N . With this

established we now separately consider the lossless and lossy
cases.

A. Lossless case, �n = 0

For the lossless case the following perturbing matrices, A1

and B1, are applicable:

A1 = diag

[
0,0, · · · , − ω2

0,N

ω2
p,Nε∞

(
2�ωp,N

ωp,N

)
,

− 1

ω2
p,Nε∞

(
2�ωp,N

ωp,N

)]
(26)

B1 =

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 0
...

. . .
...

0 · · · 0 i
ω2

0,N

ω2
p,N ε∞

(
2�ωp,N

ωp,N

)
0 · · · −i

ω2
0,N

ω2
p,N ε∞

(
2�ωp,N

ωp,N

)
0

⎞
⎟⎟⎟⎟⎟⎠ .

(27)

Since the eigenvalue equation Eq. (12) is Hermitian for the
lossless case, Eq. (20) becomes

ω1 = x†0B1x0 − ω0x†0A1x0

x†0A0x0

, (28)

which reduces to the following expression in terms of the
constituent fields [as determined by solving Eq. (12)]:

ω1 = ω0∫
drW0

∫
dr

2�ωp,N (r)

ωp,N

(
ω2

0 − ω2
0,N

ω2
p,N

)
|PN (r)|2.

(29)

The frequency shift ω1 for a given mode is thus directly
proportional to the strength of the modal mechanical field in
the N th pole that is undergoing modulation and the proximity
of the unperturbed modal frequency ω0 to ω0,N . Of particular
interest is that, assuming �ωp,N > 0, ω1 is positive or negative
depending on whether the unperturbed modal frequency is
above or below the Lorentz pole’s resonance frequency ω0,N .
We verify this behavior numerically in Sec. C below.

B. Lossy case, �n �= 0

As noted in the previous section, for the lossy case Eq. (12)
is no longer Hermitian and z0 �= x†0. Thus Eq. (20) in this case
reduces to

ω1 = z0B1x0 − ω0z0A1x0

z0A0x0
. (30)

We note here that B1 is slightly altered in the lossy case:

B1=

⎛
⎜⎜⎜⎜⎜⎝

0 · · · 0 0
...

. . .
...

0 · · · 0 i
ω2

0,N

ω2
p,N ε∞

(
2�ωp,N

ωp,N

)
0 · · · −i

ω2
0,N

ω2
p,N ε∞

(
2�ωp,N

ωp,N

)
−i �N

ω2
p,N ε∞

(
2�ωp,N

ωp,N

)

⎞
⎟⎟⎟⎟⎟⎠ .

(31)

As in Sec. IV B we note that empirically at optical frequen-
cies z0 ≈ x†0 and the denominator of Eq. (30) ∼ ∫

drW0.

C. Numerical example

We consider the same example nanostructure of plasmonic
rods in air used in the previous section, this time to numerically
verify the accuracy of the perturbation theory for plasma
frequency modulation in the plasmonic rod. Specifically, we
focus again on the region of the TE band structure highlighted
in Fig. 2(b) featuring both a surface and nonsurface mode. As
before, in addition to the original structure’s TE bands, we
directly calculate the bands of the perturbed structure, where
the metal rod’s first Lorentz pole is modulated as �ωp,1 =
0.08ωp,1. We now use the perturbation theory calculations to
predict the effect of �ωp,1 and compare it to the direct result.
We note excellent agreement in Fig. 5 between the perturbation
theory and direct approaches for both lossless and lossy cases.

Moreover, we note that in both lossy and lossless cases,
the surface plasmon mode experiences a substantially greater
ω1 compared to the lower frequency nonsurface mode. This
is consistent with the observation from Raman and Fan20 that
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(a) (b)

FIG. 5. (Color online) Comparing the perturbation theory pre-
diction (Perturbed) and direct solution (Direct) of ω1 in the same
zoomed-in region identified in Fig. 2(b), for �ωp,1 = 0.08ωp,1. The
(a) lossless (�n = 0) and (b) lossy cases show excellent agreement
for both the flat surface mode and nonsurface mode. Note the
substantially greater ω1 for the flat plasmon mode, which has a
stronger mechanical component to its eigenmode, and that ω1 < 0
as predicted by Eq. (29).

surface modes have stronger mechanical field intensities, and
the form of Eqs. (29) and (30), which predict greater ω1 for
modes with stronger mechanical fields. This behavior is of
practical interest for active plasmonic device applications.

Finally, as observed in Eq. (29), for a positive shift of the
plasma frequency �ωp,1 > 0 we expect either a positive or
negative frequency shift ω1 depending on whether a mode’s ω

is greater or less than ω0,1. In Fig. 5 the modes presented are
below ω0,1 and ω1 < 0, as expected for �ωp,1 > 0. In Fig. 6
we examine modes in the region above ω0,1, highlighted in
Fig. 2(b), and note that ω1 > 0 as predicted by Eq. (29). We
further note that these higher frequency modes are in the
region below ω = 0.52, where the three-pole fit still accurately
models silver’s dielectric function and is thus associated
with real metals. This unusual property is highlighted here
due to its potential utility, as research in active plasmonics
progresses.

VI. CONCLUSION

We have developed and verified a perturbation theory that
provides considerable insight into the effect of small variations
in both the dielectric and metallic components of plasmonic

(a) (b)

FIG. 6. (Color online) Comparing the perturbation theory predic-
tion (Perturbed) and direct solution (Direct) of ω1 in the region above
ω0,1, identified in Fig. 2(b), for �ωp,1 = 0.08ωp,1. The (a) lossless
(�n = 0) and (b) lossy cases show ω1 > 0 (as opposed to ω1 < 0 in
Fig. 5), verifying the prediction of Eq. (29).

and dispersive metamaterial nanostructures. Using a previ-
ously developed photonic band formalism for general dis-
persive nanostructures described by an arbitrary number of
Lorentz poles, we are able to accurately predict the effect
of modulation in the dielectric refractive index and metallic
plasma frequency of a metal-dielectric plasmonic system.
We specifically highlight new behaviors related to plasma
frequency modulation that are of potential significance for
future research in active plasmonics.

Given increasing interest in such dispersive systems for
sensing and modulation applications and active devices more
generally, the theory developed above may indeed be of
considerable utility in future designs and analyses.
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