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Mott physics on helical edges of two-dimensional topological insulators
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We study roles of electron correlations on topological insulators or quantum spin Hall insulators on honeycomb
lattice with spin-orbit interaction. Accurate variational Monte Carlo calculations with a large number of variational
parameters show that the increasing on-site Coulomb interactions cause a strong suppression of the charge Drude
weight in the helical-edge metallic states leading to a presumable Mott transition (or strong crossover) from
a conventional topological insulator to an edge Mott insulator before a transition to a bulk antiferromagnetic
insulator. The intermediate bulk-topological and edge-Mott-insulator phase has a helical spin-liquid character

with time-reversal symmetry.
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I. INTRODUCTION

Recently, spin Hall insulators and its generalization, topo-
logical insulators (TIs), have attracted much attention as a new
state of matter.! A remarkable feature of the newly discovered
quantum phase is the Z,-type topological distinction from
other conventional phases as well as the existence of robust
gapless edges or surface states concomitant with the bulk
insulating gap, which are all protected by the time-reversal
symmetry. The edge or surface modes of TI provide us with
truly one- or two-dimensional gapless and metallic electronic
states.

It has also been proposed that TI may appear in systems
under substantial electron correlations such as in 4d or 5d
transition-metal oxides,””’ while the interplay of electron
correlations with the topological insulator has not been well
understood, although the absence of the back scattering pro-
tected by the time-reversal symmetry is expected to suppress
electron correlation effects.'%?

In this paper, based on results of calculations obtained from
a multivariable variational Monte Carlo (MVMC) methods
improved by Tahara and one of the authors,'” we propose
that electron correlation effects introduced by an on-site
interaction, namely, a Hubbard U in the Kane-Mele model on
the honeycomb lattice, allow a transition or strong crossover
from the above TI to an unconventional TI phase characterized
by the charge gapped (or nearly insulating) but spin gapless
edge excitations with a nonzero spin Drude weight within
the same preserved topological nontriviality of the bulk states
that are protected by the time-reversal symmetry. This new
topological edge Mott insulator (TEMI) phase is stabilized in
a region of the intermediate correlation strength sandwiched
by a bulk antiferromagnetic insulator (BAFI) with the broken
time-reversal symmetry (or bulk Mott insulator) in the larger
U region and the simple TI insulator in the weak correlation
region.

II. MODEL AND METHOD

We employ a tight-binding Hamiltonian on the two-
dimensional honeycomb lattice proposed by Kane and Mele'
with inclusion of the spin-orbit coupling as complex hopping
terms and the on-site Coulomb interaction, and without the
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Rashba term to study electron correlation effects on the
topological insulator. Hereafter we call this simple model the
Hubbard-Kane-Mele model and it is defined as

H = Hgm + U Zﬁmﬁu, (1
I
with
Fim=—1 Y 01olyy+its Y il lodeplss ()
(I,J)o ({1,J))ap

where ﬂKM is the Kane-Mele Hamiltonian, ¢ (#,) is the
nearest-neighbor (next-nearest-neighbor) hopping, and U is
the on-site Hubbard interaction. Here we define v;; = di xd i/
|3,- X Jj|, and I = (i,a) (@ = A,B) (see Fig. 1). We per-
form unrestricted Hartree-Fock (UHF) calculations as well
as MVMC calculations by optimizing a large number of
variational parameters.
In the UHF calculation, we decouple the U term as

A A A
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For the MVMC calculations, we employ a variational wave
function'® defined as

[¥) = PcPs |¢pair> s (€]

where Pg is the Gutzwiller factor defined by

Po = exp [ - Zglﬂ,mu}, )
1

and Py is the Jastrow factor defined by
P = LS Gy + Ay ) | ©)
] = eXp ) - vy +np )ngy +ny,) |,

with the spatially dependent variational parameters g; and
vy;. We impose the Gutzwiller factor on all the sites, whereas
introduce the Jastrow factor only along the zigzag edges. The
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FIG. 1. Honeycomb lattice on which the Hubbard-Kane-Mele
model is defined.

one-body part |@pir) is a generalized pairing wave function
defined as

N/2

Ns
lbpaic) = | D fyclieh, | 10) @)

i,j=1

with f;; being the complex variational parameters. In this
study, we allow f;; to have two-sublattice (2 x L -sublattice)
structure or equivalently we have 2 x 2 x Ny (2 x Ly, x 2 x
L, x L,) variational parameters for the torus (cylinder). All
the variational parameters are simultaneously optimized by
using the stochastic reconfiguration method'®!'! generalized
for complex variables. The accuracy of this method has
been proven in a number of benchmarks.'%!2 In addition, the
MVMC does not have so-called sign problems.

Charge and spin Drude weights are calculated by introduc-
ing vector potentials as the Peierls factors,

1o = t1jo expliAs - 71y, (®)

where 7 = njd, +mjay and 71y = r; —r;. Here ny and m
are integers, and lattice vectors are d, and d, (see Fig. 1). From
this Peierls factor, the charge and spin Drude weights, D, and
Dy, respectively, are calculated from the energy stiffness,'?

_ ldzE(AT,/Tl) ©
2 dlAP i-g,
and
1 d’E(A+, A
p, = tLEALA) (10)
2 dIAP A=A,

where E = (Y |H|v) /(¥ |y) is the total energy. To clarify the
edge state, we employ a cylinder with sizes Ny = L, x L, x
2, for the honeycomb lattice with two sites on a unit cell and
the periodic (free) boundary conditions in the x (y) directions.
We have confirmed that the employed width L is large enough
to make isolated two edges at the two free boundaries at y = 0
and y = L,. For the bulk properties we employ the torus,
where the boundary is periodic for all directions.

III. RESULTS

A. Bulk phase diagram

The ground-state phase diagram of the bulk is shown
in Fig. 2 for the Hubbard-Kane-Mele model on the torus.
Our MVMC results show the antiferromagnetic transition at
U = UM ~ 7t for t, = 0.1t. Below U ~ 7t, the bulk stays
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FIG. 2. (Color online) Phase diagram of the Hubbard-Kane-Mele
model proposed based on MVMC containing three phases for #, =
0.1z. The bulk on the torus shows a phase transition from TI to the
bulk antiferromagnetic insulator (BAFI) at U/t ~ 7. On the cylinder,
the edge shows insulating behaviors for 3¢+ < U. The intermediate
TEMI phase or region is a possible gapless spin liquid at the edges.

as a topological insulator and the peak height of the magnetic
structure factor defined by

Sar(q) =

e85 an

3N;
1,J
for the spin-1/2 operator §; scales to a size-independent
constant after the size extrapolation, in contrast to the Bragg
peak height proportional to Ny = L, x L, x 2 observed in
BAFI, as is shown in Fig. 3. Here we have shown the peak
values, which appear at the wave number ¢ = 0 and for the
staggered modes within the unit cell, namely A; = +1(—1)
for I = (i,A) [I = (i,B)]. The MVMC calculation gives the
critical value of U for #, # 0 larger than that for #, = 0.
These results for the bulk are qualitatively consistent with
an auxiliary-field quantum Monte Carlo simulation for #, = 0,
which shows UAF = 4.3¢,'* and a slave-rotor mean-field result
for t, # 0,!° although the conclusion of Ref. 15 for the edge
is different from ours.

Here the magnetic moments in the BAFI phase align in
the xy plane. This fact conforms with the UHF results and
the effective Hamiltonian at the strong-coupling limit (see
Ref. 15); the second-order perturbation of the second-neighbor
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FIG. 3. (Color online) 1/N, dependences of Syr(g = 6) on the
torus, where L, = L,. The inset shows the same quantity vs 1/+/N;/2
(=1/L,). We note that S, /N, may be scaled linearly with 1/N; as
1/N; — 0 in the disordered phase (see Fig. 3), whereas it should
be scaled linearly with 1/L, with a nonzero offset in the ordered
phase consistent with the spin-wave theory (see the inset). These
scalings suggest that the phase transition occurs between U = 6.75¢
and U = T7t.

205122-2



MOTT PHYSICS ON HELICAL EDGES OF TWO- ...

hopping it, yields the second-neighbor exchange coupling as
JZ[S'fS'j — 3;‘3’;‘ — Sin’j], where J, = 4t7/U. Inthe xy plane,
J» gives the ferromagnetic coupling and stabilizes the BAFI
moment within this plane. The nonzero magnetic moment
within the xy plane always opens a gap at the edge modes,
although an infinitesimal magnetic moment along the z axis
does not open a gap.

B. Edge transport

We show MVMC results for the Drude weights for the
Hubbard-Kane-Mele model on the cylindrical geometry with
two zigzag edges along the x direction. If we introduce spin-
dependent vector potentials, /L, = O’A, we obtain the Drude
weight for the spin channel,'® namely the spin Drude weight.
The topologically nontrivial phase is probed by directly
calculating the Z, topological number as is proposed by Lee
and Ryu.!” However, it requires much more computational
cost. Alternatively and equivalently, the gapless edge probed
by the Drude weight concomitant with the gapped bulk state
on the cylinder ensures the existence of the topologically
nontrivial phase.!

In Fig. 4, we compare the results for charge and spin Drude
weights by MVMC with those of the UHF approximation. Here
we only retain self-consistent UHF solutions without xy com-
ponents of magnetic moments when we calculate the Drude
weights by using UHF. The data for 15 x 5 x 2 well represent
the thermodynamic limit of the nonmagnetic self-consistent
UHF solution without the xy component of the magnetic
moments. We see consistent suppression (enhancement) of the
charge (spin) Drude weight D,.(Dy) arising from the increasing
on-site Coulomb interaction U . Moreover, the suppression (en-
hancement) of D.(D;) has nearly linear dependences on U/¢.

Now we estimate the transition or crossover point where
D. becomes vanishing. The strong suppression of D, is
already clear from our finite-size study, which proves the
emergence of such a qualitatively new region with suppressed
D., namely edge insulating behavior. However, within the
present numerical accessibility, it is not easy to make size
extrapolation to pin down the phase boundary. To make the
best estimate of the thermodynamic limit, we utilize the UHF
result as a reference, because the thermodynamic limit in the
UHF can be easily estimated. Although the MVMC ground
states and the nonmagnetic UHF solutions seem to show
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FIG. 4. (Color online) Left panel: U dependence of renormalized
Drude weights. Right panel: vector potential dependences of total
energy E for L, =5, L, =3.
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FIG. 5. (Color online) Renormalized D.(U, /t)/ D.(0) of the UHF
and MVMC. The solid curves for the UHF data scales identically with
the MVMC data for the same sizes when we employ the renormalized
interaction U,.

different U dependence of the Drude weights, the renormalized
dependences of D.(U,/t)/D.(0) vs U,/t with U, = U for
MVMC and U, ~ 1.4 x U for UHF remarkably make all of
them universal. This fact indicates that our estimate for the
phase boundary by the MVMC with the help of the finite-size
correction extracted from the UHF as is shown in Fig. 5 is
close to the thermodynamic limit. The MVMC results support
a transition or strong crossover on the edge from the TI to
a charge gapped (or nearly insulating) phase (TEMI) around
UM ~ 3t in the thermodynamic limit.'8

The suppression and enhancement in the Drude weights
are naturally accounted for by focusing on the spin and
charge pumping caused by the vector potentials. The spin-
independent (spin-dependent) vector potential causes the spin
(charge) pumping along the zigzag edges,' which is nothing
but the celebrated quantum spin Hall effects in the Kane-Mele
model. Without the Rashba term, which mixes the spin-up
and -down components, the spin-independent vector potential
causes a spin pumping of the z components. Here we note that
the small amount of spin accumulation of the z component does
not induce a gap opening at the edge modes. Even when we
introduce the Hubbard U, the signature of the spin pumping
due to the small amplitude of the spin-independent vector
potential remains as is typically shown in Fig. 6 and continues
even beyond U/t ~ 3 (not shown).

The spin pumping generates spin polarization along the z
axis at the edges, which helps electrons to reduce the cost
of the Hubbard U. Contrarily, the charge pumping forces to
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FIG. 6. (Color online) Position dependence along the cylinder
width of averaged spin polarizations ny — n, due to vector potentials
/;(,, forU/t =1, Ly =5, and L, = 3. Inset shows the numbering of
the position along the cylinder width.
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FIG. 7. (Color online) 1/L, dependences of edge components
in Sar(g = 6) on the cylinder with L, = 3. Here we restrict the
summation for /,J in Eq. (11) within the single edge, namely, i =
0,1,...,L, — 1,and j = 0. Error bars are all within the symbol sizes.

increase the double occupation at the edges resulting in the cost
of U. Therefore the energy increase with increasing vector
potential (namely the stiffness or the Drude weight as the
quadratic coefficients) decreases (increases) compared with
E of the noninteracting system. Such spin-charge separated
Drude weights appear even in the restricted Hartree-Fock
calculation, which does not allow the magnetic moments
within the xy plane.

C. Edge phase diagram

Based on the calculated spin and charge Drude weights, we
show the edge phase diagram in Fig. 2. It supports a metal-
insulator transition at the edge at U = UCEM ~ 3t, where the
edge and bulk still continue to be paramagnetic beyond it. As
is evident in the edge component in the Sar(g = 6) shown
in Fig. 7, there is no edge magnetism at least up to U = 4z.
In contrast, the coherent edge spin transport is enhanced by
increasing U.

The low-energy effective model for the interacting edge
modes, namely, the helical Tomonaga-Luttinger liquid, does
not include the back scattering and umklapp channels,®® which
are, in general, essential for the formation of insulating phases.
However, for r, = 0.1¢ and U ~ 3¢, the amplitude of the bulk
gap, which limits the energy scale to justify the treatment by
the topological band insulator, becomes comparable with U.
Then, the helical Tomonaga-Luttinger liquid will fail to capture
this Mott insulating behavior of the edge modes. In fact,
a large Coulomb repulsion (U > t, ;) inevitably prohibits
coherent propagations of electrons. In reality, it actually results
in gapped charge excitations for #, = 0.1¢ and UEM(~3t)
< U < UAF(~7Tt) with gapless spin excitations at the edge
for the Hubbard-Kane-Mele model.

D. Whole phase diagram

As we see in Fig. 2, through the U variation, the bulk
state is always insulating (charge gapped) if the spin-orbit
interaction is nonzero while it has a spin gapless excitation
exclusively in the conventional bulk Mott insulator or BAFI
phase at the largest U region. However, the edge state is always
characterized by the gapless spin excitations while the charge
excitation is gapless only in the lowest U region of the TI phase.
Then we find the intermediate phase, TEMI, where the bulk
excitations are gapped in both spin and charge channels, while
in the edge state the charge excitation is gapped (insulating)
and the spin excitation is gapless with a spin-liquid behavior.
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We note that this general phase diagram with three phases
contained may be universal also in three-dimensional systems
except for the additional possibility that, depending on the
lattice geometry, the spin liquid in the TEMI phase could be
replaced with the magnetic symmetry breaking such as the
antiferromagnetic order at the edge (surface).®

IV. DISCUSSION

A possible interpretation of the TEMI phase is a fermionic
spinon liquid under the fractionalized electrons in the slave-
rotor approximation proposed by Young et al.,> Pesin and
Balents,® and Rachel and Le Hur.!> However, in two-
dimensional systems, it is believed that the fractionalization of
electrons cannot happen due to gauge fluctuations,>'> which
invalidates the starting point of Ref. 15 and the description
by the electrons become adequate. Our present approach
starts from this electron and accurately takes into account
the correlation effects beyond the mean-field treatment of
the electron’s single-particle picture. It is a nonperturbative
calculation and is based on the electron wave functions
consisting of linear combination of a huge number of Slater de-
terminants, which include the resonant-valence-bond states, °
and can reproduce accurate results comparable with unbiased
numerical methods.!%?° In addition, the one-dimensional spin-
charge separation in the simple Hubbard chain is characterized
by the spin/charge excitations as bosonic collective modes of
the Tomonaga-Luttinger liquid.>"?* In the present spin liquid
on the edges,? it is also likely to have gapped charge and
gapless spin bosonic collective density modes leading to the
helical Tomonaga-Luttinger liquid,®° distinct from the chiral
Tomonaga-Luttinger liquid®? in the quantum Hall phase. It is
intriguing whether this spin liquid retains its helical nature.
The present numerical accuracy does not allow us to reach a
definite conclusion. However, it is known that the change in
the topological index requires the closing of the bulk charge
gap,'?* which is apparently not the case around U/t = 3. It
indicates that the topologically nontrivial bulk phase is retained
and it requires the helical nature in the edge.

The conventional TI in the cylinder geometry is charac-
terized by the nonzero diagonal charge (spin) conductivities
denoted by o.cxx # 0 (055xx 7 0) and nonzero spin-charge
transverse conductivity denoted by 0csxy = Ogery # 0 and
Ocsyx = Oscyx 7 0, where all are solely from the edge con-
tributions. Other spin-charge off-diagonal elements are zero.
On the other hand, the present TEMI with the gapped charge
and gapless spin liquid edges keeps oy, 7 0 again contributed
only from the edge, whereas all the other elements including
Ocexx> Ocsxy = Osexy and Oggyx = Oy¢y vanish. The Onsager
reciprocal relation of course always holds. In the both TI and
TEMI phases, all the bulk conductivities vanish, while in the
bulk Mott insulator (or BAFI) phase, the bulk and edge spin
conductivities may remain nonzero while all the other linear
responses involving the charge part vanish irrespective of bulk
or edge.

Recently we became aware of two related works.
model with U retained only at the edge sites employed in
Ref. 25 could cause a substantial difference from the present
realistic choice. However, irrespective of this difference,
quantum Monte Carlo simulations reported in Ref. 25

25,26 A
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also show the suppression of coherent charge transports.
Reference 26 employs only even numbers for L,, where the
ground-state degeneracy in the open shell condition always
remains and requires careful treatment.

V. SUMMARY

Our present variational Monte Carlo calculations show that
the local electron correlation U of the Hubbard-Kane-Mele
model on the honeycomb lattice drives a strong crossover or
a quantum phase transition within the topologically nontrivial
phase. The transition appears to separate an edge metallic
TI phase at lower U from TEMI phase with charge gapped
and spin gapless (spin liquid) edges at larger U, where a
bulk charge-spin gap is always retained through these two
topological phases. Namely, the larger U phase is characterized
by a vanishing charge Drude weight together with a nonzero
and large spin Drude weight on the edge in contrast to the
both large charge and spin Drude weights in the lower U
phase. With further increase of U, this TEMI phase undergoes
a transition into the BAFI phase with time-reversal symmetry
breaking.

In a naive interpretation, one may find a Berezinskii-
Kosterlitz-Thouless-type transition in the charge sector at the
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transition between the TI and TEMI, where the charge degrees
of freedom gains a mass term of the equivalent sine-Gordon
model in the TEMI. On the other hand, a helical type of
Tomonaga-Luttinger liquid continues in the spin sector even
in the TEMI phase. However, the helical nature requires
careful consideration and the real nature of spin liquid in the
TEMI phase deserves further clarification. In fact, essentially
the same bulk topological insulators may have a variety
of different types of edge or surface states depending on
how the electron correlation effects are switched on. Other
quantum states unexplored in the conventional materials may
emerge in this circumstance. Efforts to reveal new states will
open an avenue in the research of physics of topological
insulators.
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