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Nonequilibrium time evolution of bosons from the functional renormalization group
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We develop a functional renormalization group approach to obtain the time evolution of the momentum
distribution function of interacting bosons out of equilibrium. Using an external out-scattering rate as flow
parameter, we derive formally exact renormalization group flow equations for the nonequilibrium self-energies
in the Keldysh basis. A simple perturbative truncation of these flow equations leads to an approximate solution
of the quantum Boltzmann equation, which does not suffer from secular terms and gives accurate results even
for long times. We demonstrate this explicitly within a simple exactly solvable toy model describing a quartic
oscillator with off-diagonal pairing terms.
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I. INTRODUCTION

Quantum mechanical many-body systems out of equilib-
rium pose extraordinary challenges to theory. Although pow-
erful field-theoretical methods to formulate nonequilibrium
problems in terms of Green’s functions and Feynman diagrams
are available,1–8 in practice, new concepts and approximation
strategies are needed. Because systems under the influence
of external time-dependent fields are not time-translationally
invariant, one has to formulate theoretical descriptions in the
time domain. Moreover, even if after a sufficiently long time
the system has approached a stationary nonequilibrium state,
such a state can exhibit properties that are rather different
from a thermal equilibrium state. For example, the Fourier
transform nk of the distribution function at such a nonthermal
fixed point can exhibit a scaling behavior as a function of
momentum k, which is characterized by a completely different
exponent than under equilibrium conditions.9,10 In this case, a
simple perturbative approach based on the quantum Boltzmann
equation with collision integrals calculated in lowest-order
Born approximation is not sufficient. The scaling behavior
close to nonthermal fixed points in simple models has been
studied within a next-to-leading order 1/N approximation.10

This method has also been used to study the real-time dynamics
of quantum many-body systems far from equilibrium.10

Another useful method to investigate strongly correlated
many-body systems is the renormalization group (RG), which
has been extensively used to study the scaling properties
of systems in the vicinity of continuous phase transitions.12

Although there are many successful applications of RG
methods to systems in thermal equilibrium, there are only
a few examples where RG methods have been used to study
quantum mechanical many-body systems out of equilibrium.
Some authors10,13 have focused on stationary nonequilibrium
states, where the system is time-translationally invariant, so
the quantum dynamic equations can be formulated in the
frequency domain. On the other hand, the more difficult
problem of obtaining the time evolution of quantum many-
body systems out of equilibrium has been studied using various
implementations of the RG idea, such as the numerical renor-
malization group approach,14 the density matrix renormaliza-
tion group,15 real-time RG formulations in Liouville space,16

and a flow equation approach employing continuous unitary

transformations.17,18 In recent years, a number of authors have
also applied functional renormalization group (FRG) methods
to study many-body systems out of equilibrium.10,19–26 While
the nonequilibrium FRG approach to quantum dots22 has so far
only been applied to study stationary nonequilibrium states,
Gasenzer and Pawlowski26 have written down a formally
exact hierarchy of FRG flow equations describing the time
evolution of the one-particle irreducible vertices of interacting
bosons out of equilibrium. Using a sharp time cutoff as
RG flow parameter, they showed that a simple truncation
of the FRG vertex expansion at the level of the four-point
vertex reproduces the results of the next-to-leading order 1/N

expansion.9

The specific choice of the cutoff procedure is a cru-
cial point when performing RG calculations, and different
schemes had been proposed in earlier attempts to describe
nonequilibrium problems.16,21,25 In this paper, we propose an
alternative version of the nonequilibrium FRG that uses an
external out-scattering rate as flow parameter. Such a cutoff
scheme is closely related to the “hybridization cutoff scheme”
recently proposed by Jakobs, Pletyukhov, and Schoeller.22,25,27

Technically, we implement this cutoff scheme by replacing
the infinitesimal ±iη defining the boundary condition of the
retarded and advanced Green’s functions by finite quantities
±i�. Given this cutoff procedure, a simple substitution in
the usual hierarchy of FRG flow equations for the irreducible
vertices28 yields the FRG flow equations describing the
evolution of the irreducible vertices as the flow parameter �

is reduced. An important property of our cutoff scheme is that
it preserves the triangular structure in the Keldysh basis and,
hence, does not violate causality.

To be specific, we develop our formalism for the following
time-dependent interacting boson Hamiltonian:

H(t) =
∑

k

[
εka

†
kak + γk

2
e−iω0t a

†
ka

†
−k + γ ∗

k

2
eiω0t a−kak

]

+ 1

2V

∑
k1 k2 k3 k4

δk1+k2+k3+k4,0

×U (k1,k2; k3,k4)a†
−k1

a
†
−k2

ak3ak4 , (1.1)
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where a
†
k creates a boson with (crystal) momentum k and

energy dispersion εk, the volume of the system is denoted
by V , and U (k1,k2; k3,k4) is some momentum-dependent
interaction function; the minus signs in front of the momentum
labels of the creation operators in the last line of Eq. (1.1) are
introduced for later convenience. As explained in Refs. 29, 30
and 31, the Hamiltonian (1.1) describes the nonequilibrium
dynamics of magnons in ordered dipolar ferromagnets such as
yttrium-iron garnet31 subject to an external harmonically os-
cillating microwave field with frequency ω0. The energy scale
γk is then proportional to the amplitude of the microwave field.
The nonequilibrium dynamics generated by the Hamiltonian
(1.1) is very rich and exhibits the phenomenon of parametric
resonance for sufficiently strong pumping.29,30

In practice, it is often useful to remove the explicit time
dependence from the Hamiltonian H(t) in Eq. (1.1) by going
to the rotating reference frame. The effective time-independent
Hamiltonian H̃ in the rotating reference frame (denoted by a
tilde) is obtained as follows: Given the unitary time evolution
operator U(t) defined by

i∂tU(t) = H(t)U(t), (1.2)

we make the factorization ansatz

U(t) = U0(t)Ũ(t), (1.3)

with

U0(t) = e− i
2

∑
k(ω0t−ϕk)a†

kak , (1.4)

where ϕk is the phase of γk = |γk|eiϕk . The time evolution
operator Ũ(t) in the rotating reference frame then satisfies

i∂t Ũ(t) = H̃ Ũ(t), (1.5)

where the transformed Hamiltonian H̃ does not explicitly
depend on time,

H̃ = U†
0 (t)[H(t) − i∂t ]U0(t)

=
∑

k

[
ε̃ka

†
kak + |γk|

2
(a†

ka
†
−k + a−kak)

]

+ 1

2V

∑
k1 k2 k3 k4

δk1+k2+k3+k4,0

×U (k1,k2; k3,k4)a†
−k1

a
†
−k2

ak3ak4 , (1.6)

with the shifted energy

ε̃k = εk − ω0

2
. (1.7)

The solution of Eq. (1.5) is simply Ũ(t) = e−iH̃t , so the total
time evolution operator of our system can be explicitly written
as

U(t) = e− i
2

∑
k(ω0t−ϕk)a†

kake−iH̃t . (1.8)

Throughout this paper, we work in the rotating reference frame
where the effective Hamiltonian (1.6) is time independent.
To simplify the notation, we rename ε̃k → εk and give all
Green’s functions and distribution functions in the rotating
reference frame. Explicit prescriptions to relate these functions
in the original and the rotating reference frame are given in
Appendix A. We emphasize that the general FRG formalism

developed in this paper remains also valid if the Hamiltonian
depends explicitly on time.

The rest of this paper is organized as follows: In Sec. II,
we define various types of nonequilibrium Green’s functions
and represent them in terms of functional integrals involving a
properly symmetrized Keldysh action. Due to the off-diagonal
terms in our Hamiltonian (1.1), the quantum dynamics is also
characterized by anomalous Green’s functions involving the
simultaneous creation and annihilation of two bosons. To keep
track of these off-diagonal correlations together with the usual
single-particle correlations, we introduce in Sec. II a compact
matrix notation. In Sec. III, we then derive several equivalent
quantum kinetic equations for the diagonal and off-diagonal
distribution functions. In Sec. IV, we write down formally
exact FRG flow equations for the self-energies that appear
in the collision integrals of the quantum kinetic equations
discussed in Sec. III. We also discuss several cutoff schemes. In
Sec. V, we then use our nonequilibrium FRG flow equations
to study the time evolution of a simple exactly solvable toy
model, which is obtained by retaining in our Hamiltonian
(1.6) only a single momentum mode. We show that a rather
simple truncation of the FRG flow equations yields already
quite accurate results for the time evolution. Finally, in Sec.
VI, we summarize our results and discuss some open problems.
There are four appendices with additional technical details.

II. NONEQUILIBRIUM GREEN’S FUNCTIONS

Our goal is to develop methods to calculate the time evolu-
tion of the diagonal and off-diagonal distribution functions

nk(t) = 〈a†
k(t)ak(t)〉, (2.1a)

pk(t) = 〈a−k(t)ak(t)〉, (2.1b)

where all operators are in the Heisenberg picture and the
expectation values are with respect to some initial density
matrix ρ̂(t0) specified at some time t0,

〈· · ·〉 = Tr[ρ̂(t0) · · ·]. (2.2)

Note that in our Hamiltonian (1.6), the combinations a
†
ka

†
−k

and a−kak do not conserve particle number, so we should also
consider the anomalous distribution function (2.1b) and its
complex conjugate. Our final goal is to derive renormalization
group equations for the self-energy appearing in the collision
integrals of the quantum kinetic equations for these distribution
functions. In order to do this, it is useful to collect the various
types of nonequilibrium Green’s functions into a symmetric
matrix, as described in the following section.

A. Keldysh (RAK) basis

In the Keldysh technique,4 one doubles the degrees of free-
dom to distinguish between forward and backward propagation
in time. As a consequence, all quantities carry extra indices
p ∈ {+,−} that label the branches of the Keldysh contour
associated with the forward and backward propagation. The
single-particle Green’s function is then a 2 × 2 matrix in
Keldysh space. Alternative formulations of the Keldysh tech-
nique in combination with diagonal and off-diagonal terms are
known from the theory of nonequilibrium superconductivity
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(see, e.g., Ref. 32). To formulate the Keldysh technique
in terms of functional integrals,7 it is convenient to work
in a basis where causality is manifestly implemented via
the vanishing of the lower diagonal element of the Green’s
function matrices in Keldysh space. The other matrix elements
can then be identified with the usual retarded (R), advanced
(A), and Keldysh (K) Green’s functions. Keeping in mind
that our model also has anomalous correlations, we define the
following nonequilibrium Green’s functions:

gR
k (t,t ′) = −i�(t − t ′)〈[ak(t),a†

k(t ′)]〉, (2.3a)

gA
k (t,t ′) = i�(t ′ − t)〈[ak(t),a†

k(t ′)]〉, (2.3b)

gK
k (t,t ′) = −i〈{ak(t),a†

k(t ′)}〉, (2.3c)

where [ , ] denotes the commutator and { , } is the anticom-
mutator. The corresponding off-diagonal Green’s functions
are

pR
k (t,t ′) = −i�(t − t ′)〈[ak(t),a−k(t ′)]〉, (2.4a)

pA
k (t,t ′) = i�(t ′ − t)〈[ak(t),a−k(t ′)]〉, (2.4b)

pK
k (t,t ′) = −i〈{ak(t),a−k(t ′)

}〉. (2.4c)

In Sec. II C, we represent these Green’s functions as functional
integrals involving a suitably defined Keldysh action. To write
the Gaussian part of this action in a compact form, it is
convenient to introduce infinite matrices ĝX and p̂X in the
momentum and time labels (where X = R,A,K labels the
three types of Green’s functions), the matrix elements of which
are related to the Green’s functions (2.3a)–(2.4c) as33

[ĝX]kt,k′t ′ = δk,−k′gX
k (t,t ′), (2.5a)

[p̂X]kt,k′t ′ = δk,−k′pX
k (t,t ′). (2.5b)

We have assumed spatial homogeneity so that the Green’s
functions are diagonal matrices in momentum space. From the
above definitions, it is easy to show that the normal blocks
satisfy the usual relations7

(ĝR)† = ĝA , (ĝK )† = −ĝK, (2.6)

while the pairing blocks have the symmetries

(p̂R)T = p̂A , (p̂K )T = p̂K. (2.7)

For each type of Green’s function, we collect the normal and
anomalous components into larger matrices

ĜR =
(

ĜR
aa ĜR

aā

ĜR
āa ĜR

āā

)
=
(

p̂R ĝR

(ĝR)∗ (p̂R)∗

)
, (2.8a)

ĜA =
(

ĜA
aa ĜA

aā

ĜA
āa ĜA

āā

)
=
(

p̂A ĝA

(ĝA)∗ (p̂A)∗

)
, (2.8b)

ĜK =
(

ĜK
aa ĜK

aā

ĜK
āa ĜK

āā

)
=
(

p̂K ĝK

−(ĝK )∗ −(p̂K )∗

)
, (2.8c)

the blocks ĜX
σσ ′ of which are infinite matrices in the momentum

and time labels. The subscripts σ,σ ′ ∈ {a,ā} indicate whether
the associated Green’s functions involve annihilation operators

a or creation operators a†. We refer to these subscripts as flavor
labels. The symmetries (2.6) and (2.7) imply

(ĜR)T = ĜA, (ĜK )T = ĜK. (2.9)

Finally, we collect the blocks (2.8a)–(2.8c) into an even larger
matrix Green’s function

G =
(

[G]CC [G]CQ

[G]QC 0

)
=
(

ĜK ĜR

ĜA 0

)
, (2.10)

where the superscripts C and Q anticipate that, in the
functional integral approach, we identify the corresponding
block with correlation functions involving the classical (C)
and quantum (Q) component of the field [see Eqs. (2.35a) and
(2.35d) below]. The symmetries (2.9) imply that the infinite
matrix G is symmetric,

G = GT . (2.11)

As emphasized by Vasiliev34 (see also Refs. 28 and 35), the
symmetrization of the Green’s function and all vertices greatly
facilitates the derivation of the proper combinatorial factors
in perturbation theory and in the functional renormalization
group equations. The definitions (2.5a), (2.5b), and (2.8c)
imply that, at equal times and vanishing total momentum, the
matrix elements of the Keldysh block ĜK contain the diagonal
and off-diagonal distribution functions defined in Eqs. (2.1a)
and (2.1b):

[ĜK ]kt,−kt =
(

pK
k (t,t) gK

k (t,t)

gK
k (t,t) pK

k (t,t)∗

)

= −2i

(
pk(t) nk(t) + 1

2

nk(t) + 1
2 p∗

k(t)

)
. (2.12)

For later reference, we note that the inverse of the matrix G in
Eq. (2.10) has the block structure

G−1 =
(

0 (ĜA)−1

(ĜR)−1 −(ĜR)−1ĜK (ĜA)−1

)
, (2.13)

where the products in the lower diagonal block denote the
usual matrix multiplication, i.e.,

[ÂB̂]σ kt,σ ′k′t ′ =
∑
σ1

∑
k1

∫
dt1[Â]σ kt,σ1 k1t1 [B̂]σ1 k1t1,σ ′k′t ′ .

(2.14)

The symmetry relations (2.9) guarantee that the lower diagonal
block in Eq. (2.13) is again symmetric. To introduce a matrix
F̂ in flavor space, which contains both the normal and
the anomalous components of the distribution function, we
parametrize the Keldysh block in the form

ĜK = ĜRF̂ Ẑ − ẐF̂ T ĜA, (2.15)

where the antisymmetric matrix Ẑ = −ẐT is defined by

Ẑ = Z ⊗ 1̂ =
(

0 1̂

−1̂ 0

)
. (2.16)

Here, Z is the antisymmetric 2 × 2 matrix in flavor space

Z = iσ2 =
(

0 1

−1 0

)
, (2.17)
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and 1̂ is the unit matrix in the momentum and time labels, i.e.,
[1̂]kt,k′t ′ = δk,k′δ(t − t ′). By substituting Eq. (2.15) into (2.13),
the lower diagonal block of the matrix (2.13) can be written as

[G−1]QQ = −(ĜR)−1ĜK (ĜA)−1

= (ĜR)−1ẐF̂ T − F̂ Ẑ(ĜA)−1, (2.18)

so Eq. (2.13) takes the form

G−1 =
(

0 (ĜA)−1

(ĜR)−1 (ĜR)−1ẐF̂ T − F̂ Ẑ(ĜA)−1

)
. (2.19)

In Sec. II D, we explicitly calculate the matrix elements of F̂

in the noninteracting limit [see Eqs. (2.68) and (2.70) below].
Introducing the self-energy matrix � in all indices via the

matrix Dyson equation

G−1 = G−1
0 − �, (2.20)

the nonequilibrium self-energy in the Keldysh basis acquires
the form

� =
(

0 [�]CQ

[�]QC [�]QQ

)
=
(

0 
̂A


̂R 
̂K

)
. (2.21)

The sub-blocks contain the normal and anomalous self-energy
matrices


̂R =
(


̂R
aa 
̂R

aā


̂R
āa 
̂R

āā

)
=
(

π̂R σ̂ R

(σ̂ R)∗ (π̂R)∗

)
, (2.22a)


̂A =
(


̂A
aa 
̂A

aā


̂A
āa 
̂A

āā

)
=
(

π̂A σ̂ A

(σ̂ A)∗ (π̂A)∗

)
, (2.22b)


̂K =
(


̂K
aa 
̂K

aā


̂K
āa 
̂K

āā

)
=
(

π̂K σ̂K

−(σ̂ K )∗ −(π̂K )∗

)
. (2.22c)

The Dyson equation (2.20) and the symmetries (2.6), (2.7),
and (2.9) imply that the sub-blocks satisfy the symmetries

(σ̂ R)† = σ̂ A , (σ̂ K )† = −σ̂ K (2.23)

and

(π̂R)T = π̂A , (π̂K )T = π̂K . (2.24)

Since the self-energy blocks satisfy the same symmetry rela-
tions as the Green’s functions (2.6) and (2.7), the symmetries
(2.9) hold also for the self-energy blocks in Keldysh space,

(
̂R)T = 
̂A, (
̂K )T = 
̂K. (2.25)

The full self-energy matrix is therefore again symmetric,

� = �T . (2.26)

In the presence of interactions, the lower diagonal block of
the inverse propagator is given by the negative of the Keldysh
component of the self-energy,


̂K = (ĜR)−1ĜK (ĜA)−1 = −[G−1]QQ. (2.27)

B. Contour basis

In the Keldysh technique, all operators are considered as
functions of the time argument on the Keldysh contour. The
time contour runs in real-time direction from some initial

time t0 to some upper limit t>, which is larger than all
other times of interest and which is slightly shifted in the
upper positive imaginary branch of the contour, and then back
to t0 in the lower, negative imaginary branch. Alternatively,
all time integrations can be restricted to the interval [t0,t>]
and one can keep track of the two branches of the Keldysh
contour using an extra label p = ±, where p = + corresponds
to the forward part of the contour and p = − denotes its
backward part. In the functional integral formulation of the
Keldysh technique,7 the bosonic annihilation and creation
operators are then represented by pairs of complex fields
ak,p(t) and āk,p(t) carrying the contour label p. The contour
ordered expectation values of these fields define four different
propagators Ĝpp′

, which are related to the usual time-ordered
(ĜT ), anti-time-ordered (ĜT̄ ), lesser (Ĝ<) and greater (Ĝ>)
Green’s functions, and their RAK counterparts as follows5,6:(

ĜT Ĝ<

Ĝ> ĜT̄

)
=
(

Ĝ++ Ĝ+−

Ĝ−+ Ĝ−−

)
= R

(
ĜK ĜR

ĜA 0

)
R,

(2.28)

where the transformation matrix R has the block structure

R = 1√
2

(
Î Î

Î −Î

)
= R−1 = RT . (2.29)

Here, Î is the unit matrix in the flavor, momentum, and
time labels, i.e., [Î ]σ kt,σ ′k′t ′ = δσ,σ ′δk,k′δ(t − t ′). The matrix
equation (2.28) implies, for the blocks in the contour basis,

Ĝpp′ = 1
2 [p′ĜR + pĜA + ĜK ], (2.30)

where p,p′ ∈ {+,−}. From Eq. (2.30), one easily verifies the
inverse relations

ĜR = [G]CQ = 1

2

∑
pp′

p′Ĝpp′
, (2.31a)

ĜA = [G]QC = 1

2

∑
pp′

pĜpp′
, (2.31b)

ĜK = [G]CC = 1

2

∑
pp′

Ĝpp′
, (2.31c)

0 =
∑
pp′

pp′Ĝpp′
. (2.31d)

The corresponding relations for the self-energy are(

̂T 
̂<


̂> 
̂T̄

)
=
(


̂++ 
̂+−


̂−+ 
̂−−

)
= R

(
0 
̂A


̂R 
̂K

)
R,

(2.32)

which gives


̂pp′ = 1
2 [p
̂R + p′
̂A + pp′
̂K ] (2.33)

and the inverse relations


̂R = [�]QC = 1

2

∑
pp′

p
̂pp′
, (2.34a)


̂A = [�]CQ = 1

2

∑
pp′

p′
̂pp′
, (2.34b)
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̂K = [�]QQ = 1

2

∑
pp′

pp′
̂pp′
, (2.34c)

0 =
∑
pp′


̂pp′
. (2.34d)

C. Functional integral representation of Green’s
functions in the RAK basis

To define the proper boundary conditions in the functional
integral formulation of the Keldysh technique,7 it is convenient
to work in the RAK basis. The transition from the contour basis
to the RAK basis is achieved by introducing the classical (C)
and quantum (Q) components of the fields, which are related
to the corresponding fields ak,± and āk,± in the contour basis
via

aC
k (t) = 1√

2
[ak,+(t) + ak,−(t)], (2.35a)

āC
k (t) = 1√

2
[āk,+(t) + āk,−(t)], (2.35b)

a
Q

k (t) = 1√
2

[ak,+(t) − ak,−(t)], (2.35c)

ā
Q

k (t) = 1√
2

[āk,+(t) − āk,−(t)]. (2.35d)

Introducing a four-component “super-field”

⎛
⎜⎜⎜⎝

�C
a (k,t)

�C
ā (k,t)

�Q
a (k,t)

�
Q
ā (k,t)

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

aC
k (t)

āC
−k(t)

a
Q

k (t)

ā
Q

−k(t)

⎞
⎟⎟⎟⎟⎠ , (2.36)

the matrix elements of the symmetrized matrix Green’s
function G defined in Sec. II A can be represented as the
following functional average:

i[G]λλ′
σ kt,σ ′k′t ′ ≡ iGλλ′

σσ ′(kt,k′t ′) = 〈
�λ

σ (kt)�λ′
σ ′(k′t ′)

〉
=
∫

D[�]eiS[�]�λ
σ (kt)�λ′

σ ′(k′t ′). (2.37)

For simplicity, we assume throughout this paper that the initial
state at t = t0 is not correlated. In this case, the corresponding
Gaussian initial density matrix does not explicitly appear in
the above Keldysh action S[�], but enters the dynamics via
the initial conditions for the independent one- and two-point
functions.11,36–38 In principle, non-Gaussian initial correlations
can be considered either explicitly by assuming a non-
Gaussian initial density matrix, or implicitly by introducing
multiple sources in the generating functional for the n-point
functions.38 The latter approach will also change the matrix
structure of the theory; for instance, if the system is initially in
thermal equilibrium, the Keldysh matrices expand from a 2 × 2
to a 3 × 3 form. As shown in Ref. 39, initial correlations can
lead to additional damping effects, which modify the amplitude
and phase of the oscillatory evolution at intermediate times.
In the absence of initial correlations, the form of the Keldysh
action S[�] in Eq. (2.37) can be directly obtained from the

corresponding Hamiltonian, so it has has the following two
contributions:

S[�] = S0[�] + S1[�], (2.38)

where, after proper symmetrization, the Gaussian part S0[�]
can be written as

S0[�] = 1

2

∑
σσ ′

∑
λλ′

∑
kk′

∫
dt dt ′

×�λ
σ (kt)

[
G−1

0

]λλ′

σ kt,σ ′k′t ′�
λ′
σ ′(k′t ′). (2.39)

Here, G−1
0 is the noninteracting inverse Green’s function

matrix in Keldysh space, which is associated with the non-
interacting part of the Hamiltonian (1.6). The matrix G−1

0 has
the same block structure as G−1 in Eq. (2.13), with retarded
and advanced blocks given by(

ĜR
0

)−1 = D̂ − iηẐ,
(
ĜA

0

)−1 = D̂ + iηẐ, (2.40)

where the antisymmetric matrix Ẑ is given in Eq. (2.16), and
the symmetric matrix D̂ is defined by

[D̂]kt,k′t ′ = δk,−k′Z[−iδ′(t − t ′) + δ(t − t ′)Mk′]. (2.41)

Here, δ′(t) = d
dt

δ(t) is the derivative of the Dirac δ function
and Mk is the matrix in flavor space40

Mk =
(

εk |γk|
−|γk| −εk

)
. (2.42)

Recall that we are working in the rotating reference frame
where we have redefined ε̃k ≡ εk − ω0

2 → εk [see Eq. (1.7)].
Keeping in mind that iδ′(t − t ′) = −iδ′(t ′ − t), it is obvious
that [(ĜR

0 )−1]T = (ĜA
0 )−1, in agreement with Eq. (2.9).

Although the Keldysh block [G−1
0 ]QQ of the inverse

Gaussian propagator in Eq. (2.39) vanishes in continuum
notation, it is actually finite if the path integral is properly
discretized.7 It is, however, more convenient to stick with
the continuum notation and take the discretization effectively
into account by adding an infinitesimal regularization η. To
derive this regularization, we note that the relations G−1

0 G0 =
G0G−1

0 = I imply that, in the noninteracting limit, the Keldysh
block satisfies

D̂ĜK
0 = ĜK

0 D̂ = 0. (2.43)

Introducing the noninteracting distribution matrix F̂0 as in
Eq. (2.15), this implies, for η → 0,

D̂ĜK
0 D̂ = F̂0ẐD̂ − D̂ẐF̂ T

0 = 0. (2.44)

By using Eq. (2.18), we thus obtain, for the lower diagonal
block of G−1

0 in the noninteracting limit,[
G−1

0

]QQ = −(
ĜR

0

)−1
ĜK

0

(
ĜA

0

)−1

= (
ĜR

0

)−1
ẐF̂ T

0 − F̂0Ẑ
(
ĜA

0

)−1

= iη
(
F̂0 + F̂ T

0

) = 2iηF̂0, (2.45)

where we have used the fact that F̂0 is symmetric, which is
easily verified by explicit calculation (see Sec. II D). The lower
diagonal block of G−1

0 is thus a pure regularization, which
guarantees that, in the noninteracting limit, the functional
integral (2.37) is well defined. In the presence of interactions,
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the Keldysh component of the self-energy is finite due to
Eq. (2.27), so in this case, the infinitesimal regularization
(2.45) can be omitted.

To write down the interaction part of the Keldysh action
associated with the interaction part of the Hamiltonian (1.1),
one should first symmetrize the Hamiltonian41,42 before
formally replacing the operators by complex fields since a

and a† are treated symmetrically. Noting that the symmetrized
product of n bosonic operators A1, . . . ,An is defined by

{A1, . . . ,An} = 1

n!

∑
P

AP1 , . . . ,APn
, (2.46)

where the sum is over all n! permutations, we have

a
†
k1

a
†
k2

ak3ak4 = {
a
†
k1

a
†
k2

ak3ak4

} − 1

2

[
δk1,k4

{
a
†
k2

ak3

}
+ δk1,k3{a†

k2
ak4} + δk2,k3{a†

k1
ak4}

+ δk2,k4

{
a
†
k1

ak3

}]+1

4

[
δk1,k3δk2,k4+δk2,k3δk1,k4

]
.

(2.47)

The quadratic terms on the right-hand side of Eq. (2.47)
lead to a time-independent first-order shift in the bare energy
dispersion

εk → εk − 1

V

∑
k′

U (−k, − k′; k,k′). (2.48)

This shift can be absorbed by redefining the energy εk in the
matrix Mk introduced in Eq. (2.42). The first term on the
right-hand side of Eq. (2.47) leads to the following interaction
part of the Keldysh action in the RAK basis:

S1[�] = − 1

2V

∑
k1 k2 k3 k4

∫
dt δk1+k2+k3+k4,0U (k1,k2; k3,k4)

×{
�C

ā (k1t)�
Q
ā (k2t)

[
�C

a (k3t)�
C
a (k4t)

+�Q
a (k3t)�

Q
a (k4t)

] + [
�C

ā (k1t)�
C
ā (k2t)

+�
Q
ā (k1t)�

Q
ā (k2t)

]
�C

a (k3t)�
Q
a (k4t)

}
. (2.49)

To eliminate complicated combinatorial factors in the FRG
flow equations derived in Sec. IV, it is convenient to sym-
metrize the interaction vertices in Eq. (2.49) with respect to
the interchange of any two labels28,34,35 and write

S1[�] = − 1

4!V

∑
σ1,...,σ4

∑
λ1,...,λ4

∑
k1,...,k4

∫
dt δk1+k2+k3+k4,0

×Uλ1λ2λ3λ4
σ1σ2σ3σ4

(k1,k2,k3,k4)�λ1
σ1

(k1t)

×�λ2
σ2

(k2t)�
λ3
σ3

(k3t)�
λ4
σ4

(k4t), (2.50)

where the interaction vertex Uλ1λ2λ3λ4
σ1σ2σ3σ4

(k1,k2,k3,k4) is sym-
metric with respect to any pair of indices. Up to permutations
of the indices, the nonzero vertices are

U
CQCC
ā ā a a (k1,k2,k3,k4)

= U
CQQQ
ā ā a a (k1,k2,k3,k4) = U

CCCQ
ā ā a a (k1,k2,k3,k4)

= U
QQCQ
ā ā a a (k1,k2,k3,k4) = U (k1,k2; k3,k4). (2.51)

D. Noninteracting Green’s functions

To conclude this section, let us explicitly construct the 2 × 2
matrix Green’s functions in flavor space in the noninteracting
limit. In general, we define the Green’s functions in flavor
space in terms of the matrix elements

[ĜX]kt,−kt ′ = GX(k,t,t ′), X = R,A,K. (2.52)

In the absence of interactions, we can obtain explicit expres-
sions for these Green’s functions. Then, the noninteracting part
of the Hamiltonian (1.6) reduces to40

H̃0 =
∑

k

[
εka

†
kak + |γk|

2
(a†

ka
†
−k + a−kak)

]
. (2.53)

The retarded and advanced matrix Green’s functions in the
noninteracting limit are now easily obtained. Consider first the
retarded Green’s function, which satisfies

i∂tG
R
0 (k,t,t ′) = δ(t − t ′)Z + MkG

R
0 (k,t,t ′). (2.54)

The solution of Eq. (2.54) with proper boundary condition is

GR
0 (k,t,t ′) = −i�(t − t ′)e−iMk(t−t ′)Z. (2.55)

The matrix exponential is

e−iMk t = I cos(μkt) − iMk
sin(μkt)

μk
, (2.56)

where I is the 2 × 2 unit matrix, and

μk =
⎧⎨
⎩
√

ε2
k − |γk|2 if |εk| > |γk|,

i

√
|γk|2 − ε2

k if |γk| > |εk|.
(2.57)

By using the symmetry relation (ĜR)T = ĜA given in Eq.
(2.9), we obtain, for the corresponding advanced Green’s
function,

GA
0 (k,t,t ′) = GR

0 (−k,t ′,t)T = −i�(t ′ − t)ZT e−iMT
k (t ′−t).

(2.58)

By using the identities

Z2 = −I, (2.59a)

Z−1 = ZT = −Z, (2.59b)

MT
k = ZMkZ = −ZT MkZ, (2.59c)

ZT e−iMT
k (t ′−t) = −e−iMk(t−t ′)Z, (2.59d)

we may also write

GA
0 (k,t,t ′) = i�(t ′ − t)e−iMk(t−t ′)Z. (2.60)

Because the retarded and advanced Green’s functions depend
only on the time difference, it is useful to perform a Fourier
transformation to frequency space,

GX
0 (k,ω) =

∫ ∞

−∞
dt eiωtGX

0 (k,t,0). (2.61)

By substituting Eqs. (2.60) and (2.55) into this expression and
representing the step functions as

�(t) =
∫ ∞

−∞

dω′

2πi

eiω′t

ω′ − iη
, (2.62)
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it is easy to show that

GR
0 (k,ω) = [ω − Mk + iη]−1Z, (2.63a)

GA
0 (k,ω) = [ω − Mk − iη]−1Z = Z

[
ω + MT

k − iη
]−1

,

(2.63b)

or, explicitly,

G
R/A

0 (k,ω) = 1

(ω ± iη)2 − ε2
k + |γk|2

×
( −|γk| ω ± iη + εk

−ω ∓ iη + εk −|γk|

)
. (2.64)

Next, consider the Keldysh component GK
0 (k,t,t ′) of our

2 × 2 matrix Green’s function in flavor space. It satisfies the
matrix equations

i∂tG
K
0 (k,t,t ′) = MkG

K
0 (k,t,t ′), (2.65a)

i∂t ′G
K
0 (k,t,t ′) = GK

0 (k,t,t ′)MT
k , (2.65b)

and, hence,

(i∂t + i∂t ′)G
K
0 (k,t,t ′) = MkG

K
0 (k,t,t ′) + GK

0 (k,t,t ′)MT
k .

(2.66)

These equations are solved by

GK
0 (k,t,t ′) = e−iMk tGK

0 (k,0,0)e−iMT
k t ′ , (2.67)

with an arbitrary initial matrix GK
0 (k,0,0), which defines the

distribution functions at t = 0. To explicitly construct the
distribution matrix F̂0 defined via Eq. (2.15), we note that,
in the noninteracting limit, the distribution matrix is diagonal
in time,

[F̂0]kt,k′t ′ = δk,−k′F0(k,t,t ′) = δk,−k′δ(t − t ′)F0(k,t),

(2.68)

so that Eq. (2.15) reduces to the 2 × 2 matrix relation

GK
0 (k,t,t ′) = GR

0 (k,t,t ′)F0(k,t ′)Z − ZF0(k,t)GA
0 (k,t,t ′)

= −i�(t − t ′)e−iMk(t−t ′)ZF0(k,t ′)Z

−i�(t ′ − t)ZF0(k,t)Ze−iMT
k (t ′−t). (2.69)

It follows that, in the noninteracting limit, the time-diagonal
element F0(k,t) of the distribution matrix contains the normal
and anomalous distribution functions defined in Eqs. (2.1a)
and (2.1b) in the following way:

F0(k,t) = iZGK
0 (k,t,t)Z =

( −2p∗
k(t) 2nk(t) + 1

2nk(t) + 1 −2pk(t)

)
.

(2.70)

By combining this relation with Eq. (2.66), we see that
our diagonal distribution function matrix satisfies the kinetic
equation

i∂tF0(k,t) = −MT
k F0(k,t) − F0(k,t)Mk. (2.71)

Note that the noninteracting Keldysh Green’s function (2.69)
can also be written as

GK
0 (k,t,t ′) = −i

[
GR

0 (k,t,t ′)ZGK
0 (k,t ′,t ′)

−GK
0 (k,t,t)ZGA

0 (k,t,t ′)
]
, (2.72)

which relates the matrix elements of the Keldysh Green’s
function at different times to the corresponding equal-time
matrix elements.

III. QUANTUM KINETIC EQUATIONS

From the Keldysh component of the Dyson equation, we
obtain quantum kinetic equations for the distribution function.
In this section, we derive several equivalent versions of these
equations. Although matrix generalizations of quantum kinetic
equations are standard,5,6,43 we present here a special matrix
structure of the kinetic equations that takes into account off-
diagonal bosonic correlations.

A. Nonequilibrium evolution equations for two-time
Keldysh Green’s functions

To derive quantum kinetic equations, we start with the
matrix Dyson equation (2.20), which can be written as(

G−1
0 − �

)
G = I. (3.1)

This “left Dyson equation” is equivalent with the following
three equations for the sub-blocks:[(

ĜR
0

)−1 − 
̂R
]
ĜR = Î , (3.2a)[(

ĜA
0

)−1 − 
̂A
]
ĜA = Î , (3.2b)[(

ĜR
0

)−1 − 
̂R
]
ĜK = 
̂KĜA, (3.2c)

where Î is again the unit matrix in the flavor, momentum,
and time labels. Alternatively, we can also consider the
corresponding “right Dyson equation”

G
(
G−1

0 − �
) = I, (3.3)

which implies the following relations:

ĜR
[(

ĜR
0

)−1 − 
̂R
] = Î , (3.4a)

ĜA
[(

ĜA
0

)−1 − 
̂A
] = Î , (3.4b)

ĜK
[(

ĜA
0

)−1 − 
̂A
] = ĜR
̂K. (3.4c)

To solve the coupled set of equations (3.2a)–(3.2c) and
(3.4a)–(3.4c), it is sometimes useful to rewrite them as integral
equations. Therefore, we should take into account that, in the
noninteracting limit, the Keldysh self-energy is actually an
infinitesimal regularization 
̂K

0 = −2iηF̂0 [see Eq. (2.45)].
In the noninteracting limit, the Keldysh component therefore
satisfies (

ĜR
0

)−1
ĜK

0 = −2iηF̂0Ĝ
A
0 , (3.5)

which is equivalent with

ĜK
0 = −2iηĜR

0 F̂0Ĝ
A
0 . (3.6)
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By using the integral forms of the Dyson equations (3.2a) and
(3.2b) for the retarded and advanced Green’s functions

ĜR = ĜR
0 + ĜR

0 
̂RĜR, (3.7a)

ĜA = ĜA
0 + ĜA

0 
̂AĜA, (3.7b)

the equation (3.2c) for the Keldysh block can alternatively be
written in integral form as

ĜK = ĜR
0 
̂RĜK + ĜR

0 
̂KĜA

= ĜK
0 + ĜK

0 
̂AĜA + ĜR
0 
̂RĜK + ĜR

0 
̂KĜA. (3.8)

Given an approximate expression for the self-energies, the
integral equations (3.7) and (3.8) can be solved by an ap-
propriate iteration to obtain the time evolution of the Keldysh
Green’s function. Here, we follow a different strategy, which is
similar to the one proposed in Ref. 11. We represent the inverse
propagators (2.40) as differential operators to derive evolution
equations in differential form. We will see that the resulting
initial value problem allows for approximate solutions, which
manifestly preserves causality. By using the advanced and
retarded components of the Dyson equations (3.2a), (3.2b),
(3.4a), and (3.4b), and keeping in mind that by translational
invariance the matrix elements in the rotating reference frame
are

[ĜX]kt,k′t ′ = δk,−k′GX(k,t,t ′), (3.9a)

[
̂X]kt,k′t ′ = δk,−k′
X(k′,t,t ′), (3.9b)

with X = R,A,K , we obtain

i∂tG
R/A(k,t,t ′) − MkG

R/A(k,t,t ′)

= Zδ(t − t ′) +
∫ t/t ′

t0

dt1Z
R/A(k,t,t1)GR/A(k,t1,t
′),

(3.10a)

i∂t ′G
R/A(k,t,t ′) − GR/A(k,t,t ′)MT

k

= −Zδ(t − t ′) −
∫ t/t ′

t0

dt1G
R/A(k,t,t1)
R/A(k,t1,t

′)Z.

(3.10b)

In the same way, we obtain from (3.2c) and (3.4c) the following
kinetic equations for the Keldysh component:

i∂tG
K (k,t,t ′) − MkG

K (k,t,t ′)

=
∫ t ′

t0

dt1Z
K (k,t,t1)GA(k,t1,t
′)

+
∫ t

t0

dt1Z
R(k,t,t1)GK (k,t1,t
′) (3.11)

and

i∂t ′G
K (k,t,t ′) − GK (k,t,t ′)MT

k

= −
∫ t

t0

dt1G
R(k,t,t1)
K (k,t1,t

′)Z

−
∫ t ′

t0

dt1G
K (k,t,t1)
A(k,t1,t

′)Z. (3.12)

Finally, to uniquely define the solution of the set of coupled
first-order partial differential equations, proper boundary

conditions for the Green’s functions have to be specified. From
the definitions (2.3a), (2.3b), (2.4a), and (2.4b) of the advanced
and retarded propagators, we find that, for infinitesimal η,

GR(k,t,t − η) = −iZ, (3.13a)

GA(k,t,t + η) = iZ, (3.13b)

and that the Keldysh Green’s function should reduce to the
matrix GK (k,0,0) at the reference time t = t ′ = 0. Note that
we have not made any approximations so far and the time
evolution is exact provided that we insert the exact self-
energies. The evolution equations are causal by construction
since no quantity in the collision integrals on the right-
hand side depends on future states. By interpreting the time
derivatives as finite-difference expressions, the solution can
be obtained by stepwise propagating the equations in the t

and t ′ direction. Note that, in the noninteracting limit where
all self-energies and collision integrals vanish, our kinetic
equations (3.11) and (3.12) correctly reduce to the equation
of motion for the noninteracting Keldysh Green’s function
given in Eq. (2.66).

For open systems coupled to an external bath, it is
sometimes convenient to move some of the terms on the
right-hand side of the kinetic equations (3.11) and (3.12) to the
left-hand side such that the remaining terms on the right-hand
side correspond to the “in-scattering” and the “out-scattering”
rate in the Boltzmann equation. To achieve this, we introduce
the average (mean) and the imaginary part of the retarded and
advanced self-energies5


̂M = 1
2 [
̂R + 
̂A], 
̂I = i[
̂R − 
̂A]. (3.14)

The inverse relations are


̂R = 
̂M − i

2

̂I , 
̂A = 
̂M + i

2

̂I . (3.15)

A similar decomposition is also introduced for the retarded
and advanced Green’s functions

ĜM = 1
2 [ĜR + ĜA], ĜI = i[ĜR − ĜA], (3.16)

so that

ĜR = ĜM − i

2
ĜI , ĜA = ĜM + i

2
ĜI . (3.17)

By subtracting the Keldysh component of the left- and right-
hand sides of the Dyson equations (3.2c) and (3.4c), we obtain
the (subtracted) kinetic equation

ẐD̂MĜK − ĜKD̂MẐ − [Ẑ
̂KĜM − ĜM
̂KẐ]

= Ĉ in − Ĉout, (3.18)

with

D̂M = D̂ − 
̂M = D̂ − 1
2 [
̂R + 
̂A]. (3.19)

The collision integrals are represented by symmetric matrices

Ĉ in = i

2
[Ẑ
̂KĜI + ĜI 
̂KẐ], (3.20a)

Ĉout = i

2
[Ẑ
̂I ĜK + ĜK
̂I Ẑ], (3.20b)

and correspond to the usual “in-scattering” and “out-
scattering” term in the Boltzmann equation.7 The kinetic
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equation (3.18) generalizes the subtracted kinetic equation
given in Ref. 5 to matrix form, which includes also off-diagonal
correlations. In equilibrium, both terms on the right-hand side
of Eq. (3.18) cancel.

B. Evolution equations for the equal-time
Keldysh Green’s functions

Keeping in mind that, in analogy with Eq. (2.70), the
diagonal and off-diagonal distribution functions are contained
in the matrix F (k,t),

F (k,t) = iZGK (k,t,t)Z =
( −2p∗

k(t) 2nk(t) + 1

2nk(t) + 1 −2pk(t)

)
,

(3.21)

we only need to calculate the time evolution of the equal-time
Keldysh Green’s function in order to obtain the distribution
function. By adding Eqs. (3.11) and (3.12) and using

(∂t + ∂t ′ )G
K (k,t,t ′)|t ′=t = ∂tG

K (k,t,t), (3.22)

we arrive at the evolution equation for the equal-time Keldysh
Green’s function

i∂tG
K (k,t,t) − MkG

K (k,t,t) − GK (k,t,t)MT
k

=
∫ t

t0

dt1[Z
K (k,t,t1)GA(k,t1,t) − GR(k,t,t1)

×
K (k,t1,t)Z] +
∫ t

t0

dt1[Z
R(k,t,t1)GK (k,t1,t)

−GK (k,t,t1)
A(k,t1,t)Z]. (3.23)

Although the left-hand side of Eq. (3.23) involves the Keldysh
Green’s function only at equal times, the integrals on the right-
hand side depend also on the Green’s functions at different
times (notice the implicit dependence via the self-energies),
so Eq. (3.23) is not a closed equation for GK (k,t,t). In
principle, one has to solve the more general equations (3.11)
and (3.12), which fully determine GK (k,t,t ′) for all time
arguments. An alternative strategy is to close the kinetic
equation (3.23) for the equal-time Keldysh Green’s function
by approximating all Keldysh Green’s functions at different
times on the right-hand side in terms of the corresponding
equal-time Green’s function. This is achieved by means of
the so-called generalized Kadanoff-Baym ansatz44 (GKBA),
which is one of the standard approximations to derive kinetic
equations for the distribution function from the Kadanoff-
Baym equations of motion for the two-time nonequilibrium
Green’s functions.6,44,45 For bosons with diagonal and off-
diagonal correlation, the GKBA ansatz reads as

GK (k,t,t ′) ≈ −i[GR(k,t,t ′)ZGK (k,t ′,t ′)
−GK (k,t,t)ZGA(k,t,t ′)], (3.24)

which assumes that the exact relation Eq. (2.72) between
noninteracting Green’s functions remains approximately true
also in the presence of interactions. Note that Eq. (3.24) is a
nontrivial 2 × 2 matrix relation in flavor space. In Appendix B,
we discuss the approximations that are necessary to obtain the
GKBA from the exact equations of motion (3.11), and (3.12)
for the two-time Keldysh Green’s function.

IV. NONEQUILIBRIUM FUNCTIONAL
RENORMALIZATION GROUP

The functional renormalization group (FRG) has been quite
successful to study strongly interacting systems in equilibrium
(see Refs. 28 and 46 for reviews). In contrast to conventional
renormalization group methods, where only a finite number
of coupling constants is considered, the FRG keeps track of
the renormalization group flow of entire correlation functions
that depend on momentum, frequency, or time. In principle, it
should therefore be possible to calculate the nonequilibrium
time evolution of quantum systems using FRG methods.
Recently, several authors have generalized the FRG approach
to quantum systems out of equilibrium.10,20–22,26 In particular,
Gasenzer and Pawlowski26 have used FRG methods to obtain
the nonequilibrium time evolution of bosons.

Given the Keldysh action defined in Eqs. (2.38), (2.39),
and (2.50), it is straightforward to write down the formally
exact hierarchy of FRG flow equations for the one-particle
irreducible vertices of the nonequilibrium theory, which we
shall do in the following subsection. The real challenge is to
devise sensible cutoff schemes and approximation strategies.
We address this problem in Sec. V by using a simple
exactly solvable toy model to check the accuracy of various
approximations.

A. Exact FRG flow equations

To begin with, we consider an arbitrary bosonic many-
body system, the Gaussian action of which is determined by
some inverse matrix propagator G−1

0 , which we modify by
introducing some cutoff parameter �:

G0 → G0,�. (4.1)

Depending on the problem at hand, different choices of � may
be appropriate. For systems in thermal equilibrium, it is usually
convenient to choose � such that it removes long-wavelength
or low-energy fluctuations.28 To calculate the time evolution of
many-body systems, other choices of � are more appropriate.
For example, Gasenzer and Pawlowski have proposed that
� should be identified with a time scale τ that cuts off the
time evolution of correlation functions at long times.26 In Sec.
IV B 2, we propose an alternative cutoff scheme that uses an
external “out-scattering rate” as RG cutoff.

Given the cutoff-dependent Gaussian propagator (4.1), the
generating functional of all correlation functions depends on
the cutoff. By taking the derivative of the generating functional
��[�] of the irreducible vertices with respect to the cutoff,
we obtain a rather compact closed functional equation for
��[�], which is sometimes called the Wetterich equation.47

Formally, the Wetterich equation is valid also for quantum
systems out of equilibrium provided that we use the proper
nonequilibrium field theory to describe the system.26 By
expanding the generating functional ��[�] in powers of the
fields, we obtain the one-particle irreducible vertices of our
nonequilibrium theory,

��[�] =
∞∑

n=0

1

n!

∫
α1

, . . . ,

∫
αn

�
(n)
�,α1,...,αn

�α1 , . . . ,�αn
.

(4.2)
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Here, the collective labels α1,α2, . . . stand for all labels that are
necessary to specify the fields.28,35 For the boson model defined
in Sec. II, the collective label α = (λ,σ,k,t) represents the
Keldysh label λ ∈ {C,Q}, the flavor label σ ∈ {a,ā}, as well
as the momentum and time labels k and t . The corresponding
integration symbol is∫

α

=
∑

λ

∑
σ

∑
k

∫
dt. (4.3)

The exact FRG flow equations for the irreducible vertices can
be obtained from the general FRG flow equations given in
Refs. 28, 35, and 48 by making the following substitutions to
take into account the different normalization of the action in
the Keldysh formalism:

�
(n)
�,α1,...,αn

→ i�
(n)
�,α1,...,αn

, (4.4)

G� → −iG�, Ġ� → −iĠ�, (4.5)

where the single-scale propagator is given by

Ġ� = −G�

(
∂�G−1

0,�

)
G�. (4.6)

This definition implies that the blocks of the single-scale
propagator for general cutoff are

[Ġ�]CQ = ˙̂G
R

� = −ĜR
�

[
∂�

(
ĜR

0,�

)−1]
ĜR

�, (4.7a)

[Ġ�]QC = ˙̂G
A

� = −ĜA
�

[
∂�

(
ĜA

0,�

)−1]
ĜA

�, (4.7b)

[Ġ�]CC = ˙̂G
K

� = −ĜR
�

[
∂�

(
ĜR

0,�

)−1]
ĜK

�

−ĜK
�

[
∂�

(
ĜA

0,�

)−1]
ĜA

�

−ĜR
�

(
∂�

[
G−1

0,�

]QQ)
ĜA

�. (4.7c)

If the expectation values of the field components �α vanish in
the absence of sources, the exact FRG flow equation for the
irreducible self-energy (two-point function) is

∂��
(2)
�,α1α2

= i

2

∫
β1

∫
β2

[Ġ�]β1β2�
(4)
�,β2β1α1α2

, (4.8)

while the four-point vertex (effective interaction) satisfies

∂��
(4)
�,α1α2α3α4

= i

2

∫
β1

∫
β2

[Ġ�]β1β2�
(6)
�,β2β1α1α2α3α4

+ i

2

∫
β1

∫
β2

∫
β3

∫
β4

× [Ġ�]β1β2 [G�]β3β4

[
�

(4)
�,β2β3α3α4

�
(4)
�,β4β1α1α2

+�
(4)
�,β2β3α1α2

�
(4)
�,β4β3α3α4

+ (α1 ↔ α2) + (α1 ↔ α4)
]
.

(4.9)

If, in the absence of sources, the field has a finite expectation
value �0

α �= 0, it is convenient to redefine the vertices in the
functional Taylor series (4.2) by expanding in powers of δ� =
� − �0:

��[�] =
∞∑

n=0

1

n!

∫
α1

, . . . ,

∫
αn

�
(n)
�,α1,...,αn

(�0)δ�α1 , . . . ,δ�αn
.

(4.10)

Then, the odd vertices (n = 1,3,5, . . .) are, in general, also
finite. The requirement that the one-point vertex vanishes

identically leads to the flow equation for the field expectation
value28,48,49

∫
β

[(
∂��0

β

)[
G−1

�

]
βα

+ �0
β

[
∂�G−1

0,�

]
βα

]

= i

2

∫
β1

∫
β2

[Ġ�]β1β2�
(3)
�,β2β1α

. (4.11)

Moreover, the FRG flow equation for the two-point vertex
contains additional terms involving the three-point vertex

∂��
(2)
�,α1α2

= i

2

∫
β1

∫
β2

[Ġ�]β1β2�
(4)
�,β2β1α1α2

+
∫

β

(
∂��0

β

)
�

(3)
�,βα1α2

+ i

∫
β1

∫
β2

∫
β ′

1

∫
β ′

2

[Ġ�]β1β
′
1
[G�]β2β

′
2
�

(3)
�,β1β2α1

�
(3)
�,β ′

1β
′
2α2

.

(4.12)

B. Cutoff schemes

1. General considerations

The crucial point is now to identify a sensible flow
parameter �. Since we are interested in calculating the time
evolution of the distribution function at long times, the flow
parameter should be chosen such that, for sufficiently large �,
the long-time asymptotics is simple. This is the case if � is
identified with a scattering rate that introduces some kind of
damping. This strategy was already implemented by Jakobs
et al.22 in their recent FRG study of stationary nonequilibrium
states of the Anderson impurity model. Formally, such a cutoff
can be introduced by replacing the infinitesimal imaginary
part η appearing in the retarded and advanced blocks of
the inverse matrix propagator G−1

0 given in Eqs. (2.40) by
a finite quantity �. This amounts to the following replacement
of the inverse retarded and advanced propagators by cutoff-
dependent quantities:(

ĜR
0

)−1 → (
ĜR

0,�

)−1 = (
ĜR

0

)−1 − i�Ẑ, (4.13a)(
ĜA

0

)−1 → (
ĜA

0,�

)−1 = (
ĜA

0

)−1 + i�Ẑ. (4.13b)

Explicitly, the cutoff-dependent retarded and advanced
Green’s functions are then

GR
0,�(k,t,t ′) = GR

0 (k,t,t ′)e−�(t−t ′), (4.14a)

GA
0,�(k,t,t ′) = GA

0 (k,t,t ′)e−�(t ′−t). (4.14b)

As far as the QQ component of the inverse free propagator is
concerned (which, for infinitesimal η, is a pure regularization),
we set

[
G−1

0,�

]QQ = 2i�F̂∗,�, (4.15)

where the distribution matrix F̂∗,� will be further specified be-
low. Defining the cutoff-dependent noninteracting distribution
matrix F̂0,� as in Eq. (2.15), we have

ĜK
0,� = ĜR

0,�F̂0,�Ẑ − ẐF̂0,�ĜA
0,� (4.16)
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and [
G−1

0,�

]QQ = −(
ĜR

0,�

)−1
ĜK

0,�

(
ĜA

0,�

)−1

= (
ĜR

0,�

)−1
ẐF̂0,� − F̂0,�Ẑ

(
ĜA

0,�

)−1

= D̂ẐF̂0,� − F̂0,�ẐD̂ + 2i�F̂0,�. (4.17)

By comparing this with Eq. (4.15), we see that our cutoff-
dependent distribution matrix satisfies

D̂ẐF̂0,� − F̂0,�ẐD̂ + 2i�(F̂0,� − F̂∗,�) = 0. (4.18)

For our cutoff choice given in Eqs. (4.13a) and (4.13b), we
have

∂�

(
ĜR

0,�

)−1 = −iẐ, (4.19a)

∂�

(
ĜA

0,�

)−1 = iẐ, (4.19b)

∂�

[
G−1

0,�

]QQ = 2iF̂∗,�, (4.19c)

so that in this scheme the blocks of the single-scale propagator
(4.7) are

˙̂G
R

� = iĜR
�ẐĜR

�, (4.20a)

˙̂G
A

� = −iĜA
�ẐĜA

�, (4.20b)

˙̂G
K

� = i
[
ĜR

�ẐĜK
� − ĜK

�ẐĜA
� − 2ĜR

�F̂∗,�ĜA
�

]
. (4.20c)

Let us now discuss two possible choices of F̂∗,�.

2. Out-scattering rate cutoff

The simplest possibility is to choose

F̂∗,� = η

�
F̂0,� → 0, (4.21)

so that the cutoff-dependent distribution function defined via
Eq. (4.18) satisfies

D̂ẐF̂0,� − F̂0,�ẐD̂ + 2i�F̂0,� = 0. (4.22)

In this case, the QQ component of the inverse free propagator
is chosen to be the following cutoff-dependent infinitesimal
regularization [

G−1
0,�

]QQ = 2iηF̂0,�. (4.23)

The term 2i�F̂0,� in Eq. (4.22) amounts to the following
substitution for the time derivative in the equations of motion
for the distribution function,

∂t → ∂t + 2�. (4.24)

The time-diagonal element of the noninteracting distribution
function is then modified as

F0,�(k,t) = e−2�tF0(k,t), (4.25)

whereas the cutoff-dependent noninteracting Keldysh Green’s
function is now given by

GK
0,�(k,t,t ′) = e−�(t+t ′)GK

0 (k,t,t ′). (4.26)

The occupation numbers, therefore, decrease exponentially
with rate � for large time, which justifies the name “out-
scattering cutoff scheme.” Because for � → ∞ all propaga-

tors vanish in this scheme, the FRG flow equations should be
integrated with the initial condition

lim
�→∞

�
(n)
�,α1,...,αn

= 0 if n �= 4, (4.27)

and the limit of �
(4)
�,α1α2α3α4

is given by the bare interaction Eq.
(2.51).

3. Hybridization cutoff

Alternatively, we may choose F̂∗,� = F̂0,�, so that the
distribution function satisfies

D̂ẐF̂0,� − F̂0,�ẐD̂ = 0. (4.28)

This equation agrees exactly with the cutoff-independent
noninteracting kinetic equation (2.44), so we may identify
F̂0,� = F̂0 with the cutoff-independent noninteracting dis-
tribution function. Obviously, this cutoff choice amounts to
replacing the infinitesimal η appearing in Eq. (2.45) by the
running cutoff �, so that[

G−1
0,�

]QQ = 2i�F̂0, (4.29)

where F̂0 is the distribution function for infinitesimal η, which
is determined by the same equation as for � = 0. With this
cutoff choice, all propagators at nonequal times vanish for
� → ∞. Explicitly, we obtain for the noninteracting 2 × 2
Green’s functions in flavor space in this cutoff scheme,

GK
0,�(k,t,t ′) = GR

0,�(k,t,t ′)F0(k,t ′)Z

−ZF0(k,t)GA
0,�(k,t,t ′). (4.30)

Because for large � → ∞, all propagators at nonequal times
are suppressed, each time integration in loops yields a factor
of 1/�. For � → ∞, only the Hartree-Fock contribution
to the self-energy survives because it depends only on the
equal-time component of the Green’s function. The FRG
flow equations in this cutoff scheme should therefore be
integrated with the boundary condition, which for � → ∞,
the irreducible self-energy is given by the self-consistent
Hartree-Fock approximation.

The finite value of the QQ block of the inverse propagator
can be considered to be a part of the Keldysh self-energy,
which in turn is related to an in-scattering rate.7 Compared to
the out-scattering rate cutoff introduced before, this cutoff
scheme contains both in- and out-scattering contributions,
such that the bare distribution function is cutoff independent.
Essentially, the same cutoff scheme has recently been proposed
and tested by Jakobs, Pletyukhov, and Schoeller.22,23,27 In
particular, in Ref. 22, they used this scheme to study stationary
nonequilibrium states of the Anderson impurity model. In
this case, they identified the cutoff parameter � with the
hybridization energy arising from the coupling to the bath of
free electrons. Following their suggestion, we therefore refer
to this scheme as the “hybridization cutoff scheme.”

4. Alternative cutoff schemes

At this point, it is not clear which cutoff choice is superior.
By construction, both schemes do not violate causality for
any value of the running cutoff �. Moreover, to describe
systems close to thermal equilibrium, it might be important to
require that, in thermal equilibrium, the fluctuation-dissipation
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theorem relating the Keldysh Green’s function to its retarded
and advanced counterparts is satisfied for any value of the
running cutoff. Using the spectral representation of the Green’s
functions, it is easy to show that, for our model, the fluctuation-
dissipation theorem can be written as the following relation
between the Fourier transforms of the 2 × 2 matrix Green’s
functions in flavor space:

GK (k,ω) = [GR(k,ω) − GA(k,ω)]

[
2

eβω − 1
+ 1

]
.

(4.31)

While this relation is manifestly violated in the out-scattering
cutoff scheme, in the hybridization cutoff scheme, it remains
valid in the noninteracting limit.

Finally, let us point out that, in certain situations, other
choices of the distribution matrix F̂∗,� in the QQ block of
the regularized inverse propagator given in Eq. (4.15) may
be advantageous. For example, for describing the approach
to thermal equilibrium, it might be useful to identify F̂∗,�

with the true equilibrium distribution. To see this, let us
approximate the Keldysh Green’s function ĜK appearing in
the Keldysh block of the single-scale propagator (4.20c) by
the generalized Kadanoff-Baym ansatz (3.24), which assumes
that the noninteracting relation (2.72) remains approximately
valid for the interacting system. By introducing the flowing
distribution function in analogy with Eq. (2.70),

F�(k,t) = iZGK
�(k,t,t)Z, (4.32)

the generalized Kadanoff-Baym ansatz (3.24) can also be
written as

GK
�(k,t,t ′) = GR

�(k,t,t ′)F�(k,t ′)Z

−ZF�(k,t)GA
�(k,t,t ′). (4.33)

By substituting this approximation into Eq. (4.20c), we obtain
for the Keldysh block of the single-scale propagator at equal
times

ĠK
�(k,t,t) = 2i

∫ t

t0

dt1G
R
�(k,t,t1)[F�(k,t1) − F∗,�(k)]

×GA
�(k,t1,t). (4.34)

Obviously, this expression vanishes if the flowing distribu-
tion matrix F�(k,t1) approaches the equilibrium distribution
F∗,�(k).

C. Combining FRG flow equations with quantum
kinetic equations

The FRG flow equation (4.8) relates the derivative of
the self-energy [��]α1α2 ≡ �

(2)
�,α1α2

with respect to the flow
parameter � to the flowing Green’s function G� and to the
flowing effective interaction �

(4)
�,β2β1α1α2

. Our final goal is to

obtain a closed equation for the Keldysh block ĜK
� of the

Green’s function matrix at equal times (or alternatively, the
distribution function F̂�), from which we can extract the
time evolution of the diagonal and off-diagonal distribution
functions given in Eqs. (2.1a) and (2.1b). Therefore, we have
to solve the FRG flow equation (4.8) simultaneously with
the cutoff-dependent quantum kinetic equation, which can

be derived analogously to Sec. III from the cutoff-dependent
Dyson equation

G−1
� = G−1

0,� − ��. (4.35)

The cutoff-dependent kinetic equation for the Keldysh block
can be derived in the same way as in Sec. III, and we thus
obtain, for the equal-time Keldysh Green’s function,

i∂tG
K
�(k,t,t) − M�,kG

K
�(k,t,t) − GK

�(k,t,t)MT
�,k

=
∫ t

t0

dt1
[
Z
K

� (k,t,t1)GA
�(k,t1,t) − GR

�(k,t,t1)

×
K
� (k,t1,t)Z

] +
∫ t

t0

dt1
[
Z
R

�(k,t,t1)GK
�(k,t1,t)

−GK
�(k,t,t1)
A

�(k,t1,t)Z
]
, (4.36)

where M�,k is a cutoff-dependent deformation of the matrix
Mk defined in Eq. (2.42). The explicit form of M�,k depends
on the cutoff scheme. For the out-scattering cutoff scheme, it
follows from Eqs. (4.22) and (4.32) that M�,k = Mk − i�I .
For the hybridization cutoff scheme, Eqs. (4.28) and (4.32)
imply that M�,k = Mk, which is identical to Eq. (2.42). The
general form of the kinetic equation (4.36) is, of course,
similar to Eq. (3.23), except that now all Green’s functions and
self-energies depend on the cutoff parameter �. Together with
the FRG flow equation (4.8), this equation forms a system of
coupled first-order partial integro-differential equations with
two independent variables t and �, which have to be solved
simultaneously. Because the flow equation (4.8) depends on
the effective interaction that satisfies the flow equation (4.9),
the simplest truncation is to neglect the flow of the interaction.
However, the resulting system of kinetic and flow equations
given by Eqs. (4.36) and (4.8) is not closed because the
flow and the kinetic equation contains integrals involving the
two-time Keldysh Green’s function. To reduce the complexity
and to close the system of equations, the usual approximation
strategies of quantum kinetics can now be made. For example,
on the right-hand side of the quantum kinetic equation (4.36),
one could express the Keldysh Green’s function for nonequal
times in terms of the corresponding equal-time Keldysh
Green’s function using the generalized Kadanoff-Baym ansatz
(3.24). By further simplifying approximations such as the
Markov approximation, where the time arguments of all
Keldysh Green’s functions on the right-hand side of Eq. (4.36)
are replaced by the external time t , might also be useful.
For the solution to be unique, we have to further specify
the boundary conditions. For our system of kinetic and flow
equations, it is sufficient to define the distribution F�(t0) at
the initial time t0 for arbitrary cutoff � and the self-energy

�0 (t) at the initial cutoff scale �0 for arbitrary time t .
We shall illustrate this choice of boundary conditions and
the approximations mentioned above in the following section
within the framework of a simple exactly solvable toy model.

V. EXACTLY SOLVABLE TOY MODEL

Although the functional renormalization group approach
for bosons out of equilibrium developed in Sec. IV is rather
general, at this point, it is perhaps not so clear as to whether this
approach is useful in practice to calculate the nonequilibrium
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time evolution of interacting bosons. One obvious problem that
we have not addressed so far is that truncation strategies of the
formally exact hierarchy of FRG flow equations have to be
constructed that correctly describe the long-time asymptotics.

As a first step in this direction, we consider in this section
a simplified version of our boson Hamiltonian (1.1), which
is obtained by retaining only the operators associated with
the k = 0 mode. Setting ak=0 = a, εk=0 = ε, γk=0 = γ , and
U (0,0; 0,0)/V = u, our boson Hamiltonian (1.1) thus reduces
to the following bosonic “toy model” Hamiltonian:

H(t) = εa†a + 1

2
[γ e−iω0t a†a† + γ ∗eiω0t aa]

+ u

2
a†a†aa. (5.1)

In the rotating reference frame, Eq. (5.1) becomes

H̃ =
(

ε − ω0

2

)
a†a + |γ |

2
[a†a† + aa] + u

2
a†a†aa. (5.2)

For notational simplicity, we redefine again40 ε − ω0
2 → ε.

This simplified model describes a single anharmonic quantum
mechanical oscillator subject to a time-dependent external
field that creates and annihilates pairs of excitations. Although
this toy model does not describe relaxation and dissipation
processes, it does capture some aspects of the physics of
parametric resonance in dipolar ferromagnets.50

The nonequilibrium dynamics of the Hamiltonian (5.2)
can be easily determined numerically by directly solving
the time-dependent Schrödinger equation. By expanding the
time-dependent states |ψ(t)〉 of the Hilbert space associated
with Eq. (5.2) in the basis of eigenstates |n〉 of the particle
number operator a†a,

|ψ(t)〉 =
∞∑

n=0

ψn(t)|n〉, (5.3)

the time-dependent Schrödinger equation assumes the form

i∂tψn(t) =
[
εn+u

2
n(n−1)

]
ψn(t)+|γ |

2
[
√

n(n−1)ψn−2(t)

+
√

(n + 2)(n + 1)ψn+2(t)]. (5.4)

This system of equations is easily solved numerically. From
the solution, we may construct the normal and anomalous
distribution functions

n(t) = 〈ψ(t)|a†a|ψ(t)〉 =
∞∑

n=0

n|ψn(t)|2, (5.5)

p(t) = 〈ψ(t)|aa|ψ(t)〉

=
∞∑

n=0

√
(n + 2)(n + 1)ψ∗

n (t)ψn+2(t). (5.6)

We have prepared the coefficients at the initial time as

ψn(t0) = δn,1, (5.7)

so the normal and anomalous pair correlators have the initial
values n(0) = 1 and p(0) = 0. With this choice, all other corre-
lators vanish at the initial time. We have solved the Schrödinger
equation (5.4) numerically by both integrating it directly and

by calculating the matrix exponential exp[−iH̃(t − t0)] and
using

ψn(t) =
nmax−1∑
j=0

[e−iH̃(t−t0)]njψj (t0), (5.8)

where the Hamiltonian H has the matrix elements

[H]nm =
[
εn + u

2
n(n − 1)

]
δn,m + |γ |

2
[
√

n(n − 1)δn−2,m

+
√

(n + 2)(n + 1)δn+2,m]. (5.9)

We found identical results with both methods. A total number
of nmax = 20 basis coefficients was sufficient for convergence.

A. Time-dependent Hartree-Fock approximation

As a reference, let us briefly discuss the self-consistent
Hartree-Fock approximation for our toy model. In the context
of parametric resonance of magnons in yttrium-iron garnet,
this approximation is also referred to as “S-theory.”29,30 Within
this approximation, the self-energy matrix is time-diagonal:

[�]λλ′
σ t,σ ′t ′ = δ(t − t ′)
λλ′

σσ ′(t). (5.10)

With the help of the symmetrized interaction vertex defined in
Eq. (2.51), we may write


λλ′
σσ ′(t) = 1

2

∑
σ1σ2

∑
λ1λ2

U
λ1λ2λλ′
σ1σ2σσ ′

〈
�λ1

σ1
(t)�λ2

σ2
(t)
〉

= i

2

∑
σ1σ2

∑
λ1λ2

U
λ1λ2λλ′
σ1σ2σσ ′G

λ1λ2
σ1σ2

(t,t). (5.11)

Recall that, by definition, 
QC ≡ 
R and 
CQ ≡ 
A, so
we obtain for the time-diagonal elements of the retarded and
advanced self-energy


1(t) ≡ 
R(t) = 
A(t) = iu

(
1
2GK

āā(t,t) GK
aā(t,t)

GK
āa(t,t) 1

2GK
aa(t,t)

)

= u

(
p∗(t) 2n(t) + 1

2n(t) + 1 p(t)

)
. (5.12)

The Keldysh component of the self-energy vanishes in this
approximation


QQ(t) ≡ 
K (t) = 0. (5.13)

Actually, there is an additional time-independent interaction
correction −u to the normal component of the advanced and
retarded self-energy, which arises from the symmetrization
of the Hamiltonian, as discussed in Sec. II C. According to
Eq. (2.48), this contribution simply leads to a constant shift −u

in the energy in Eq. (2.42). By taking this shift into account, we
find that our kinetic equation (3.23) reduces to the following
2 × 2 matrix equation:

i∂tF (t) = −MT (t)F (t) − F (t)M(t), (5.14)

where

M(t) = M + Z
1(t) =
(

ε(t) γ (t)

−γ ∗(t) −ε(t)

)
, (5.15)
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with

M =
(

ε − u |γ |
−|γ | −(ε − u)

)
(5.16)

and

ε(t) = ε + 2un(t), (5.17a)

γ (t) = |γ | + up(t). (5.17b)

Recall that, according to Eq. (2.70), the 2 × 2 distribution
matrix is given by

F (t) = iZGK (t,t)Z =
(−2p∗(t) 2n(t) + 1

2n(t) + 1 −2p(t)

)
. (5.18)

At this level of approximation, the kinetic equation (5.14) has
the same structure as the corresponding equation (2.71) in
the absence of interactions. From Eqs. (5.18) and (5.14), we
obtain the following kinetic equations for the diagonal and
off-diagonal distribution functions50:

i∂tn(t) = −γ ∗(t)p(t) + γ (t)p∗(t), (5.19a)

i∂tp(t) = 2ε(t)p(t) + γ (t)[2n(t) + 1]. (5.19b)

In Figs. 1 and 2, we compare the numerical solution of
these equations with the exact result obtained from Eqs.
(5.4)–(5.6), and with the time evolution in the noninteracting
limit. Because our simple toy model does not account
for damping and dissipative effects, the time evolution is
purely oscillatory. However, the true oscillation period lies
between the noninteracting oscillation period T0 = π/μ =
π/

√
ε2 − |γ |2 and the smaller oscillation period predicted

by the self-consistent Hartree-Fock approximation. A similar
phenomenon is also observed for the oscillation amplitudes.
As expected, the deviation between the three curves increases
with increasing interaction strength. We thus conclude that
the Hartree-Fock approximation is only capable for moderate
interaction strength and short times, as illustrated in the middle
panel of Figs. 1 and 2. In this case, the Hartree-Fock result up
to times of the order T0/4 is reliable. However, in this regime,
the free time evolution is also fairly accurate.

B. Kinetic equation with self-energy up to second order

Let us consider again the quantum kinetic equation for the
Keldysh Green’s function GK (t,t ′), which, for our toy model,
can be obtained by simply omitting the momentum label
in Eqs. (3.11) and (3.12). By substituting on the right-hand
side of this equation the self-energies up to second order in
the interaction given in Eq. (5.11) (first-order self-energy)
and in Appendix C (second-order self-energy), we obtain
an equation of motion for the two-time Keldysh Green’s
function GK (t,t ′). Together with the corresponding retarded
and advanced components of the Dyson equation, this equation
forms a closed system of partial differential equations, which
can, in principle, be solved numerically. To simplify the
numerics, we will focus here only on the evolution equation
for the equal-time Keldysh Green’s function GK (t,t), which
can be obtained from the kinetic equation (3.23) by omitting
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FIG. 1. (Color online) Time evolution of the diagonal distribution
function for initial conditions n(0) = 1 and p(0) = 0. We have chosen
|γ |/ε = 0.1 and three different values of the interaction strength:
u/ε = 0.025 (top panel), u/ε = 0.1 (middle panel), and u/ε =
0.25 (bottom panel). The frequency μ = √

ε2 − |γ |2 determines
the oscillation period in the noninteracting limit. We compare the
result of the self-consistent Hartree-Fock approximation (solid line)
with the exact solution (dashed line) and the time evolution in the
noninteracting limit (dotted line).

the momentum labels,

i∂tG
K (t,t) − MGK (t,t) − GK (t,t)MT

=
∫ t

t0

dt1[Z
K (t,t1)GA(t1,t) − GR(t,t1)
K (t1,t)Z]

+
∫ t

t0

dt1[Z
R(t,t1)GK (t1,t) − GK (t,t1)
A(t1,t)Z].

(5.20)

Since the two-time function GK (t,t ′) appears again on the
right-hand side of this equation, let us make three additional
standard approximations to close the system of equations:

(i) Generalized Kadanoff-Baym ansatz. As discussed in
Sec. III B, with the help of the generalized Kadanoff-Baym
ansatz (3.24), we may derive a closed integral equation for
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FIG. 2. (Color online) Time evolution of the off-diagonal dis-
tribution function for increasing interaction strength (from top to
bottom panels). The parameters and initial conditions are the same as
in Fig. 1. We compare the result of the self-consistent Hartree-Fock
approximation (solid line) with the exact solution (dashed line) and
the time evolution in the noninteracting limit (dotted line).

the equal-time Keldysh Green’s function GK (t,t). For our toy
model, the generalized Kadanoff-Baym ansatz reads as

GK (t,t ′) ≈ −i[GR(t,t ′)ZGK (t ′,t ′) − GK (t,t)ZGA(t,t ′)].
(5.21)

This ansatz amounts to approximating the distribution matrix
in the collision integrals by its diagonal elements

[F̂ ]t t ′ ≡ F (t,t ′) ≈ δ(t − t ′)F (t) = δ(t − t ′)iZGK (t,t)Z.

(5.22)

(ii) Markov approximation. To reduce the integro-
differential equation for the equal-time Keldysh Green’s
function to an ordinary differential equation, we replace under
the integral∫ t

t0

dt1G
K (t1,t1) . . . → GK (t,t)

∫ t

t0

dt1 . . . . (5.23)

(iii) Free advanced and retarded propagators. Finally, we
neglect the self-energy corrections of the advanced and
retarded propagators in Eq. (5.20) and thus replace GR(t,t ′)
and GA(t,t ′) by the free propagators, which can be obtained
by omitting the momentum labels in Eqs. (2.55) and (2.60).

After these approximations, the collision integrals in Eq.
(5.20) can be calculated analytically and the nonequilibrium
distribution functions are easily obtained by numerically solv-
ing a system of two coupled ordinary differential equations.
For the numerical solution, the time grid was chosen equally
spaced with �t ε = 1.3 × 10−2 and the differential equations
were solved using a fourth-order Runge-Kutta algorithm.51

The result for the same parameters and initial conditions
as in Figs. 1 and 2 is shown in Figs. 3 and 4. Obviously, for
moderate interaction strength, the inclusion of second-order
corrections indeed improves the agreement with the exact
solution up to times of order T0 = π/μ = π/

√
ε2 − |γ |2.

However, for stronger interactions and for times exceeding
T0, the solution of the kinetic equation with second-order
corrections to the self-energy disagrees even more drastically
from the exact solution than the time-dependent Hartree-Fock
approximation shown in Figs. 1 and 2. In addition, we
found secular behavior and unphysical divergences of the pair
correlators for long times (not shown in Figs. 3 and 4). By
numerically solving the kinetic equation without making the
above approximations (see Appendix D), we have checked
that the strong disagreement of the time evolution beyond one
oscillation period T0 with the exact result is not an artifact
of the Kadanoff-Baym ansatz, the Markov approximation, or
the neglected renormalization of the retarded and advanced
propagators.

C. First-order truncation of the FRG hierarchy

We now show that a very simple truncation of the
nonequilibrium FRG flow equation for the self-energy (where
the flow of the effective interaction is neglected) leads to much
better results for the time evolution than the previous two
approximations. A similar truncation has also been made by
Gezzi et al.20 in their FRG study of stationary nonequilibrium
states of the Anderson impurity model. In the exact FRG
flow equation (4.8) for the self-energy, we replace the flowing
effective interaction by the bare interaction [recall that, for our
toy model, the collective labels αi represent (ti ,λi,σi)]

�
(4)
�,α1α2α3α4

≈ δ(t1 − t2)δ(t2 − t3)δ(t3 − t4)Uλ1λ2λ3λ4
σ1σ2σ3σ4

, (5.24)

where, up to permutation of the indices, the symmetrized bare
interaction is given by [see Eq. (2.51)]

U
CQCC
ā ā a a = U

CQQQ
ā ā a a = U

CCCQ
ā ā a a = U

QQCQ
ā ā a a = u. (5.25)

In this approximation, the two-point function is time diagonal,

�
(2)λλ′
�,σ t σ ′t ′ = δ(t − t ′)
λλ′

�,σσ ′(t), (5.26)

where the self-energies satisfy the FRG flow equation

∂�
λλ′
�,σσ ′(t) = i

2

∑
λ1σ1

∑
λ2σ2

U
λλ′λ1λ2
σσ ′σ1σ2

Ġ
λ1λ2
�,σ1σ2

(t,t). (5.27)

205118-15



THOMAS KLOSS AND PETER KOPIETZ PHYSICAL REVIEW B 83, 205118 (2011)

1.00

1.02

1.04

0 1 2 3 4

n(
t)

 / 
n(

0)

μt / π

u / ε = 0.025
2. order

exact

1.00

1.02

1.04

0 1 2 3 4

n(
t)

 / 
n(

0)

μt / π

u / ε = 0.1
2. order

exact

1.00

1.02

1.04

0 1 2 3 4

n(
t)

 / 
n(

0)

μt / π

u / ε = 0.25
2. order

exact

FIG. 3. (Color online) Time evolution of the diagonal distribution
function of the toy model. The parameters and initial conditions
are the same as in Fig. 1. The solid line is the solution of the
kinetic equation with second-order self-energies, simplified using the
generalized Kadanoff-Baym ansatz and the Markov approximation.
For comparison, we also show the exact solution (dashed line).

With the bare interaction given by Eq. (5.25), this leads to the
FRG flow equations for the retarded (λλ′ = QC) and advanced
(λλ′ = CQ) self-energies

∂�
R
�(t) = ∂�
A

�(t) ≡ ∂�
�(t)

= iu

(
1
2ĠK

�,āā(t,t) ĠK
�,aā(t,t)

ĠK
�,āa(t,t) 1

2ĠK
�,aa(t,t)

)
. (5.28)

For the Keldysh component of the self-energy corresponding
to λλ′ = QQ, we obtain

∂�
K
�,aā(t) = iu

[
ĠR

�,aā(t,t) + ĠA
�,aā(t,t)

]
, (5.29a)

∂�
K
�,aa(t) = i

u

2

[
ĠR

�,āā(t,t) + ĠA
�,āā(t,t)

]
. (5.29b)

From the definitions (4.20a) and (4.20b) of the retarded
and advanced components of the single-scale propagators, it
is easy to see that, at equal times, ĠR

�(t,t) = 0 = ĠA
�(t,t),

so within our truncation the right-hand sides of the flow
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FIG. 4. (Color online) Time evolution of the off-diagonal distri-
bution function for increasing interaction strength (from top to bottom
panels) of the toy model. The parameters and initial conditions are the
same as in Fig. 1. The solid line is the solution of the kinetic equation
with second-order self-energies, simplified using the generalized
Kadanoff-Baym ansatz and the Markov approximation. The dashed
line is again the exact solution.

equations (5.29a) and (5.29b) for the Keldysh self-energy
vanish. Because the initial Keldysh self-energy is zero,
it remains zero during the entire RG flow within our
truncation.

At this point, we specify our cutoff procedure. It turns out
that, from the two cutoff schemes discussed in Sec. IV B, the
out-scattering rate scheme described in Sec. IV B 2 is superior.
Recall that this scheme amounts to setting F̂∗,� = 0 in
Eq. (4.20c). For our toy model, the Keldysh component of
the single-scale propagator at equal times is then given by the
following 2 × 2 matrix equation:

ĠK
�(t,t)= i

∫ t

t0

dt1
[
GR

�(t,t1)ZGK
�(t1,t)− GK

�(t,t1)ZGA
�(t1,t)

]
.

(5.30)
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Note that this equation still contains memory effects. We
simplify Eq. (5.30) using the same approximations as in
the previous subsection: First of all, we use the generalized
Kadanoff-Baym ansatz (5.21) to express the Keldysh Green’s
functions on the right-hand side of Eq. (5.30) in terms of the
corresponding equal-time Green’s function. By introducing
the cutoff-dependent distribution function

F�(t) = iZGK
�(t,t)Z, (5.31)

we obtain

ĠK
�(t,t) ≈ 2i

∫ t

t0

dt1G
R
�(t,t1)F�(t1)GA

�(t1,t). (5.32)

Next, we replace F�(t1) → F�(t) under the integral sign
(Markov approximation). By substituting the advanced and
retarded propagators by their free counterparts [which can
be obtained from Eqs. (2.55) and (2.60) by omitting the
momentum labels], we finally arrive at the following simple

expression for the Keldysh component of the single-scale
propagator in the out-scattering rate cutoff scheme:

ĠK
�(t,t) ≈ 2i

∫ t

t0

dt1G
R
0,�(t,t1)F�(t)GA

0,�(t1,t). (5.33)

At this point, we have arrived at a system of two coupled
partial differential equations (PDE) for the cutoff-dependent
distribution matrix F�(t) and the self-energy matrix 
�(t).
The former contains the normal [n�(t)] and anomalous [p�(t)]
distributions as in Eq. (5.18):

F�(t) =
( −2p∗

�(t) 2n�(t) + 1

2n�(t) + 1 −2p�(t)

)
. (5.34)

The time evolution of this distribution matrix is determined
by a kinetic equation that is formally identical to the corre-
sponding kinetic equation (5.14) within the time-dependent
Hartree-Fock approximation

i∂tF�(t) = −MT
�(t)F�(t) − F�(t)M�(t). (5.35)

The cutoff-dependent matrix M�(t) is

M�(t) = M − i�I + Z
�(t) =
(

ε − u − i� + 
�,āa(t) |γ | + 
�,āā(t)

−|γ | − 
�,aa(t) −[ε − u + i� + 
�,aā(t)]

)
, (5.36)

and depends on the bare matrix M defined in Eq. (5.16), on the
cutoff parameter �, and on the cutoff-dependent self-energy

�(t). The flowing self-energy matrix satisfies

∂�
�(t) = iu

(
1
2ĠK

�,āā(t,t) ĠK
�,aā(t,t)

ĠK
�,āa(t,t) 1

2ĠK
�,aa(t,t)

)
, (5.37)

where the matrix ĠK
�(t,t) is given by Eq. (5.33).

Mathematically, the problem is now reduced to the solution
of a system of first-order partial differential equations in two
independent variables t and �. To illustrate the structure more
clearly, we rewrite the system (5.35) and (5.37) as

∂tF�(t) = A[F�(t),
�(t),�], (5.38a)

∂�
�(t) = B[F�(t),�,t], (5.38b)

where the explicit form of the matrix functions A and B follows
from the right-hand sides of Eqs. (5.35) and (5.37). Note that
the system is not fully symmetric in the variables � and t

because the flow equation contains causal memory integrals
over the time t . Without Markov approximation, the right-hand
side of the flow equation (and in higher-order truncations
also the kinetic equation) is a functional of the distribution
matrix F�(t) and depends on the distribution matrix at earlier
times. By using the Markov approximation, the distribution
matrix can be pulled out of the integral and the functional B

reduces to an ordinary function of the distribution F�(t). To
define the solution of Eqs. (5.38a) and (5.38b) uniquely, we
note that the boundary conditions fix the distribution matrix
F�(t0) at the initial time t0 and arbitrary cutoff �, and the
self-energy matrix 
�0 (t) at the initial cutoff �0 and arbitrary
time t . In fact, within our truncation, the boundary condition
for the distribution matrix is F�(t0) = F (t0). Since for a large

cutoff all one-particle irreducible vertices (with the exception
of �(4)) vanish due to Eq. (4.27), the boundary condition for
the self-energy matrix at sufficiently large initial cutoff �0 is

�0 (t) = 0. The standard method of dealing with this kind of
first-order PDEs is the method of characteristics.52 However,
in our case, the characteristic curves coincide with the curves
where the boundary conditions are specified, so the standard
procedure is not applicable. Nevertheless, it is easy to see
that the solution with the proper boundary conditions can be
obtained by means of the following algorithm: We first note
that the kinetic equation (5.38a) describes the propagation
of F�(t) in t , and that the flow equation (5.38b) gives the
propagation of 
�(t) in � direction, as illustrated in Fig. 5.
Solving the kinetic equation (5.38a) for an infinitesimally
small time step dt , the resulting distribution function at
t + dt can be used to integrate the flow equation (5.38b) at
fixed t + dt over �. Repeating these two steps allows us to
obtain the solution of F�(t) and 
�(t) in the entire (t,�)
plane.

In the following, we explain our approach to numeri-
cally solve the coupled set of first-order partial differential
equations. We focus on the out-scattering cutoff scheme, but
generalizations to other cases are straightforward. We consider
a discretization of the two variables t and � in the form

t → tm ∈ {t0, . . . ,tM−1}, (5.39a)

� → �n ∈ {�0, . . . ,�N−1}, (5.39b)

with m ∈ {0, . . . ,M − 1} and n ∈ {0, . . . ,N − 1}. The dis-
cretized grid points are ordered as tn < tn+1 and �n > �n+1.
Both grids do not need to be equally spaced. Moreover, the
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FIG. 5. (Color online) Illustration of our approach to solve the
systems (5.38a) and (5.38b) of partial differential equations. The
kinetic equation (5.38a) describes the propagation of F�(t) in t , where
the flow equation (5.38b) describes the propagation of 
�(t) in the
� direction. The boundary conditions define the distribution function
F�(t0) at the initial time t0 (dashed line) and the self-energy 
�0 (t)
at the initial �0 (dotted line).

number of points M and N can be chosen arbitrarily. The
discretized functions are written as

F�n
(tm) = Fnm, 
�n

(tm) = 
nm, (5.40)

and

ĠK
�n

(tm,tm) = ĠK
nm. (5.41)

The derivatives are approximated by first-order finite-
difference expressions

∂tF�n
(tm) ≈ Fnm+1 − Fnm

tm+1 − tm
, (5.42a)

∂�
�n
(tm) ≈ 
n+1 m − 
nm

�n+1 − �n

. (5.42b)

The discretized version of the kinetic equation (5.14) then
follows as

Fnm+1 = Fnm + i(tm+1 − tm)
(
MT

nmFnm + FnmMn m

)
,

(5.43)

with the time-dependent coefficient matrix

Mnm = M − i�nI + Z
nm. (5.44)

In the same way the discretized flow equation (5.37) for the
self-energy is


n+1 m = 
nm + iu(�n+1 − �n)

(
1
2ĠK

n m,āā ĠK
nm,aā

ĠK
n m,āa

1
2ĠK

n m,aa

)
.

(5.45)

According to Eq. (5.33), the single-scale propagator ĠK
n m on

the right-hand side is defined as

ĠK
n m = 2i

∫ tm

t0

dt ′GR
0,�n

(tm,t ′)FnmGA
0,�n

(t ′,tm). (5.46)

From the structure of the discretized equations, it is obvious
that causality is preserved since each time step can be
calculated from the previous ones and does not depend on
quantities at later times. Starting from the initial values, which
specify the distribution matrix Fn 0 with n ∈ {0, . . . ,N − 1}
and the self-energy matrix 
0 m with m ∈ {0, . . . ,M − 1} on

the boundaries, one can obtain the entire solution by stepwise
propagating in the t and in � directions in terms of basic Euler
steps. One Euler step from tm to tm+1 contains two parts: First,
with the solution Fnm, where n ∈ {0, . . . ,N − 1} from the
previous step and the initial self-energy 
0 m on the boundary,
the flow equation (5.45) at fixed time tm can be integrated
in N substeps from �0 to �N−1 to obtain 
nm on all points
n ∈ {0, . . . ,N − 1}. Next, by using the kinetic equation (5.43),
Fnm+1 can be derived from Fnm and 
nm. This completes one
basic Euler step since the distribution function Fnm+1 is now
known at time tm+1. Repeating this procedure M times yields
the full solution up to time tM−1. Numerically, the first-order
finite-difference derivatives are not accurate enough unless
the grid spacing becomes very small, which is not feasible in
practice. Therefore, a fourth-order Runge-Kutta method for
the propagation in t and the second-order Heun method for
the propagation in the � direction51 is used. One Runge-Kutta
step from Fnm to Fnm+1 consists of four Euler steps of the form
described above. The integral (5.46) was solved analytically
using the free retarded and advanced Green’s functions [given
by (2.55) and (2.60) without k dependence]. The time grid was
chosen similar to the Hartree-Fock and the second-order case
described in Sec. V B. The � grid ranges between �0/ε = 8.1
and �299/ε = 2.1 × 10−7 and was adjusted in such a way that,
for �/ε < 1, the resolution of the grid spacing was increased
to take into account the higher curvature of the self-energy in
this region.

The result for the FRG approach with the out-scattering
cutoff scheme for the same parameters and initial conditions
as in perturbation theory (compare Figs. 1, 2, 3, and 4)
is shown in Figs. 6 and 7. For the oscillation period of
the pair correlators, the FRG treatment clearly improves
the results compared to perturbative approaches. Up to time
T0 = π/μ = π/

√
ε2 − |γ |2, the period of the oscillation is

nearly identical with the exact result. Even after longer times
of the order 4T0 (middle panel), the deviation from the exact
solution is small. The oscillation is regular and we found no
secular behavior, even at long times. However, the amplitude
of the pair correlators is underestimated and is comparable to
the perturbative mean-field result shown in Figs. 1 and 2. In
contrast with the hybridization cutoff scheme, we were not
able to obtain any reasonable results for the pair-correlator
dynamics. This suggests that, in practice, the out-scattering
cutoff scheme works better than the hybridization cutoff
scheme.

VI. SUMMARY AND CONCLUSIONS

We have developed a real-time functional renormalization
group (FRG) approach to calculate the time evolution of
interacting bosons out of equilibrium. To be specific, we
have developed our formalism in the context of the interact-
ing time-dependent boson Hamiltonian (1.1) describing the
nonequilibrium dynamics of magnons in dipolar magnets such
as yttrium-iron garnet31 subject to an oscillating microwave
field.29,30 To take into account the off-diagonal correlations
inherent in this model, we have introduced an efficient matrix
notation that facilitates the derivation of quantum kinetic
equations for both the normal and anomalous components
of the Green’s functions in the Keldysh formalism. We have
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FIG. 6. (Color online) The solid lines are our FRG results for
the diagonal distribution function for increasing interaction strength
(from top to bottom panels). The parameters and initial conditions
are the same as in Figs. 1 and 3. For comparison, we also show the
exact solution (dashed line).

also extended the generalized Kadanoff-Baym ansatz44 to
include both diagonal and off-diagonal correlations on the
same footing.

In our FRG approach, the time evolution of the diagonal
and off-diagonal distribution functions is obtained by solving
a quantum kinetic equation with cutoff-dependent collision
integrals simultaneously with a renormalization group flow
equation for cutoff-dependent nonequilibrium self-energies
appearing in the collision integrals. To implement this pro-
cedure, we proposed a cutoff scheme where the infinitesimal
imaginary part defining the boundary conditions of the inverse
advanced and retarded propagators is replaced by a finite
scale acting as a running cutoff. We have called this cutoff
procedure the out-scattering rate cutoff scheme because the
cutoff-dependent imaginary parts in the retarded and advanced
propagators lead to an exponential decay of the occupation
numbers. In principle, one can also replace the infinitesimal
imaginary part appearing in the Keldysh component of the
inverse free propagator by a cutoff-dependent finite quantity,
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FIG. 7. (Color online) The solid lines are our FRG results
for the off-diagonal distribution function for increasing interaction
strength (from top to bottom panels). The parameters and initial
conditions are the same as before. The dashed line is again the exact
solution.

which leads to the hybridization cutoff scheme proposed by
Jakobs et al.27 For the toy model, we presented evidence that
it is better to work with the out-scattering cutoff scheme,
keeping the Keldysh component of the inverse free propagator
infinitesimal.

We have explicitly tested our FRG approach for a simplified
toy model, which is obtained from the Hamiltonian (1.1)
by retaining only a single momentum mode. Although this
simplified model does not contain damping and dissipative
effects, it does describe some aspects of the magnon dynamics
in yttrium-iron garnet.50 Since the nonequilibrium time evo-
lution of our toy model can be obtained exactly by direct
numerical integration of the time-dependent Schrödinger
equation, our toy model allows us to test the quality of various
approximations. Specifically, we have studied the following
approximations:

(i) Self-consistent Hartree-Fock approximation, which is
also called S-theory, in the context of nonequilibrium dynamics
of magnons.29,30
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FIG. 8. (Color online) Time evolution of the diagonal distribution
function for the second-order self-energy without Markov approxi-
mation. We compare the result with GKBA (top panel) and the full
two-time result without GKBA (bottom panel). For the retarded and
advanced propagators, we used the renormalized (solid line) or the
free propagators (dashed line). The parameters and initial conditions
are the same as in the middle panel in Fig. 1. The dashed line is again
the exact solution.

(ii) A perturbative approach based on the calculation of the
nonequilibrium self-energies to second order in the interaction,
in combination with the generalized Kadanoff-Baym ansatz
and the Markov approximation.

(iii) A FRG approach based on the simultaneous solution
of a coupled system of kinetic equations and renormalization
group flow equations for the scale-dependent self-energies,
using a simple truncation of the FRG flow equations for the
nonequilibrium self-energies where the flow of the interaction
is neglected.

For each approach, we have calculated the time dependence
of the normal and anomalous distribution function for some
representative values of the interaction and compared the
result with the exact solution. It turns out that the first
two approaches do not give reliable predictions for the time
evolution beyond one oscillation period. Although inclusion
of second-order self-energy corrections somewhat improves
the agreement for short times, the time dependence beyond
a single oscillation period disagrees even more strongly with
the exact solution than the prediction of the self-consistent
Hartree-Fock approximation. In fact, in Appendix D, we
show that the numerical solution of the two-time quantum
kinetic equations with second-order self-energies does not
lead to a better agreement with the exact solution of the
toy model than calculations that, in addition, rely on the
Kadanoff-Baym ansatz and the Markov approximation. The
perturbative approaches are therefore not able to reproduce

the real-time dynamics of our toy model and do not allow for
systematic improvements. The failure of perturbation theory
to predict the long-time behavior of correlation functions is
not unexpected.11 In contrast, our simple truncation of the
FRG flow equations in combination with the out-scattering
cutoff scheme leads to quite good agreement with the exact
solution over many oscillation periods. Note, however, that
our FRG approach is numerically more costly than the other
two methods because one has to solve a coupled system of
partial differential equations in two independent variables, the
time t , and the cutoff parameter �. Moreover, due to our
simple truncation of the FRG flow equations, the oscillation
amplitudes are still underestimated. Nevertheless, from all
approximation strategies we have tested, our first-order FRG
approach with out-scattering cutoff scheme clearly gives the
most satisfactory results for the time evolution of our toy
model. One should keep in mind, however, that the toy model
does not have any intrinsic dissipation and therefore does
not relax toward a stationary state at long times. In fact, we
expect that, for models with intrinsic dissipation, other cutoff
schemes (such as the hybridization cutoff22,27 discussed in
Sec. IV B) are superior because the hybridization cutoff retains
the balance between in-scattering and out-scattering terms in
the collision integral, which is crucial to describe the relaxation
toward a stationary state. The hybridization cutoff scheme also
preserves the fluctuation-dissipation theorem during the entire
flow,22 which is advantageously close to thermal equilibrium.

Our work can be extended in several directions: First, it
should be interesting to use our FRG approach to calculate
the time evolution of infinite or open quantum systems
that exhibit relaxation and dissipative processes. We expect
that, for such systems, standard approximations such as the
Kadanoff-Baym ansatz or the Markov approximation may
have different regimes of validity than for our toy model. Recall
that, for weakly correlated systems such as semiconductors,
the Kadanoff-Baym ansatz has been shown to be quite useful
and accurate.6 It should also be interesting to extend our study
of the toy model to the regime of strong pumping, where the
original vacuum state is unstable.50 Moreover, it would be even
more interesting to apply our nonperturbative FRG method
to study the nonequilibrium dynamics of the time-dependent
boson Hamiltonian (1.1) in the regime of strong pumping.
It is well known29,30 that, for sufficiently large values of the
pumping parameter γk, the system exhibits the phenomenon
of parametric resonance. The magnon operators acquire finite
expectation values and the system approaches a nontrivial
time-independent nonequilibrium state, which is dominated
by interactions.29,50,53 Although this state has been studied at
the level of time-dependent Hartree-Fock approximation29,30

(S-theory), it would be interesting to describe the time evo-
lution into stationary nonequilibrium states nonperturbatively,
and check if the states exhibit nonthermal scaling properties
as predicted in Ref. 10.
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APPENDIX A: TRANSFORMATION TO THE ROTATING
REFERENCE FRAME

To simplify the calculations, it is useful to remove the
explicit time dependence from the Hamiltonian H(t) in
Eq. (1.1). This can be achieved by means of a unitary
transformation to the rotating reference frame, as discussed
in Sec. I. In the rotating reference frame, the Hamiltonian does
not explicitly depend on time [see Eqs. (1.6)]. To distinguish
quantities in the original and the corresponding rotating frame,
we put (in this Appendix) an extra tilde over Green’s functions
in the rotating frame. Introducing the unitary 2 × 2 matrix

Uk(t) =
(

e− i
2 (ω0t−ϕk) 0

0 e
i
2 (ω0t−ϕk)

)
, (A1)

the relations between the elements of the matrix Green’s
functions ĜR , ĜA, ĜK defined in Eqs. (2.8a)–(2.8c) and the
corresponding quantities in the rotating reference frame (with
the tilde) is

GX(k,t,t ′) = Uk(t)G̃X(k,t,t ′)Uk(t ′), (A2)

where X = R,A,K , and we have defined the 2 × 2 matrices
in flavor space

GX(k,t,t ′) = [ĜX]kt,−kt ′ . (A3)

Introducing the diagonal matrix

Û = U (t) ⊗ 1̂, (A4)

with matrix elements [Û ]kt,k′t ′ = δk,k′δ(t − t ′)Uk(t), we can
rewrite Eq. (A2) in the more compact form

ĜX = Û ˆ̃G
X

Û. (A5)

The distribution function matrix F̂ defined via Eq. (2.15) is
related to its counterpart ˆ̃F in the rotating reference frame via

F̂ = Û † ˆ̃FÛ †. (A6)

By taking matrix elements in the time labels and using the
fact that, in the noninteracting limit, the distribution function
matrix is time diagonal [see Eqs. (2.68)], the relation (A6)
implies the 2 × 2 matrix equation

F0(k,t) = U
†
k(t)F̃0(k,t)U †

k(t), (A7)

where we have used the fact that

U
†
k(t) = ZT Uk(t)Z = ZUk(t)ZT . (A8)

APPENDIX B: GENERALIZED KADANOFF-BAYM ANSATZ

The generalized Kadanoff-Baym ansatz (GKBA) is an
approximate relation between matrix elements of the Keldysh
Green’s function at different times and its equal-time counter-
parts. To derive the matrix form of the GKBA given in (3.24)
formally, and to identify the terms that are neglected if one
uses this ansatz, we follow the derivation by Lipavský et al.44

Without any loss of generality, we will neglect the momentum
labels for a moment and concentrate on the time dependence

only. In addition, we use the shorthand notation Gtt ′ ≡ [Ĝ]t t ′
for the matrix elements in the time labels. We introduce

GKR
tt ′ = GKR(t,t ′) = �(t − t ′)GK (t,t ′), (B1a)

GKA
tt ′ = GKA(t,t ′) = �(t ′ − t)GK (t,t ′), (B1b)

so, by definition,

GK
tt ′ = GKR

tt ′ + GKA
tt ′ . (B2)

Note that the above functions are 2 × 2 matrices in flavor
space. By acting with (ĜR)−1 from the left on Eq. (B1a) and
using the left Dyson equation (3.2a) for the retarded Green’s
function, we obtain

[(ĜR)−1ĜKR]t t ′ = −iδ(t − t ′)ZGK
tt ′ + �(t − t ′)

×
([(

ĜR
0

)−1
ĜK

]
t t ′ −

∫ t

t ′
dt1


R
tt1

GK
t1t ′

)
.

(B3)

A similar relation can be derived for the advanced component
of the Keldysh Green’s function:

[ĜKA(ĜA)−1]t t ′ = iδ(t − t ′)GK
tt ′Z + �(t ′ − t)

×
([

ĜK
(
ĜA

0

)−1]
t t ′ −

∫ t ′

t

dt1G
K
tt1


A
t1t ′

)
.

(B4)

By using the Keldysh components of the left and right Dyson
equations given in Eqs. (3.2c) and (3.4c), the action of the free
inverse propagators on ĜK can be written as

[(
ĜR

0

)−1
ĜK

]
t t ′ =

∫ t

−∞
dt1


R
tt1

GK
t1t ′ +

∫ t ′

−∞
dt1


K
tt1

GA
t1t ′ , (B5)

[
ĜK

(
ĜA

0

)−1]
t t ′ =

∫ t ′

−∞
dt1G

K
tt1


A
t1t ′ +

∫ t

−∞
dt1G

R
tt1


K
t1t ′ . (B6)

By substituting these expressions into Eqs. (B3) and (B4) and
solving for ĜKR and ĜKA, we obtain

[ĜKR]t t ′ = −iGR
tt ′ZGK

t ′t ′ + �(t − t ′)
∫ t

t ′
dt1

×
∫ t ′

−∞
dt2 GR

tt1

[

R

t1t2
GK

t2t ′ + 
K
t1t2

GA
t2t ′
]
, (B7)

[ĜKA]t t ′ = iGK
tt ZGA

tt ′ + �(t ′ − t)
∫ t ′

t

dt1

×
∫ t

−∞
dt2

[
GK

tt2

A

t2t1
+ GR

tt2

K

t2t1

]
GA

t1t ′ . (B8)

Adding Eqs. (B7) and (B8), we obtain the following exact
integral equation for the Keldysh component of the Green’s
function:

[ĜK ]t t ′ = −i
[
GR

tt ′ZGK
t ′t ′ − GK

tt ZGA
tt ′
] + �(t − t ′)

∫ t

t ′
dt1

×
∫ t ′

−∞
dt2 GR

tt1

[

R

t1t2
GK

t2t ′ + 
K
t1t2

GA
t2t ′
] + �(t ′ − t)

×
∫ t ′

t

dt1

∫ t

−∞
dt2

[
GK

tt2

A

t2t1
+ GR

tt2

K

t2t1

]
GA

t1t ′ . (B9)
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To rewrite this equation in a more compact form, we introduce
the functions

WR
tt ′ = �(t − t ′)

∫ ∞

−∞
dt2

(

R

tt2
GKA

t2t ′ + 
K
tt2

GA
t2t ′
)
, (B10a)

WA
tt ′ = �(t ′ − t)

∫ ∞

−∞
dt2

(
GKR

tt2

A

t2t ′ + GR
tt2


K
t2t ′
)
. (B10b)

Then we may write

[ĜKR]t t ′ = −iGR
tt ′ZGK

t ′t ′ + �(t − t ′)
∫ ∞

−∞
dt1G

R
tt1

WR
t1t ′

= −iGR
tt ′ZGK

t ′t ′ +
∫ ∞

−∞
dt1G

R
tt1

WR
t1t ′

= −
∫ ∞

−∞
dt1G

R
tt1

ZFR
t1t ′ = −[ĜRẐF̂ R]t t ′ , (B11)

[ĜKA]t t ′ = iGK
tt ZGA

tt ′ + �(t ′ − t)
∫ ∞

−∞
dt1W

A
tt1

GA
t1t ′

= iGK
tt ZGA

tt ′ +
∫ ∞

−∞
dt1W

A
tt1

GA
t1t ′

=
∫ ∞

−∞
dt1F

A
tt1

ZGA
t1t ′ = [F̂ AẐĜA]t t ′ , (B12)

and hence

ĜK = −ĜRẐF̂ R + F̂ AẐĜA. (B13)

Here, the retarded and advanced component of the distribution
function matrix is defined by

F̂ R = F̂ D + ẐŴR, (B14a)
F̂ A = F̂ D − ŴAẐ, (B14b)

with the time-diagonal part given by

[F̂ D]t t ′ = iδ(t − t ′)GK (t,t). (B15)

One easily verifies that the blocks have the following symme-
tries:

(ĜKR)T = ĜKA, (B16a)
(ŴR)T = ŴA, (B16b)
(F̂ R)T = F̂ A, (B16c)
(F̂ D)T = F̂ D. (B16d)

The above relations are all exact. Comparing Eq. (2.15) with
(B13), we conclude that the parametrization in Eq. (2.15) is
indeed correct, and that

F̂ = ẐF̂ RẐ. (B17)

The GKBA amounts to retaining only the diagonal part F̂ D

of the distribution function. Then, the matrix elements of the
general relation (B13) reduce to

GK (t,t ′) = −i[GR(t,t ′)ZGK (t ′,t ′) − GK (t,t)ZGA(t,t ′)].
(B18)

This is identical to the GKBA ansatz (5.21), which was used
to study the toy model. By repeating the above calculation in
the same fashion, including the full momentum dependence,
leads to the relation (3.24).

APPENDIX C: SECOND-ORDER SELF-ENERGY OF THE TOY MODEL

In this Appendix, we explicitly give the matrix elements of the nonequilibrium self-energies 
2(t,t ′) of our toy model introduced
in Sec. V to second order in the interaction. By ignoring Hartree-type diagrams, which are implicitly taken into account by
imposing self-consistency in the first-order calculation, the nonequilibrium self-energy to second order in the interaction is in the
contour basis (p,p′ ∈ {+,−}) given by

[
̂2]pp′
t t ′ =

(



pp′
2,aa(t,t ′) 


pp′
2,aā(t,t ′)



pp′
2,āa(t,t ′) 


pp′
2,āā(t,t ′)

)
= −2u2pp′

(
G

pp′
aa

(
G

pp′
āā

)2 + 2G
pp′
āā G

pp′
aā G

pp′
āa G

pp′
aā

(
G

pp′
āa

)2 + 2G
pp′
āa G

pp′
aa G

pp′
āā

G
pp′
āa

(
G

pp′
aā

)2 + 2G
pp′
aā G

pp′
āā G

pp′
aa G

pp′
āā

(
G

pp′
aa

)2 + 2G
pp′
aa G

pp′
āa G

pp′
aā

)
, (C1)

where the time labels of all Green’s functions are (t,t ′). Using the relations (2.34a)–(2.34c), we obtain, for the normal part of the
matrix elements of the self-energy in the Keldysh (RAK) basis,


R
2,aā(t,t ′) = −u2

2

{
GR

aā[(GR
āa)2 + (GK

āa)2] + 2GK
aāG

R
āaG

K
āa + 2GR

āa[GR
aaG

R
āā + GK

aaG
K
āā] + 2GK

āa[GR
aaG

K
āā + GK

aaG
R
āā]

}
, (C2a)


A
2,aā(t,t ′) = {

replace R → A in the above expression for 
R
2,aā(t,t ′)

}
, (C2b)


K
2,aā(t,t ′) = −u2

2

{
GK

aā

[(
GR

āa

)2 + (
GA

āa

)2 + (
GK

āa

)2] + 2
[
GR

aāG
R
āa + GA

aāG
A
āa

]
GK

āa + 2GK
āa

[
GR

aaG
R
āā + GA

aaG
A
āā + GK

aaG
K
āā

]
+ 2GR

āa

[
GK

aaG
R
āā + GR

aaG
K
āā

] + 2GA
āa

[
GK

aaG
A
āā + GA

aaG
K
āā

]} = u2

2

{
GK

aā

[
(GI

āa)2 − (GK
āa)2

]
+ 2GI

aāG
I
āaG

K
āa + 2GK

āa

[
GI

aaG
I
āā − GK

aaG
K
āā

] + 2GI
āa

[
GK

aaG
I
āā + GI

aaG
K
āā

]}
, (C2c)

where GI
σσ ′(t,t ′) is the matrix element of the matrix ĜI defined in Eq. (3.16), i.e.,

GI
σσ ′(t,t ′) = i

[
GR

σσ ′(t,t ′) − GA
σσ ′(t,t ′)

]
, (C3)
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and we have used the fact that GR(t,t ′)GA(t,t ′) = 0. The corresponding self-energies 
R
2,āa(t,t ′), 
A

2,āa(t,t ′), and 
K
2,āa(t,t ′) can

be obtained by simply exchanging a ↔ ā in the above expressions. The anomalous components of the self-energy are


R
2,aa(t,t ′) = −u2

2

{
GR

aa

[(
GR

āā

)2 + (
GK

āā

)2] + 2GK
aaG

R
āāG

K
āā + 2GR

āā

[
GR

aāG
R
āa + GK

aāG
K
āa

] + 2GK
āā

[
GR

aāG
K
āa + GK

aāG
R
āa

]}
, (C4a)


A
2,aa(t,t ′) = {

replace R → A in the above expression for 
R
2,aa(t,t ′)

}
, (C4b)


K
2,aa(t,t ′) = −u2

2

{
GK

aa

[(
GR

āā

)2 + (
GA

āā

)2 + (
GK

āā

)2] + 2
[
GR

aaG
R
āā + GA

aaG
A
āā

]
GK

āā + 2GK
āā

[
GR

aāG
R
āa + GA

aāG
A
āa + GK

aāG
K
āa

]
+ 2GR

āā

[
GK

aāG
R
āa + GR

aāG
K
āa

] + 2GA
āā

[
GK

aāG
A
āa + GA

aāG
K
āa

]} = u2

2

{
GK

aa

[(
GI

āā

)2 − (
GK

āā

)2
]

+ 2GI
aaG

I
āāG

K
āā + 2GK

āā

[
GI

aāG
I
āa − GK

aāG
K
āa

] + 2GI
āā

[
GK

aāG
I
āa + GI

aāG
K
āa

]}
. (C4c)

Finally, the conjugate anomalous self-energies 
R
2,āā(t,t ′), 
A

2,āā(t,t ′), and 
K
2,āā(t,t ′) can be obtained by exchanging a ↔ ā on

both sides of Eqs. (C4a)–(C4c). In order to calculate the “out-scattering term” (3.20b) in the kinetic equation, we need only the
difference between retarded and advanced self-energies, which, to second order in the interaction, can be written as


I
2,aā(t,t ′) ≡ i

[

R

2,aā(t,t ′) − 
A
2,aā(t,t ′)

]
= u2

2

{
GI

aā

[(
GI

āa

)2 − (
GK

āa

)2] − 2GK
aāG

I
āaG

K
āa + 2GI

āa

[
GI

aaG
I
āā − GK

aaG
K
āā

] − 2GK
āa

[
GI

aaG
K
āā + GK

aaG
I
āā

]}
,(C5)


I
2,aa(t,t ′) ≡ i

[

R

2,aa(t,t ′) − 
A
2,aa(t,t ′)

]
= u2

2

{
GI

aa

[(
GI

āā

)2 − (
GK

āā

)2] − 2GK
aaG

I
āāG

K
āā + 2GI

āā

[
GI

aāG
I
āa − GK

aāG
K
āa

] − 2GK
āā

[
GI

aāG
K
āa + GK

aāG
I
āa

]}
.(C6)

The functions 
I
2,āa(t,t ′) and 
I

2,āā(t,t ′) can again be obtained by exchanging a ↔ ā in the above expressions.

APPENDIX D: SOLUTION OF THE TWO-TIME KINETIC
EQUATIONS FOR THE TOY MODEL

In this Appendix, we examine the validity of the three
approximations made in Sec. V B to obtain a closed system
of equations for the equal-time Keldysh Green’s function
of our toy model: the Kadanoff-Baym ansatz, the Markov
approximation, and the neglected renormalization of the
retarded and advanced propagators. For simplicity, we focus
on the kinetic equations for our toy model with the perturbative
second-order self-energy. We compare different combinations
of these approximations and their influence on the results.
For our toy model, we can obtain the quantum dynamics
without relying on any of these approximations by solving
the two-time quantum dynamic partial differential equations
numerically. Technically, this is almost as simple as solving a
system of ordinary differential equations in the equal-time
formalism, except that now we have to propagate in two
different time directions t and t ′. The collision integrals were
calculated numerically using the trapezoidal rule. To shorten
the presentation, we will concentrate on the dynamics of the
normal pair correlator with the interaction strength u/ε = 0.1
corresponding to the middle panel in Fig. 3. The pumping
strength |γ | and the initial conditions are the same as before.

To begin with, we have solved the kinetic equation (5.20)
for GK using the GKBA, but without Markov approximation.
The results are shown in the upper panel of Fig. 8, where we
compare two different variants, depending how the retarded
and advanced Green’s functions entering the collision integral

in Eq. (5.20) are handled. In the first case, we solved the
kinetic equation (5.20) for GK together with the equations for
the renormalized retarded and the advanced Green’s functions,
which can be obtained from Eq. (3.10) by simply omitting
the momentum labels. The set of kinetic equations was
solved self-consistently using only the GKBA in the collision
integrals. This combination turned out to be quite unstable
and the solutions of the equations diverge slightly above the
time μt/π = 2. We have checked that the divergence is not
an artifact of our grid discretization. In the second case, we
used the free retarded and advanced Green’s functions in the
collision integral of the kinetic equation (5.20). The solution
is again stable but shows an irregular dynamics in comparison
with the exact solution. Compared to the analogous results
relying, in addition, on the Markov approximation shown in
Fig. 3, we did not find any improvement.

Next, we additionally avoided the GKBA. In the lower
panel of Fig. 8, we compare the two different variants using
the full renormalized or the free retarded and advanced
propagators in the collision integral. In the first case with
the full renormalized quantities, the set of kinetic equa-
tions [(III A), (3.11), and (3.12)] without momentum labels
was solved simultaneously. The dynamics is stable, but the
oscillation amplitude disappears nearly completely. In the
variant with the free advanced and retarded Green’s functions,
the dynamics changes completely and the solution shows
large oscillations of the pair-correlator amplitude. Again,
we do not observe any improvements toward the correct
solution.
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In summary, despite the known limitations of the GKBA
and the Markov approximations, we have not found any im-
provements in the full two-time approach. Note that a similar
comparison of the GKBA with full and free propagators,
respectively, was performed for semiconductors in Ref. 43,

with the conclusion that the full GKBA performs rather well.
At this point, it is not clear to us if the different behavior in this
paper is due to a breakdown of standard perturbation theory or
simply a special feature of the toy model, which contains no
intrinsic dissipation.
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and N. Wschebor, Phys. Rev. Lett. 104, 150601 (2010).

20R. Gezzi, T. Pruschke, and V. Meden, Phys. Rev. B 75, 045324
(2007).

21S. G. Jakobs, V. Meden, and H. Schoeller, Phys. Rev. Lett. 99,
150603 (2007).

22S. G. Jakobs, M. Pletyukhov, and H. Schoeller, Phys. Rev. B 81,
195109 (2010).

23C. Karrasch, M. Pletyukhov, L. Borda, and V. Meden, Phys. Rev.
B 81, 125122 (2010).

24S. G. Jakobs, Ph.D. thesis, RWTH Aachen, Germany, 2009; C.
Karrasch, Ph.D. thesis, RWTH Aachen, Germany, 2010.

25H. Schoeller, Eur. Phys. J. Special Topics 168, 179 (2009);
M. Pletyukhov, D. Schuricht, and H. Schoeller, Phys. Rev. Lett.
104, 106801 (2010); C. Karrasch, S. Andergassen, M. Pletyukhov,
D. Schuricht, L. Borda, V. Meden, and H. Schoeller, Europhys. Lett.
90, 30003 (2010).

26T. Gasenzer and J. M. Pawlowski, Phys. Lett. B 670, 135 (2008);
T. Gasenzer, S. Keßler, and J. M. Pawlowski, Eur. Phys. J. C 70,
423 (2010).

27S. G. Jakobs, M. Pletyukhov, and H. Schoeller, J. Phys. A: Math.
Theor. 43, 103001 (2010).

28P. Kopietz, L. Bartosch, and F. Schütz, Introduction to the
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