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Hund’s coupling and its key role in tuning multiorbital correlations
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It is shown how, in multiband materials, the Hund’s coupling plays a crucial role in tuning the degree of
electronic correlation. While in half-filled systems it enhances the correlations, in all other cases it pushes the
boundary for the Mott transition at very high critical couplings. Moreover in weakly hybridized nondegenerate
systems the Hund’s coupling plays the role of band decoupler, causing a change from a collective to an individual
band behavior, due to the freezing of orbital fluctuations. In this situation the physics is strongly dependent on
individual filling and electronic structure of each band, and orbital-selective Mott transitions (or even a cascade
of such transitions) are to be expected. More generally a heavy differentiation in the actual degree of correlation
of different bands arises and the system can show both weakly and strongly correlated electrons.
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I. INTRODUCTION

Correlated materials are a continuous source of new and
intriguing phenomena in condensed matter physics. The
realizable stoichiometric structures of compounds partially
filling 3d, 4d, 5d, 4f, or 5f orbitals are virtually endless, and
many of the explored ones have shown an extremely rich
physics as a function of external parameters such as pressure,
temperature, magnetic field, and chemical substitutions.

This rich and varied physics is in many cases a direct
outcome of electron-electron interactions and of the subtlety
of the many-body physics that they yield.

The “correlation strength” is the relevance of these many-
body effects for the conduction electrons. These effects are
indeed related to the interaction coupling strength in the
conduction bands (but not always simply proportional to, as
we will see in this paper), compared with their width (or more
precisely the kinetic energy of the bare conduction electrons).
The coupling strength is maximal in the mentioned orbitals in
that they have a reduced spatial extension, which maximizes
the Coulomb interaction within the shell, yet they are filled
after the bigger s and p shells of higher principal quantum
number, thanks to the aufbau “inversion” rule. Thus, e.g., the
4s are filled before the 3d orbitals and determine the atomic
positions such that the overlap of the 3d orbitals and the
corresponding bandwidth are rather small.

However these correlated orbitals are degenerate (five-fold
for the d and seven-fold for the f) in isolated atoms, and
different behaviors arise in real solids depending on whether
the crystal field due to the surrounding atoms lifts this
degeneracy.

In materials where the degeneracy is totally lifted, only one
band crosses the Fermi level and is thus partially filled, and a
one-orbital tight-binding model is often enough for a descrip-
tion of the low-energy physics. In this case the ratio between
the interorbital interaction strength U and the bandwidth W is
the control parameter of the many-body effects.

When several correlated orbitals contribute to the conduc-
tion bands instead, more parameters come into play, and a
richer many-body phenomenology is to be expected. Besides
the more complicated band structure, the number of parameters
needed to describe the electron-electron interaction is in-
creased. Interorbital interactions are different from intraorbital

ones, and Hund’s rule, the tendency of electrons to distribute
in different orbitals and in high-spin states, plays a role.

In a multiband tight-binding low-energy model the
Hamiltonian reads in general

H =
∑

ij,mm′σ

tmm′
ij d

†
imσ djm′σ + Hint, (1)

where d
†
imσ creates an electron with spin σ in orbital m on the

site i and tmm′
ij are the hopping amplitudes. The local interaction

vertex can be written as

Hint = U
∑
i,m

nim↑nim↓ +
(

U ′ − J

2

) ∑
i,m>m′

nimnim′

−J
∑

i,m>m′
[2Sim· Sim′ + (d†

im↑d
†
im↓dim′↑dim′↓+ h.c.)],

(2)

where nimσ = d
†
imσ dimσ , nim = ∑

σ nimσ , and Sim =
1
2

∑
σσ ′ d

†
imσ τ σσ ′dimσ , where τ σσ ′ is the Pauli matrices vector.

U is the intraorbital interaction, U ′ is the interorbital one
(U ′ = U − 2J holds from symmetry reasons on the matrix
elements1,2), and J is the Hund’s exchange coupling. J can
be seen then as a measure of the dependence of the interaction
strength on the electrons occupying the same or different
orbitals, and on their mutual spin alignment.

Among many tools for the investigation of correlated ma-
terials through the analysis of these low-energy models, slave-
variable mean fields (the most well known being the slave
bosons, SBs)3,4 and dynamical mean field theory (DMFT)5

have achieved much success. These are nonperturbative local
mean fields and have been successful in describing many
aspects of correlated systems as band renormalization and
mass enhancement, magnetic orders, and the Mott transition.

The latter is the the transition between a paramagnetic metal
and a paramagnetic insulator because of the localization of
conduction electrons due to interactions. It is relevant to many
materials6 and it has also been invoked to explain the physics
of high-temperature superconductors.7 The physics in the
proximity of the Mott transition has some well-defined features
that deserve the christening with a specific name: “Mottness.”
These include strong quasiparticle mass renormalization and
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sizable spectral weight transfer from low-energy coherent to
high-energy incoherent features, among others.

The metallic phase in proximity to a Mott transition is a
paradigm of strongly correlated physics, and its analysis has
been performed in detail in the one-band Hubbard model.5

At present there is less understanding of the Mott physics
and in general of the effect of interactions in multiband
models. Early studies8,9 have clarified that the Mott transition
is found at any integer filling and in N-band degenerate systems
with bandwidth W and SU (2N ) symmetric interaction, i.e.,
J = 0, the critical interaction strength Uc/W grows with the
degeneracy N and is maximal at half-filling.

The dependence of the Mott transition critical coupling
Uc/W as a function of Hund’s coupling J was studied in
Refs. 10–12. In all these studies J is shown to reduce the
Uc/W needed for the Mott transition, and thus to correlate
the electrons. However, these studies are restricted to half-
filled systems, and the generality of this statement for the Mott
transitions at all integer fillings is questionable.

Recently, the role of Hund’s coupling has been
brought under the spotlight by the discovery of iron-based
superconductors13,14 in which this coupling within the Fe
orbitals is believed to be sizable. Metallic iron is known to have
a strong Hund’s coupling, leading to ferromagnetism, and this
is expected to be true also in the Fe atoms of these compounds.
Moreover local density approximation + DMFT calculations
have shown extreme sensitivity of some aspects of the physics
of Fe superconductors to the Hund’s coupling strength.15–18

In these materials six electrons occupy five correlated bands,
all crossing the Fermi level, mainly of Fe character. The
application to this case of the present knowledge of Hund’s
coupling effect is not obvious.

One of the main results of this paper (Sec. III) is that for all
integer fillings of a degenerate Hubbard model, beside global
half-filling, the Hund’s coupling actually increases the critical
U needed for the Mott transition, bringing it to very large values
for reasonable coupling strength, contrary to the previously
studied half-filled cases.

Many other aspects of the physics of Fe superconductors
are still subject to a debate in the scientific community, and
many competing scenarios have been put forward, without
reaching consensus thus far. The possibility of these materials
being in or in proximity to an orbital-selective Mott phase in
which some localized electrons coexist with itinerant ones has
been invoked by several groups.19–22 The mechanism possibly
leading to an orbital-selective Mott transition23 (OSMT) in
these materials was first isolated in Ref. 24 and shown to be
related to the strong Hund’s coupling.

The other main result (Sec. IV) of this paper is the high-
lighting of Hund’s coupling as the main factor responsible in
general for the arising of the OSMT in real nondegenerate
(for the presence of a crystal field splitting or different
band dispersions) weakly hybridized systems. Overriding
or accompanying bandwidth differences and degeneracies,
Hund’s coupling is seen to act as a band decoupler, through
the suppression of orbital fluctuations. Then the correlation
character of each band is determined by its individual filling
and structure. This mechanism also applies to the well-known
anomalous superconductor Sr2RuO4, as has been recently
outlined in Ref. 25.

II. MODELS AND TECHNIQUES

We will solve model Eq. (1) with slave-spin mean field
(SSMF)26,27 and DMFT.5

SSMF is a computationally fast slave-variable mean field
particularly suited for studying multiband models. It is
extremely useful for tracing entire phase diagrams and yields
qualitatively accurate and semiquantitative results, in line with
the performance of usual SBs. But unlike the latter, which
become quickly untractable in the multiband case, SSMFs
limit the proliferation of auxiliary variables and can thus
tackle, e.g., a five-band model and trace a phase diagram as
a function of several parameters. As all other slave-variable
methods do, at the mean field level SSMF approximates the
model with a quasiparticle effective noninteracting model
whose parameters are self-consistently determined. Solving
a local problem for the slave variable takes into account the
effect of interactions and yields the quasiparticle effective
parameters, i.e., renormalization of the crystal field and
of the electron mass. The latter is expressed through the
quasiparticle renormalization factor Zm, which ranges from
1 (noninteracting system) to 0 and whose vanishing signals a
Mott transition.

For supporting the SSMF results, and reporting aimed
and quantitatively accurate results, we make use of the
well-established DMFT which is also heavier to run. DMFT
assumes the locality of the self-energy and maps the (multior-
bital) lattice problem onto a (multiorbital) quantum impurity
problem subject to a self-consistency condition. The impurity
problem has to be solved numerically, and we use the Lanczos
exact diagonalization28 as the impurity solver. Details about
these two mean-field methods are given in the appendix.

In all cases we consider nonhybridized bands, i.e., tmm′
ij =

tmij δmm′ . We then discuss how our analysis is affected by a finite
(small) hybridization.

The two methods being local mean fields, in absence
of hybridization the k dependence enters the problem only
through each band dispersion. Sums over momenta can thus be
replaced by integrals over energy weighted by density of states
(DOS) D(ε), which we assume to be semicircular throughout
the paper, i.e.,

D(ε) = 2

πD

√
1 − (ε/D)2, (3)

where D = W/2 is the half-bandwidth.
Then a model is fully specified by each band’s width and

position, the latter being set by the crystal field splitting, i.e.,
by the set of on-site energy levels εm ≡ tmii .

We solve the model in different cases: N-fold degenerate
model in Sec. III, the three-band model with same bandwith
and trigonal crystal field splitting, and with three different
bandwidths but without the crystal field in Sec. IV.

We will assume zero temperature throughout the paper.

III. HUND’S COUPLING AND THE MOTT TRANSITION
IN DEGENERATE SYSTEMS

We first study the N-fold degenerate Hubbard model at all
possible integer fillings. All N bands have D = 1 and no crystal
field splitting is present, i.e., εm = 0.
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FIG. 1. (Color online) SSMF metal-Mott insulator critical cou-
pling Uc for the N-band degenerate Hubbard model as a function of
the ratio J/U . Only fillings such that n < N are shown here. The
ones for n > N give identical results due to particle-hole symmetry.
For half-filled cases (two electrons in two bands and three electrons in
three bands) the Hund’s coupling correlates the system and reduces
the critical Uc/D. For all other fillings, on the contrary, Uc/D is
strongly increased.

Figure 1 shows the results of the SSMF. At all integer filling
n we find, as known, that for increasing U at fixed J/U the
renormalization factor Zm—identical for all bands—decreases
from unity, reaching zero beyond a critical Uc/D and thus
signaling a Mott transition. At J = 0 our analysis confirms
that Uc is maximum for half-filling and that for a given filling
n/N, Uc increases with the degeneracy N (see Ref. 8).

We then study the dependence of Uc/D on the value of
J . At half-filling (n = 2 electrons in N = 2 bands, or n = 3
electrons in N = 3 bands in Fig. 1) we find that increasing J/U

reduces the value of Uc, as reported in previous works.10–12,29

But surprisingly, for any other filling Uc is rather increased
by Hund’s coupling.

We see this in detail for the two-band case in Fig. 2. On
going from J = 0 to a typical value J/U = 0.25, the critical
interaction strength is reduced to half of its original value at
half-filling, but it increases to more than three times the J = 0
value for the quarter-filled case.

This result is general and does not depend on the number
of bands. In the three-band model the reduction of Uc at half-
filling is even stronger than in the two-band case, while the
behavior of the system with one electron follows the trend
of the analogous case in the two-band system. Interestingly a
slightly different behavior can be noticed in the case of two
electrons in three bands. Here the onset of J induces initially
a reduction of Uc, which quickly starts increasing again and
follows the trend of the other non-half-filled cases, with the
Mott transition pushed at very strong couplings.

Hints of this physics can be seen in Ref. 30 where the
opposite trend of the different (n = 1,2,3) Mott insulating
lobes of the phase diagram as a function of J was reported. To
understand these opposite trends we will follow an argument
based on the analysis of the atomic limit.10,30,31

Indeed an estimate of Uc can be obtained following Mott’s
original image for the single-band case: At strong coupling the
local spectral function of a Mott insulator shows features based
on the atomic excitations (two delta functions at a distance U
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FIG. 2. (Color online) Quasiparticle renormalization factor Z for
the two-band Hubbard model as function of the interaction strength
U and for different values Hund’s coupling J. Upper panel: half-
filled case. Lower panel: quarter-filled case. The effect of the Hund’s
coupling is opposite in the two cases.

from one another), broadened by the delocalization energy
which can in principle be calculated perturbatively in t/U . In
practice these broadened features (called the “Hubbard bands”)
have a width in energy of the order of the bare bandwidth W.
Thus an estimate of the Mott gap is the distance of the borders
of these two features, i.e., � = U − W . By the same token an
estimate of the critical U for the Mott transition is given by the
vanishing of the gap, i.e., Uc/W = 1, which is not far from
the Uc1/W � 1.2 obtained by full-fledged DMFT.

The full many-body physics is more complicated,32 and
in these estimates one should for example take into account
the dependence of the delocalization energy, and thus of the
width of the Hubbard bands, on the physical parameters. In
practice, at least in the Hubbard model, this is seen to be a
minor effect and only very close to the transition does one see
sizable deviations from � = U − W .

Transposing this argument to the multiorbital case we thus
want to obtain the scaling with Hund’s J of the Mott gap and
of the Uc for the Mott transition in the multiband Hubbard
model. In Fig. 3 is depicted the atomic excitation spectrum for
a 2-orbital atom. A change in the atomic spectrum will reflect
directly on the distance between the Hubbard bands and then
on the Mott gap. The 16 states are divided in sectors with the
same number of particles, whose distance is set by U. Instead
within every sector, for a given particle number, the states are
split by J.
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FIG. 3. Spectrum of a 2-orbital atom with Hamiltonian Eq. (2).
The different sectors position in energy is as depicted for an half-filled
system, for which the chemical potential can be obtained by particle-
hole symmetry arguments and is μ = (3U − 5J )/2 and the ground
state lies in the n = 2 sector. In general the distance of this with the
lowest lying state in the n = 3 sector is E3

0 − E2
0 = −μ + 2U − 2J

whereas the distance with the lowest lying state in the n = 1 sector
is E1

0 − E2
0 = μ − U + 3J . The atomic gap is then � = U + J and

thus is enhanced by J.

The global filling of the system is set by the chemical
potential which shifts the relative position of the different
sectors. When the system is half-filled μ is such that the ground
state is in the 2-particle sector. For any finite J this is 3-fold
degenerate and is the triplet of S = 1 states. The gap in the
atomic excitation spectrum is obtained summing the energy
distance between the ground state and the lowest lying levels
(E0) in the n + 1 and n − 1 sectors, i.e.,

�at = En+1
0 − En

0 + En−1
0 − En

0 = En+1
0 + En−1

0 − 2En
0 .

(4)
This quantity is readily evaluated, yielding

�at = U + J. (5)

It is independent of μ and shows that the gap is enlarged by
J. In the Mott insulator then, if we assume that the Hubbard
bands are broadened versions of the atomic excitations the gap
will also scale linearly in J, and so will Uc/D (with opposite
sign, because a larger gap will close, when the Hubbard bands
overlap, at a smaller U).

Let’s now replicate this argument for the quarter-filled case.
In the corresponding atomic spectrum (Fig. 4) the lowest lying
sector is the one with n = 1. The atomic gap is now

�at = U − 3J, (6)

which is reduced by J. Thus the Uc for the Mott insulator with
1 particle (or 3) in 2 bands will get enhanced by J.

The same argument applies in general for any number N of
bands, to show that the Mott gap gets reduced in all cases but
at half-filling. It is easy to calculate that in general

�at
n =

{
U − 3J, ∀n �= N (off half-filling),

U + (N − 1)J, n = N (half-filling).
(7)

FIG. 4. Same as in Fig. 3 but the sector’s position in energy is
depicted here for the system quarter-filled. The distance with the n =
2 sector is E2

0 − E1
0 = −μ + U − 3J whereas the distance with the

n = 0 sector is E0
0 − E1

0 = μ. The atomic gap is then � = U − 3J

and is then reduced by J.

The rationale behind this is as follows. The energy of the
high-spin state in each sector is lowered by the exchange
among the electrons which is proportional to the number of
possible pairs of aligned spare spins. The latter is maximum
in the half-filled sector where there is one spare electron in
every orbital. Moving away from half-filling, it decreases
quadratically, because the number of the possible pairs is
ns(ns − 1)/2, where ns is the number of spare electrons, which
decreases while the number of either empty or fully occupied
orbitals increases.

Thus the gap in a half-filled Mott insulator is always
enhanced by J, being enhanced by the distance between the
ground state and the lowest state in the neighboring sectors.

In the case of a Mott insulator with a non-half-filled ground
state (say without loss of generality lying in the sector with
n < N particles) this has a gain in energy due to J which is
smaller than the one for the high-spin state of the neighboring
sector (with n + 1 particles) closer to (or at) half-filling and
bigger than the one with n − 1 particles due to the mentioned
quadratic dependence. The latter is also responsible for the
fact that the subsequent enhancement of En−1 − En with J is
less than the reduction of En+1 − En. The overall gap is then
reduced.

The same obviously applies for the particle-hole symmetric
situation for n > N .

The estimate of the dependence of Uc on J, following these
arguments, is

δUc(n) ∝
{

3J, ∀n �= N (off half-filling).
−(N − 1)J, n = N (half-filling) (8)

Figure 5 plots the SSMF phase diagram as a function of
J, and we compare the results with these asintotic behaviors
based on the atomic limit, Eq. (8). It is clear that at strong J
the atomic limit captures perfectly the dependence of Uc.

However, departures from these analytic results are found
at weak J. The previous argument basis indeed, is that J is large
enough for only the high-spin state to be taken into account
in each sector. This assumption is not justified at weak J,
and orbital fluctuations become important when taking into
account the hopping from site to site. These are maximal at
J = 0, and the consequent gain in kinetic energy is the cause
for the enhancement of Uc with the band degeneracy.33 The
onset of J suppresses these fluctuations rapidly and we thus
observe a quick reduction of Uc in the half-filled systems,
where the orbital fluctuations are maximal. Moving away from
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FIG. 5. (Color online) Same phase diagram as in Fig. 1, plotted
here as a function of J. The dashed lines indicate the strong J behavior
calculated analytically in the atomic limit, Eq. (8) (from top to bottom
δUc ∝ 3J, −J, −2J ).

half-filling this effect is controlled by n/N (for n < N , and
by the particle-hole symmetric (N − n)/N for n > N), and it
is already negligible for the system with one particle in three
bands. The reduction of orbital correlations is in fact a main
effect of J, and we will see in Sec. IV its key importance in
decoupling the orbitals.

It is worth stressing that these conclusions are drawn
for degenerate nonhybridized bands but are still valid for
small hybridizations Vmm′ and crystal fields �mm′ = εm − εm′ .
Indeed both hybridization and crystal fields work in general
“against” J (the hybridization favors singlet states, while the
crystal field favors orbital disproportionation, both thus favor
low-spin states29), but are nonsingular perturbations.

Thus if J 
 Vmm′ ,�mm′ we expect these results to hold in
general.

More specifically one can show that their effect on the
high-spin states in the atomic limit is null in the half-filled
sector and lowers the energy in sectors away from half-filling.
The detail of this energy gain depends in general on the specific
structure of the matrices Vmm′ ,�mm′ , and its analysis is beyond
the scope of this paper, but it can be easily shown for N = 2
and 3 that they always reduce the effect of J on the gap between
the atomic sectors and will thus reduce the effect of J on Uc.
Some specific models with finite crystal fields are studied in
Sec. IV.

SSMF and atomic limit considerations are somewhat
complementary points of view on the Mott transition and they
draw a quite reliable picture, but one may want to benchmark
these results with a more quantitative and accurate method
such as DMFT.

The DMFT results for the N = 2 degenerate model are
plotted in Fig. 6. DMFT fully confirms the SSMF scenario and
the reliability of the SSMF method. The transition boundaries
are slightly shifted by DMFT as the SSMF, like SBs, is known
to overestimate Uc.

DMFT can also yield a much deeper insight into the physics
of the systems through the analysis of dynamical quantities as,
e.g., the local self-energies �m(iωn) and spectral functions
ρm(ω) = −1/πImGm(ω + i0+), where Gm is the Green’s
function for band m.
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FIG. 6. (Color online) DMFT results for two-band degenerate
Hubbard model for the Mott transition with n = 2 electrons (upper
panel), and n = 1 (middle panel) which fully confirm SSMF results.
Lower panel: phase diagram comparison between SSMF and DMFT.
The slight overestimation of Uc is a known issue of slave-variable
mean fields, common, e.g., to SBs.

Figure 7 plots the self-energies at U/D = 1.75 as a function
of J for the half-filled and quarter filled cases. As expected, J
is seen to enhance the self-energy in the half-filled case, thus
correlating the system, while it lowers the self-energy in the
quarter-filled case and it decorrelates the system.

Figure 7 plots the spectral functions corresponding to the
quarter-filled two-band Hubbard model in the metallic phase.
The Hubbard bands are very structured, reflecting the multiple
energy scales present already in the atomic Hamiltonian.34 In
these bands, the features which are closer to the central peak
(that is due to the coherent quasiparticle excitations which
disappear at the Mott transition) are the precursors of the lowest
atomic excitations. As predicted by the atomic limit arguments
these features move closer to the central peak with J.
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FIG. 7. (Color online) Self-energies of the metallic phase calcu-
lated in DMFT for U/D = 1.75 as a function of J. Upper panel: two
electrons in two bands, the self-energy grows with J. Central panel:
one electrons in two bands, the self-energy diminishes with J. Lower
panel: spectral functions for the quarter-filled case at low energy. The
features of the Hubbard bands closest to the broad low-energy feature
(the leftmost and rightmost in the plotted energy window) move closer
as J is increased, as predicted by the atomic limit arguments.

We can thus unambiguously draw the conclusion that
Hund’s coupling works against the Mott transition in all cases
but the half-filled one. A caveat to this statement is that only
the reentrant behavior of Uc (at small J, where the suppression
of orbital fluctuations overruns the shifting of the Hubbard
bands) can be found for integer fillings close to half, and the
effect of strong hybridization and/or crystal-field splitting in
the regime Vmm′ or �mm′ > J .

Also, moving away from the Mott transition boundary, a
subtle interplay of this Mott atomic-like physics with the
Kondo screening characterizes the correlated metallic phase. In
the two-band Hubbard model these two aspects work together.

In the half-filled case the Kondo temperature is known to be
reduced by J,12,35 while for the quarter-filled case a modest
increase of it has been reported,12 all in line with our results.

For the three-band model the situation is expected to be
analogous for both the half-filled and the extremal n = 1
(n = 5) cases. In the n = 2 (n = 4) case instead, the relation
between the Kondo temperature and the Uc dependence on
J is probably less straightforward, in view of the reentrant
transition boundary visible in Fig. 5 (also in Ref. 36 a “spin
freezing transition” is reported to happen before the Mott
transition), and this will be the subject of a future publication.

IV. HUND’S COUPLING AS A BAND DECOUPLER:
ORBITAL-SELECTIVE MOTT TRANSITIONS

Thus far we have dealt with only the fully degenerate
Hubbard model, where all bands are identical, and we have
focused on the influence of the Hund’s coupling on the
behavior of the system as a whole.

We will now allow for differences between the bands and
study systems in the presence of crystal field splitting or
differences between the bandwidths. We will in particularly
highlight how in these systems the bands can show very
different behaviors when J is sizable. For instance, the bands
can show a different degree of correlation, and the Mott
transition can become selective.

The OSMT has been thoroughly studied in the half-filled
Hubbard model with two different bandwidths,23,26,29,37–41 and
it has been shown how Hund’s coupling widens the parameter
region where the OSMT can be found. However, it has been
shown in a recent publication24 that even systems in which
all bands have the same bandwidth can undergo an OSMT
when J is beyond a critical value. This has been shown for a
three-band model populated by four electrons, in which two
bands are degenerate and one is lifted up in energy (inset of
Fig. 8). For a large range of crystal field splitting the upper
band can open a Mott gap, becoming half-filled, while the
other two bands remain metallic.

FIG. 8. (Color online) Phase diagram from Ref. 24 for a
three-band Hubbard model populated by four electrons, with two
degenerate bands and one lifted in energy, as depicted in the inset.
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It is worth stressing the important role played by the Hund’s
coupling. As said, a finite value of J is needed in order to trigger
the OSMT. Then further raising J/U widens enormously the
selective phase (see Fig. 8), pushing the boundary of the Mott
insulating phase at very high U . This being a localization
of four electrons in three bands, the quick raise of the Uc

necessary for this system to become a Mott insulator is
explained by our study of the non-half-filled Mott transition
performed in Sec. III.

What is remarkable here is that, while the boundary for
the Mott transition of the whole system follows closely the
result for the degenerate system (the result for N = 3n = 2,
equivalent to n = 4, of Fig. 1), one band has a completely
different behavior and becomes selectively localized at a much
smaller critical value of U, which gets further reduced by J.

Even if this effect has been shown not very sensitive to a
small splitting of the two degenerate bands, the main effect
highlighted in Ref. 24 as possibly responsible for the OSMT
behavior is the different degeneracies of the two parts of
the system. Albeit having the same bandwidth, the doubly
degenerate subsystem has an enhanced kinetic energy that can
be seen as an increased effective bandwidth (thus having a
different Uc, if it were decoupled from the third band), tracing
this OSMT back to the previously studied cases of systems of
bands of unequal width.

It is shown here that the main effect causing the OSMT in
these system of equal bands is another, namely the suppression
of the orbital correlations induced by J.

For this we will study a system far from any degeneracy.
We consider a three-band model, Eq. (1), with all equal
bandwidths and a trigonal crystal field splitting (�12 = −�23),
at half-filling. Namely one band remains half-filled, one is
lifted in energy, and another is symmetrically lowered (inset of
Fig. 9).

Results in the SSMF for a sizable Hund’s coupling J/U =
0.25 are shown in Fig. 9 for different fixed-population imbal-
ances, n1 − n3. One finds that the half-filled band becomes
insulating at a lower critical coupling than the other two,
thus opening an orbital-selective Mott phase. The reason for
studying the model at fixed n1 − n3 rather than at fixed � is that

FIG. 9. (Color online) SSMF results for a half-filled three-band
Hubbard model with trigonal crystal field splitting. One band remains
half-filled, while the other two are shifted symmetrically, as depicted
in the inset. The quasiparticle weights Z1 = Z2,Z3 are shown here
as functions, of the interaction strength U/D for Hund’s coupling
J/U = 0.25 at different fixed population unbalances, n1 − n3.
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FIG. 10. (Color online) DMFT results for the same model as in
the inset of Fig. 9, but fixing the crystal field splitting �12 = −�23 =
0.7D. Upper panel: quasiparticle residues Zm; lower panel: orbital
correlations. A clear suppression of the orbital correlations between
the half-filled band and the lifted ones corresponds to the OSMT.

correlations tend to renormalize and strongly reduce the crystal
field splitting, so that by keeping the population unbalance
fixed the OSMT is enhanced and shown to be possible. We
then check the robustness of the OSMT at fixed �12 = 0.7D

in DMFT and find it in a reduced but still sizable range of
correlation strength (Fig. 10).

A complete study of the phase diagram of this model is
beyond the scope of this paper; however it was shown that
degeneracy is not necessary for an OSMT to happen in a
system of all equal bandwidths.

What differentiates the bands here is only the respective
individual filling. The system as a whole becomes insulating at
a critical U very close to the value Uc = Uc(N = 3,n = 3,J =
0.25) + �, where Uc(N = 3,n = 3,J = 0.25) � 1.15D, con-
sistent with the atomic picture of the Mott insulator in which
the high-spin state is still the ground state and the Mott gap is
reduced by the crystal field splitting.

However the half-filled band acts as “decoupled” and the
value of U at which it becomes insulating is smaller than Uc

for the whole system.
The explanation of this behavior becomes transparent when

calculating the orbital correlations,

Xmm′ = 〈(nm − 〈nm〉)(nm′ − 〈nm′ 〉〉
= 〈nmnm′ 〉 − 〈nm〉〈nm′ 〉, (9)

in DMFT (lower panel of Fig. 10). It is clear that the OSMT is
accompanied by an almost complete suppression of the orbital
fluctuations between the half-filled band and the lifted ones.
This implies that close to the transition the half-filled band is
in practice decoupled and it can become Mott insulating while
the others remain metallic. Also the effect of the crystal field
will be minor on its Mott gap. Consequently the Uc for this
band will be poorly affected by it.

One may think that this suppression of the interorbital
fluctuations reflects only the suppression of intraorbital fluc-
tuations typical of any Mott transition (owing to the fact that a
Mott insulator has a very small double occupancy). This is not
the case, here. Indeed Fig. 10 plots the ratio between these
quantities X12/

√
X11X22, i.e., the interorbital fluctuations

normalized by the standard deviation of the intraorbital ones in
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FIG. 11. (Color online) Spectral functions corresponding to the
three phases of the data plotted in Fig. 10, for J = 0.25U and �12 =
−�23 = 0.7D. Panels from top to bottom: U/D = 1.0,1.8,2.3. The
half-filled band is indicated by the full line, the two shifted bands
by blue and green dashed lines. In the top panel all the bands are
metallic; in the bottom panel all are Mott insulating. In the middle
panel only the half-filled band opens a Mott gap, whereas the two
shifted bands are metallic, but the spectral density at the chemical
potential violates the pinning condition imposed from the Luttinger
theorem, signaling a non-Fermi-liquid state.

each of the involved bands, which drops very fast at the OSMT.
This shows that the interorbital fluctuations are suppressed
much faster than the intraorbital ones and highlights the role
of this suppression driven by J in decoupling the bands and
thus inducing the OSMT.

Figure 11 shows the spectral functions corresponding to the
three phases (metallic, orbitally selective and Mott insulating)
that the model goes through. The orbitally selective Mott
phase shows a clear gap in the half-filled band only. It is also
characterized by non-Fermi-liquid behavior, here represented
by a lowering of the density of states at the Fermi level in the
metallic bands.42

Thus one can conclude that Hund’s coupling acts as a band
decoupler, leading, to a first approximation, from a collective
to an individual behavior for each band. Then it will be
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FIG. 13. (Color online) DMFT results for the same model as in
Fig. 12. Upper panel: quasiparticle residue for each band; lower panel:
orbital correlations, which are suppressed between the localizing band
and the itinerant ones, while they remain sizable between the two
itinerant bands.

each band’s structure and filling that determine the correlated
properties.

As another paradigmatic example of such a nearly decou-
pled behavior a Hubbard model of three half-filled bands with
different bandwidths and Hund’s coupling J/U = 0.25 was
studied.

The results are plotted in Fig. 12. As a function of U the
three bands undergo a “cascade” of individual Mott transitions
at Uc’s that scale very roughly with the bare bandwidth of each
band, thus testifying to an almost decoupled behavior.

The SSMF results are confirmed by DMFT, as shown in
Fig. 13, where the orbital correlations are also plotted, as
previously. The same physics is found here, with a strong
suppression of the orbital fluctuations between localized and
itinerant bands, leading to a decoupled behavior.

V. CONCLUSIONS

This paper analyzes the role of Hund’s coupling in tuning
the correlation effects in multiorbital materials and is divided
into two parts.

The first showed that Hund’s coupling in degenerate
systems of interacting bands can have two opposite effects,
depending on the global filling of the system: In half-filled
systems it strongly correlates the system and accordingly
lowers the critical interaction strength Uc for the Mott
transition. In all other cases the Uc is quickly pushed at very
high values by J. This is strictly true when J is strong, and it can
be fully understood by analyzing the atomic multiplets. When J
is small instead, the suppression of orbital fluctuations (which
is maximal at half-filling and decreases quickly, moving away
from it) can dominate, enhancing correlations. This enhances
the reduction of Uc in half-filled systems and produces a
reentrant behavior for fillings close to half—before crossing
over to the strong J behavior—while is negligible otherwise.

The second part of this paper addressed non-degenerate
systems, where crystal field splittings or bandwidth differences
characterize the different bands. In these systems it was
shown that the Hund’s coupling acts mainly as a band
decoupler, through the suppression of the orbital correlations.
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At intermediate to strong J, the bands will then have different
correlation effects, based on the individual structure or filling.
When bands have similar width and structure, the individual
proximity to half-filling becomes then a measure of the
correlation strength of each band.

In systems where the two effects combine (non-half-filling
of the global system and proximity to half-filling of one band
or a subset of bands) in the presence of sizable Hund’s coupling
a strong differentiation can be expected, because correlations
in the subsystem will be enhanced by J whereas they can
be reduced for the rest of the system. Strongly and weakly
correlated electrons can thus be found in the same conduction
bands.43

Materials of interest with strong Hund’s coupling which ar-
guably fall into this category are, e.g., the iron superconductors
and CaxSr2−xRuO4.25
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APPENDIX: METHODS

This section details the equations of the two local mean-field
methods used in this paper.

In the slave-spin representation, as detailed for example
in Ref. 27, we map the original local Hilbert space of the
problem onto a larger local Hilbert space that contains as many
fermionic degrees of freedom (named fimσ ) as the original plus
the same number of auxiliary spin-1/2 quantum variables, one
for each fimσ . We then associate to every state of the original
physical space one of the states in this larger space by using
the correspondences,∣∣nd

imσ = 1
〉 ⇐⇒ ∣∣nf

imσ = 1, Sz
imσ = +1/2

〉
, (A1)

∣∣nd
imσ = 0

〉 ⇐⇒ ∣∣nf

imσ = 0, Sz
imσ = −1/2

〉
. (A2)

In words, when a local orbital and spin state is occupied then
the corresponding slave-spin is “up” and if it is empty the
slave-spin is “down.” With these one-particle local states one
can construct the many-particle states as usual.

The enlarged local Hilbert space also contains unphysical
states which are excluded by enforcing the local constraint at
each site and for each orbital m and spin σ :

f
†
imσ fimσ = Sz

imσ + 1
2 . (A3)

In the enlarged Hilbert space the electron number operator
is represented by the auxiliary fermion number, i.e., nd

imσ =
n

f

imσ , but also by the z component of the slave spin nd
imσ =

Sz
imσ + 1/2, thanks to the constraint. This allows us to rewrite

after a little algebra the density-density interaction terms in
Hint in terms of the spins only:

U ′

2

∑
i

(∑
m,σ

Sz
imσ

)2

+ J
∑
i,m

(∑
σ

Sz
imσ

)2

−J

2

∑
i,σ

(∑
m

Sz
imσ

)2

, (A4)

while the nondensity-density terms of the interaction are
approximated as26

−J
∑

i,m′>m

[S+
im↑S−

im↓S+
im′↓S−

im′↑ + S+
im↑S+

im↓S−
im′↑S−

im′↓ + h.c.].

(A5)

For the nondiagonal hopping operators it can be shown that
the most general form allowed in the enlarged Hilbert space
is27

dimσ = fimσ Oimσ , d
†
imσ = f

†
imσ O

†
imσ , (A6)

in which Oimσ = cimσ S+
imσ + S−

imσ . The choice of the complex
number cimσ is very important. The arbitrariness of cimσ comes
from the fact that different operators can have the same effect
in the physical subspace of the enlarged Hilbert space, while
acting differently on the unphysical states. This difference does
not have any effect as long as the constraint is treated exactly.
In practice the local constraints are enforced on the average via
Lagrange multipliers and the particular choice of cimσ matters.
It can be tuned in order to obtain the most meaningful mean
field, by requiring, e.g., that it yield the correct noninteracting
limit (as it happens in SB mean fields3).

It can be shown27 that a suitable choice for a local mean
field is such that cimσ depends on the average occupation of
each orbital in the local state and reads

cimσ = 1√
nimσ (1 − nimσ )

− 1. (A7)

Finally, in the enlarged Hilbert space the Hamiltonian can
be written exactly as

H =
∑

ij,mm′σ

tmm′
ij O

†
imσOjm′σ f

†
imσ fjm′σ + Hint[Simσ ], (A8)

subject to constraint (A3).
The mean-field approximation used in this paper consists of

three steps: (1) treating the constraints on average, using static
Lagrange multipliers λimσ , (2) decoupling auxiliary fermions
and slave-spin degrees of freedom, and finally (3) treating the
slave-spin Hamiltonian in a local mean-field approximation.
In this paper we consider only paramagnetic phases; hence the
mean-fields and the Lagrange multipliers will not depend on
the spin σ index.

After these approximations we are left with the mean-field
equations:

Hf = ∑
k,mσ (Zmεkm + εm − λm)f †

kmσfkmσ ,

Hs = ∑
mσ (hmO

†
mσ + h.c.) + λm

(
Sz

mσ + 1
2

) + Hint[�Smσ ],

Zm = |〈Omσ 〉|2,
hm = 〈Omσ 〉ε̄m, (A9)
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where εkm ≡ ∑
j �=i tmm

ij e−k·(i−j) is the dispersion of band m and

ε̄m = 1
Nk

∑
k εkm〈f †

kmσfkmσ 〉, is the average kinetic energy of
each band.

Equations (A9) and average constraint equation (A10),
coming from the minimization with respect to the Lagrange
multipliers

〈f †
imσ fimσ 〉 = 〈

Sz
imσ

〉 + 1
2 , (A10)

determine self-consistently the effective parameters hm λm,
and Zm and solve the model of Eqs. (1) and (2) in the slave-spin
mean-field approximation. Note that the fermionic equation is
that of a renormalized noninteracting problem (where Zm plays
the role of the mass renormalization factor and quasiparticle
weight), whereas the spin Hamiltonian, even in the mean-
field approximation is an interacting problem and has to be
diagonalized numerically.

The DMFT5 is a powerful method for solving a lattice
problem in which one assumes the locality of the self-energy.
In this case the lattice problem can be mapped exactly
onto a quantum impurity problem in the presence of a self-
consistency condition. This allows the determination of the
local dynamical quantities of the original problem through the
solution of this effective impurity problem. The multiorbital
model, Eqs. (1) and (2), is thus mapped on the multiorbital
impurity problem, the action of which reads (in the imaginary

time functional integral formalism)

S = −
∫ β

0
dτ

∫ β

0
dτ ′ ∑

mσ

d†
mσ (τ )G0

mσ

−1
(τ − τ ′)dmσ (τ ′) + Si

int,

(A11)
where G0

mσ (τ − τ ′) represent an amplitude for an electron of
spin σ to be destroyed from orbital m at time τ ′ (jump from
the impurity into an effective noninteracting “bath”) and being
created at time τ (jumping back into the impurity from the
effective bath) and Si

int is the action term corresponding to the
interaction Hamiltonian of Eq. (2) at a given site.

For the present model, where we used semicircular DOSs
of half-bandwidth Dm, the self-consistency condition reads

G0
mσ

−1
(iωn) = iωn − εm − D2

m

4
Gmσ (iωn), (A12)

where Gmσ (iωn) is the impurity Green’s function on the
Matsubara axis.

The impurity problem is solved numerically and the
calculated Green’s function is used to have a new input
G0

mσ (iωn) through Eq. (A12). The procedure is iterated until
convergence is reached. The impurity solver used in this
work is the Lanczos exact diagonalization28 of the Anderson
impurity Hamiltonian associated with the action Eq. (A11),
where the bath G0

mσ (iωn) is represented by a finite number of
noninteracting effective sites. In this paper six sites were used
for this discretized bath.44
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