
PHYSICAL REVIEW B 83, 205105 (2011)

Calculation of electron transport in multiterminal systems using complex absorbing potentials
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A method to calculate the transmission coefficient in multiterminal systems is presented. By adding a complex
absorbing potential to the Hamiltonian of the semi-infinite leads, the problem of inverting an infinite dimensional
matrix is transformed into a finite dimensional eigenvalue problem. Using this approach transmission coefficients
are calculated for all energies at once. The accuracy of the approach is demonstrated with an analytically solvable
model system. Numerical examples of a four-terminal graphene cross junction and six-terminal carbon nanotube
junction are presented.
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I. INTRODUCTION

Many properties of nanomaterials can be explored by
studying electron-transport processes.1,2 In a typical transport
measurement the sample is contacted by two probes and the
conductance or current-voltage characteristics is measured.3

Three- and four-probe measurements are also becoming
common.4–6 These multiprobe experiments allow researchers
to study quantum interference effects, local currents, switching
mechanisms, and other unique properties that are beyond the
reach of two-probe measurements.

Electron-transport calculations in two-terminal nanode-
vices have been rapidly developing ever since the first transport
measurements. Due to the simplicity of the formulation,
the nonequilibrium Green’s function (NEGF) approach using
density functional theory’s (DFT) Kohn-Sham Hamiltonian
became a popular approach to calculate transport properties of
nanostructures.7–17

Computational approaches for three- and four-terminal cal-
culations have recently become available.21–31 The first multi-
terminal calculations used tight-binding Hamiltonians21,29–31

and only a few first-principles calculations exist.23,27 These
calculations use the NEGF formalism extended to the three-
and four-terminal case. The extension of the NEGF formalism
to four-terminal devices is straightforward but tedious. In the
case of the two-terminal NEGF, the Hamiltonian of the system
is infinite dimensional, but it has a block tridiagonal matrix
structure which allows for efficient evaluation of the Green’s
function for each energy point. In the four-terminal case the
structure of the Hamiltonian matrix is more complicated,23 and
while the matrix is still sparse with nonzero block matrices,
the calculation of its inverse is more difficult. The extension
to more than four terminals is possible but the calculation
becomes even more complex.

We have recently developed a complex potential quantum
transport framework.32,33 In this approach complex absorbing
potentials (CAPs) are added to the Hamiltonian in the leads.
The complex absorbing potentials transform the infinite open
system into a finite closed system by effectively cutting the
leads off at a finite distance from the central region. The
results of this approach are in excellent agreement with the
nonequilibrium Green’s function calculations33 but with much
less computational effort because the evaluation of the Green’s
functions of the infinite leads is avoided.

In this paper we extend the CAP approach to multiterminal
devices. In the multiterminal case, a CAP will be added to
the Hamiltonian of each lead and the transmission coefficients
will be calculated by using a transmission formula that is
generalized for the multiterminal case. The main advantage
of the approach, as in the two-terminal case, is that one
can deal with finite dimensional matrices instead of infinite
dimensional ones. Another advantage is the simplicity of
the implementation, which allows the approach to be easily
extended for N-terminal junctions.

Analytically solvable systems with four and eight terminals
are examined to demonstrate the accuracy of the approach. We
also present calculations of a four-terminal graphene cross
junction and a six-terminal carbon nanotube junction to show
the efficiency of the approach.

The outline of this paper is as follows. After this intro-
duction we present the formalism used in the calculations of
Sec. II. In Sec. III numerical examples are presented. The paper
ends with a brief summary in Sec. IV. Additional details are
presented in four appendices: elements of formal scattering
theory, simplification of the expression of the transmission
coefficient, the transmission coefficient with CAP, and an
analytical solution for a four-terminal device.

II. FORMALISM

A. Basis function representation of the Hamiltonian

We consider the multiterminal device structure shown in
Fig. 1, where localized basis functions will be used to represent
the Hamiltonian of the system. Various localized basis function
sets have been tested in transport calculations, including
localized atomic orbitals7–17 and box basis functions.34 The
localized basis functions overlap with each other only in
a given region, leading to sparse Hamiltonian and overlap
matrices. In the present work each lead and the central region
has its own set of basis functions. The range of overlap is
restricted in such a way that there is no overlap between
the basis functions of different leads, but there is an overlap
between some of the basis functions of the central region and
leads.

The leads consist of periodically repeated cells. The size of
the cells is chosen such that the basis functions connect only
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FIG. 1. N-terminal junction. The CAP is added between the two
dashed lines and the shaded area represents the center region.

the neighboring cells and the Hamiltonian matrix of lead a has
a block-tridiagonal structure:

Ha =

⎛
⎜⎜⎜⎜⎝

h00
a h10+

a 0 0

h10
a h00

a h10+
a 0

0 h10
a h00

a . . .

0 0 . . . . . .

⎞
⎟⎟⎟⎟⎠ . (1)

The overlap matrix of lead a is

Sa =

⎛
⎜⎜⎜⎜⎝

s00
a s10+

a 0 0

s10
a s00

a s10+
a 0

0 s10
a s00

a . . .

0 0 . . . . . .

⎞
⎟⎟⎟⎟⎠ . (2)

Denoting the Hamiltonian matrices coupling lead a and the
central region by τa and the Hamiltonian of the central region
by HC , the Hamiltonian of the N -terminal system takes the
form

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 0 . . . 0 0 τ+
1

0 H2 . . . 0 0 τ+
2

...
...

. . .
...

...
...

0 0 . . . HN−1 0 τ+
N−1

0 0 . . . 0 HN τ+
N

τ1 τ2 . . . τN−1 τN HC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

Bold fonts indicate that the quantity has dimensions of the full
system.

B. Transmission in a multiterminal system

In this section we show how to calculate the transmission
coefficient of the electron transport from lead a to lead b.
The derivation is based on multichannel scattering theory.35 To
make the paper self-contained, the most important equations of
multichannel scattering theory are summarized in Appendix A.

The wave function of the system corresponding to the
partition shown in Fig. 1 is

� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

...

ψN−1

ψN

ψC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

The wave function of the isolated lead a (a = 1,. . .N ) is

�a =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

φa

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5)

where φa is the eigenfunction of the Hamiltonian of lead a,

Haφa = Eaφa. (6)

The wave function with incoming asymptotic form in lead a

is

�+
a = [1 + G(Ea + iε)V a] �a, (7)

where

G(E + iε) = 1

(E + iε)1 − H
, (8)

and

V a =

⎛
⎜⎜⎜⎜⎜⎝

0 . . . 0 0 0 . . . 0 0

...
. . .

...
...

...
. . .

...
...

0 . . . 0 0 0 . . . 0 0

0 . . . 0 τa 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠ . (9)

Similarly, the wave function with outgoing asymptotic form in
lead b is given by

�−
b = [1 + G(Eb − iε)V b]�b. (10)

The transmission probability from lead b to lead a can be
calculated from

|〈�−
b |�+

a 〉|2, (11)

which can be rewritten as (see Appendix A)

|〈�b|V b(1 + G(E)V a)|�a〉|2 = |〈�b|V bG(E)V a|�a〉|2,
(12)
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where in writing the second equality we have used the fact that
Vb does not connect leads a and b,

〈�b|V b|�a〉 = 0. (13)

To calculate the transmission from lead b to lead a we have
to sum over all lead wave functions:

Tab(E) =
∑
αβ

∣∣〈�β

b

∣∣V bG(E)V a

∣∣�α
a

〉∣∣2 =
∑
αβ

〈
�

β

b

∣∣V bG(E)V a

∣∣�α
a

〉〈
�α

a

∣∣V +
a G(E)+V b

∣∣�β

b

〉
=

∑
β

〈
�

β

b

∣∣V bG(E)�a G(E)+V +
b

∣∣�β

b

〉 =
∑

β

∑
k

〈
�

β

b

∣∣V b|k〉〈k|G(E)�a G(E)+V +
b

∣∣�β

b

〉
=

∑
k

〈k
∣∣G(E)�a G+(E)�b

∣∣k〉 = Tr[G(E)�a G(E)+�b]. (14)

In the above equations we have introduced the notation

�a = V +
a

(∑
α

∣∣�α
a

〉〈
�α

a

∣∣) V a, (15)

and |k〉 stands for a complete set of states formed by
superposing all lead bases.

In Eq. (14) the transmission coefficient is expressed by
the Green’s function of the whole system and by the �

matrices. While the Hamiltonian of the system is a sparse
block structured matrix, the Green’s function matrix is not
sparse. The sparse structure of the � matrix, however, allows
for the simplification of the transmission coefficient. As shown
in Appendix B, the transmission coefficient can be rewritten
as

Tab(E) = Tr[GC(E)�aGC(E)+�b], (16)

where GC is the Green’s function of the central region and �a

and �b are the imaginary parts of the self-energies of leads
a and b. This expression is the transmission coefficient used
in two-terminal transport calculations.36,37 In the present work
we will add a CAP to the Hamiltonian of the leads and both
Eqs. (14) and (16) will be used in the calculations. The addition
of the CAP is described in the next section.

C. Complex absorbing potentials

Absorbing boundary conditions by using CAPs was first in-
troduced in time-dependent quantum mechanical calculations
to avoid artificial reflections caused by the use of finite basis
sets or grids.38 These CAPs are located in the asymptotic region
and annihilate the outgoing waves preventing the undesired
reflections. CAPs are extensively used in quantum mechanical
calculations of chemical reaction rates and in time-dependent
wave-packet calculations.39–45 Complex potentials have also
been used in transport calculations.46,47

The complex potentials not only absorb the outgoing waves
but can also produce reflections themselves. The construc-
tion and optimization of reflection-free CAPs is therefore
pursued by many research groups. Many different forms of
pure imaginary potential have been investigated, including
linear, power-law,40,42 polynomial,43 and other parameterized
functional forms (a recent review is provided by Muga et al.41).
Besides purely imaginary potentials, complex potentials have
also been investigated.44 In this work we will adopt the CAP

suggested by Manolopoulos.45 This negative, imaginary CAP
is derived from a physically motivated differential equation
and its form is

−iw(x) = −i
h̄2

2m

(
2π


x

)2

f (y), (17)

where x1 is the start and x2 is the end of the absorbing region
(see Fig. 1), 
x = x2 − x1, c is a numerical constant, m is the
electron’s mass, and

f (y) = 4

c2

(
1

(1 + y)2
+ 1

(1 − y)2
− 2

)
, y = (x − x1)


x
.

(18)

This CAP goes to infinity at the end of the absorbing region
and is therefore exactly transmission free. The CAP contains
only one parameter, the width of the absorbing region 
x.
Its reflection properties are guaranteed to improve as this
parameter is increased.

By adding the CAP [as defined in Eqs. (17) and (18)] to the
Hamiltonian of lead j one obtains

H ′
j = Hj + iWj (19)

where Wj contains the matrix elements of the complex
potential on the left and the right. Assuming that the basis
states connect only the neighboring cells in the lead, these
matrices will have the same block tridiagonal structure as the
leads’ Hamiltonian, but for the nonperiodic CAP the matrices
in the diagonals will not be identical:

Wj =

⎛
⎜⎜⎜⎜⎜⎝

w00
j w10+

j 0 0

w10
j w11

j w21+
j 0

0 w21
j w22

j . . .

0 0 . . . . . .

⎞
⎟⎟⎟⎟⎟⎠ . (20)

The addition of a CAP makes the Hamiltonian a finite
dimensional matrix; beyond the range of the complex potential,
the lead is effectively cut off. In the calculations we assume
that the complex potential starts at least one lead cell away
from the central region (see Fig. 1). With this choice, assuming
that the basis functions in the leads only connect neighboring
supercells, the τi coupling matrices will not have contributions
from the complex potential. The Hamiltonian of the system is
now
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H ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H1 + iW1 0 . . . 0 0 τ+
1

0 H2 + iW2 . . . 0 0 τ+
2

...
...

. . .
...

...
...

0 0 . . . HN−1 + iWN−1 0 τ+
N−1

0 0 . . . 0 HN + iWN τ+
N

τ1 τ2 . . . τN−1 τN HC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (21)

The addition of a CAP modifies only the wave functions and
the Green’s functions in the region where the CAP is nonzero.33

In the central region the electron density and the transmission
probability are the same as one would obtain using semi-
infinite leads without the CAP. The accuracy of the CAP
approach in transport calculations has been demonstrated.33

The transport coefficients calculated by the CAP approach
are in excellent agreement with the results of conventional
calculations using decimation or iteration48,49 to calculate the
Green’s function of the leads.

In the CAP formalism, the transmission probability can be
calculated by using Eq. (14) or (16). In the first approach,
Eq. (14) can be rewritten as (see Appendix C)

Tab(E) = 4Tr
[
G′(E)Wa G′(E)+Wb

]
. (22)

To calculate the transmission coefficients in many energy
points one has to recalculate the inverse G′ = (E I − H ′)−1

for each energy point. To calculate this inverse one can solve
the eigenvalue problem of the complex symmetric matrix H ′,

H ′Ck =
(

Ek − i

2

k

)
Ck, (23)

where Ek and 
k are the real and imaginary parts of the
eigenvalues. The spectral decomposition of the Green’s matrix
is now

G′(E) =
∑

k

CkC
T
k

E − Ek + i
2
k

. (24)

In this way only one diagonalization is needed and the Green’s
function is available for any energy at once. The dimension of
the Hamiltonian is large, but it is a sparse matrix so efficient
diagonalization algorithms can be used. One can also truncate
the expansion using only the eigenfunctions with a real part
of the energy below a preset energy maximum. Numerical
tests show that high-lying states do not contribute to the
spectral decomposition in the desired energy range around
the Fermi energy. One should also note that if the size of
the Hamiltonian matrix does not allow direct diagonalization
then one can use recursive methods, for example, those based
on damped Chebyshev polynomial expansions50–52 or the
Lanczos algorithm.53,54

Using the spectral representation, one can rewrite the
transmission coefficient in an explicitly energy-dependent
simple form:

Tab(E) =
∑
ij

1

E − Ei

1

E − E∗
j

Ua
ij Ub

ij (25)

where

Un
ij =

∑
kl

Cki(Wn)klC
∗
lj . (26)

This form again shows that once the eigenvalue problem
is solved, the transmission coefficient is available for any
energy.

Alternatively, one can use Eq. (16) to calculate the trans-
mission coefficient. In that case, the Green’s function of each
lead has to be calculated separately,

g′
n(E) = (ESn − H ′

n)−1. (27)

Once the leads’ Green’s functions are available, the imaginary
part of the leads’ self-energy can be calculated and Eq. (16)
can be used.

In a zero bias (equilibrium) case, the electron density can be
calculated in the conventional way using the imaginary part of
the Green’s function defined in Eq. (24). In a nonequilibrium
case, the density can be calculated as

ρ(r) =
∑
μ,ν

φ∗
μ(r)Re[Dμν]φν(r), (28)

where φν are basis functions and D is the density matrix
defined by

D =
∑

b

1

2π

∫ +∞

−∞
dEG′(E)W b(E)G′†(E)f (E − μb)

= − 1

π

∫ +∞

−∞
dEIm[G′(E)f (E − μa)]

+ 1

2π

∑
b �=a

∫ +∞

−∞
dE[G′(E)W b(E)G′†(E)]

× [f (E − μb) − f (E − μa)] . (29)

Using the spectral representation [Eq. (24)] the density matrix
can be rewritten as

Dνμ = − 1

π

∫ +∞

−∞
dEIm

[∑
k

CνkC
∗
μk

E − Ek + i
2
k

]
f (E − μa)

+ 1

2π

∑
b �=a

∫ +∞

−∞

× dE

⎡
⎣∑

ij

CνiC
∗
μj Ub

ij(
E − Ei + i

2
i

)(
E − Ej − i

2
j

)
⎤
⎦
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× [f (E − μb) − f (E − μa)]

= Im

[∑
k

CνkC
∗
μkp

a
k

]
+

∑
b �=a

∑
ij

CνiC
∗
μj Ub

ij q
ab
ij (30)

where

pa
k = − 1

π

∫ +∞

−∞
dE

1

E − Ek + i
2
k

f (E − μa), (31)

and

qab
ij = 1

2π

∑
b �=a

∫ +∞

−∞
dE

f (E − μb) − f (E − μa)(
E − Ei + i

2
i

)(
E − Ej − i

2
j

) .

(32)

The integrals in Eqs. (31) and (32) can be calculated by
numerical integration to desired accuracy.

D. Hamiltonian

Two different Hamiltonians are used in the calculations.
The first is a simple tight-binding Hamiltonian defined as

H =
∑

i

εi |i〉〈i| − t
∑

i

(|i〉〈i + 1| + |i + 1〉〈i|) . (33)

The reason for using this simple Hamiltonian is that it allows
us to compare the results with analytical calculations.

A more realistic model is based on a DFT Hamiltonian
defined as

HKS = − h̄2

2m
∇r + VA(r) + VH [ρ](r) + VXC[ρ](r), (34)

where VA(r) is the atomic potential, VH [ρ](r) is the Hartree
potential, and VXC(r) is the exchange-correlation potential.
The pseudopotential approach is used to represent the atomic
potentials VA(r). The exchange-correlation potential VXC(r) is
constructed using the local density approximation,18 and the
Hartree potential is calculated by solving the Poisson equation.
The density ρ is calculated self-consistently using Eq. (28).

In the DFT case, atomic orbitals are used as basis functions
and the matrix elements

Hμν = 〈φμ|HKS |φν〉 (35)

Sμν = 〈φμ|φν〉 (36)

will be used to set up the Hamiltonian and overlap matrices.
The calculation of the matrix elements and the self-consistent
potential is the same as in the conventional two-terminal
calculations.19,20,33,34

III. NUMERICAL RESULTS

In this section we present our numerical results to show the
accuracy and the applicability of the CAP approach.

A. Simple four-terminal junction

As a first example we have calculated the transmission in
the four-terminal device shown in Fig. 2. The system will be
described by a tight binding Hamiltonian (see Appendix D).
The Hamiltonian of the leads is defined in Eq. (D3) with
Vi = 0 and t = 50 (in atomic units). The Hamiltonian of the
central region is defined in Eq. (D2) with t = 50 and VC = 10

FIG. 2. (Color online) Four-terminal junction.

(in atomic units). This value for t corresponds to the values
obtained with a three-point finite difference discretization with
a step size of 0.1 atomic unit. The transmission coefficient
calculated by using the CAP is compared to the analytical
solution (presented in Appendix D) in Table I and in Fig. 3.
Due to the symmetry of the Hamiltonian in this simple
model, the transmission between any two leads is identical.
Table I shows that the results of the CAP calculation are
in excellent agreement with the analytical calculations. The
agreement improves as the energy increases, because the CAP
can more easily absorb the higher energy wave functions. The
accuracy can be increased further by increasing the range of
the CAP. Figure 3 shows that the transmission monotonically
increases with energy. This is similar to the behavior of the
transmission probability of a one-dimensional step barrier,
where the transmission converges to 1 with increasing energy.
In the four-terminal case the transmission converges to 1/4.

B. Eight-terminal junction

The next analytically solvable example is the eight-terminal
junction shown in Fig. 4. The crossing points A, B, C, and D

are separated by 21 sites. The same Hamiltonian is used as
in the previous example, except that VC = 0 is used in the
present case. Thus the scattering in the eight-terminal junction

TABLE I. Transmission in four-terminal junctions. The energy is
in atomic units.

E CAP Analytical

0.0 0.000 465 0.000 096
0.1 0.110 523 0.109 824
0.2 0.151 629 0.151 405
0.3 0.173 274 0.173 261
0.4 0.186 677 0.186 729
0.5 0.195 814 0.195 856
1.0 0.216 982 0.216 996
1.5 0.225 005 0.225 001
2.0 0.229 159 0.229 155
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BRANDON G. COOK, PETER DIGNARD, AND KÁLMÁN VARGA PHYSICAL REVIEW B 83, 205105 (2011)

0 1 2
E (atomic units)

0

0.1

0.2

T
(E

)

FIG. 3. (Color online) Transmission in a four-terminal junction.
The results of the CAP and the analytical calculation are in complete
agreement and cannot be distinguished in the resolution of the figure.

is purely due to the cross points. In the eight-terminal example,
there are three different transmission coefficients T12, T14, and
T15 (connecting lead 1 to leads 2, 4, and 5; see Fig. 4), all other
transmissions are equal to these three due to the symmetry
of the Hamiltonian. Figures 5 and 6 show the transmission
coefficients calculated by using the CAP and by the analytical
solution. The results of the CAP and analytical approaches are
in perfect agreement.

Figure 5 shows the transmission between leads 1 and 2,
T12. This transmission is much larger than the other two
transmissions T14 and T15 (see Fig. 6). This not surprising,
because these two leads are directly connected and the there
is only one scattering center between the two leads. The
transmission oscillates around 5/16 with an amplitude of 4/16.
This oscillation is due to the interference between the waves
that directly scatter from 1 to 2 and those that go around the
square and get backscattered from the vertices A, B, C, and
D. The frequency of the oscillation increases with the distance
between crossing points, because the energy spacing of the
standing waves between crossing points decreases and more
and more standing waves contribute to the interference.

Figure 6 shows the transmission coefficients T14 and
T15. These transmissions behave similarly to T12, oscillating
around 1/16. The interference effect causes a very interesting

FIG. 4. (Color online) Eight-terminal junction.

0 5 10 15 20
E (eV)

0

0.1

0.2

0.3

0.4

0.5

0.6

T
(E

)

1-2

FIG. 5. Transmission (T12) in an eight-terminal junction. The
results of the CAP and the analytical calculation are in complete
agreement and cannot be distinguished in the resolution of the figure.

behavior: in certain energy regions the transmission from 1 to
5 is larger than the transmission from 1 to 4, which is along a
straight line. The period of oscillations, similar to the previous
case, depends on the distance between the crossing points.

C. Four-terminal graphene device

The first realistic example using a self-consistent density
functional Hamiltonian is a four-terminal graphene cross
junction. A cross junction consists of an intersection between
armchair and zigzag graphene ribbons. The geometry of the
device is shown in Fig. 7. The region within the dotted box
is the scattering region of the device. The armchair leads are
na = 8 unit cells wide and the zigzag leads are nz = 6 unit
cells in width. Matrix elements are calculated with density
functional theory using an atomic orbital basis set as described
in Sec. II D.

In contrast to the simple devices discussed previously,
with the graphene device there are more unique values for
the transmission coefficients between leads. This is caused
by the broken symmetry of the system at the corners of the
cross region. However, the differences between the different
values for turning a corner are small and similar behavior
is observed. The calculated transmission is shown in Fig. 8.
Our results are in agreement with the results of tight-binding
calculations.21 It is interesting to note that there is no gap for

0 5 10 15 20
E (eV)

0.04

0.06

0.08

T
(E

)

1-4
1-5

FIG. 6. (Color online) Transmission (T14 and T15) in an eight-
terminal junction. The results of the CAP and the analytical
calculation are in complete agreement and cannot be distinguished in
the resolution of the figure.
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FIG. 7. (Color online) Graphene cross-junction device.

transmission between the two armchair leads but there is a gap
for transmission between the two zigzag leads. A similar gap
is found for the transmission between the two types of leads.

D. Six-terminal carbon nanotube junction

In this example a six-terminal junction built from three
(5,0) semiconducting nanotubes with a density functional
Hamiltonian is considered. Two tubes are placed parallel to
each other. The third tube, oriented perpendicular to the other
two, is placed on top as shown in Fig. 9. Ideal structures for
the nanotubes are used in the work.

The transmission coefficients as a function of energy are
shown in Figs. 10 and 11. Similar to the graphene case, the
symmetry of the system is broken by the relative orientations
of the nanotubes. That is, T24 is not the same as T35. However,
the two curves have similar features. Since the nanotubes in
this configuration are loosely coupled, the transmission along
the axis of any given nanotube is very similar to that through an
isolated nanotube. Figure 10 shows that T23 and T16 both retain
their semiconducting gap. The transmission along the two
tubes is not the same, however, because one has two scattering
centers and the other has only one. Due to the weak nature of
the coupling, the transmission through leads on different tubes
is significantly lower (see Fig. 10). The lowest transmission
is seen to be from terminals 2 to 4, where the electron would
have to go through all three tubes.

-2 -1 0 1 2
E (eV)

0

1

2

3

4

5

T
(E

)

FIG. 8. (Color online) The transmission coefficient of a graphene
cross-junction device.

FIG. 9. (Color online) Six-terminal CNT junction.

E. Monoatomic gold chain cross

The last example is a calculation of the transmission and
current-voltage characteristics for a monoatomic gold chain
using a density functional Hamiltonian. The geometry of the
system is the same as the four-terminal junction shown in
Fig. 2. The gold atoms are placed 2.9 Å apart from each other.
The calculated transmissions of the gold cross are shown in
Fig. 12. The figure also shows the quantized transmission of
the monoatomic gold chain for comparison. The transmission
of the gold chain without the cross is T (E) = nG0, where
G0 = 2e2/h is the unit of the quantum conductance and n is
an integer which is equal to the number of Bloch states at a
given energy E. Figure 12 shows that due to the scattering
at the intersection of the two chains, the transmission in a
straight line (T13) of the cross is smaller than the transmission
in the monoatomic chain (without a cross). In the simple tight-
binding four-terminal case, T12 and T13 were equal to each
other. In the gold cross case the right angle transmission T12 is
much smaller than the straight line transmission. The variation
of T13 and T12 follows the variation of the transmission of
the monoatomic chain (with no cross). The self-consistent
potential calculated for the gold junction is shown in Fig. 13.
The figure shows that the potential distribution on the atom
in the middle of the cross is different from the atoms in the
chain. This difference is due to the fact that the middle atom has
four neighbors while the other atoms have only two neighbors.
This potential difference presents the perturbation leading to
a reduction of transmission compared to the monoatomic case
without a cross.
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FIG. 10. (Color online) Transmission in a six-terminal CNT
junction.
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FIG. 11. (Color online) Transmission in a six-terminal CNT
junction.

Next we show an example of an applied bias in the gold
chain cross case. The complication in this case is that one has
to solve the Poisson equation with proper boundary conditions
to take into account the effect of the bias voltage applied
on the leads. This problem has been solved in various ways
in two-terminal calculations.11,13 In a multiterminal case the
solution is more complicated due to the larger number of
leads and boundary conditions. In the present calculation we
restrict ourself to the case where only two leads have bias
voltage and there are no bias voltages on the rest of the leads.
The implementation of the Poisson equation for more general
cases is left for future work. Electrodes 1 and 3 (see Fig. 13)
are connected to voltage Vb/2 and −Vb/2 and electrodes 2
and 4 have zero bias voltage. The self-consistent calculation
is carried out in the same way as before, except that the
nonequilibrium part of the density matrix also contributes to
the density.

The current as a function of bias voltage is shown in
Fig. 14. As one expects from the behavior of the transmission
probability shown in Fig. 12, I13 is much larger than I12.
Further studies are needed to explore the dependence of the
current flow on bias voltage on various leads, but this is out of
the scope of the present work.

-4 -2 2 4
E (eV)

0

1

2

3

4

5

T
(E

)

1

2

4

3

T
12

T
13

0

FIG. 12. (Color online) Transmission in a monoatomic gold
chain cross. The transmission coefficients are calculated by both
the CAP approach and by the conventional NEGF method using
the decimation technique48 to obtain the self-energies. The results
of the two approaches are in complete agreement and cannot be
distinguished in the resolution of the figure.

FIG. 13. (Color online) Potential distribution in a monoatomic
gold chain cross.

IV. SUMMARY

We have presented an efficient and accurate way to
calculate transmission coefficients in multiterminal systems
using CAPs. By adding a complex absorbing potential to
the Hamiltonian of the semi-infinite lead, the lead can be
terminated in a finite distance leading to finite dimensional
matrices. In this way the Green’s function of the system can
be calculated using a spectral representation for all energies
at once. The test examples presented, including graphene and
carbon nanotube multiterminal devices, show the accuracy and
effectiveness of the approach.

The formalism presented in this paper is general and applies
to systems with any number of terminals. To our knowledge,
the details of the Green’s function matrix formalism of the
NEGF method has not been presented elsewhere for N > 4.

We have used a CAP which depends on only one parameter,
its range, and its accuracy can be increased by increasing
the range. This gives us a very effective way of controlling
the convergence of the method. Calculations using other
multiterminal systems are underway.
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APPENDIX A: ELEMENTS OF FORMAL
SCATTERING THEORY

To make the paper self-contained, we briefly review some
of the elements of the formal multichannel scattering theory
used in the derivations. For more details refer to Ref. 35. A
wave function in channel a is an eigenfunction of the channel
Hamiltonian

Haφa = Eaφa. (A1)

These channel wave functions form a complete orthonormal
set of states ∑

α

|φaα〉〈φaα| = 1. (A2)

We can also define a Green’s function for channel a

Ga(Ea + iε) = 1

Ea + iε − Ha

. (A3)

The scattering wave function ψ±
a corresponding to the incom-

ing or outgoing wave function from a satisfies

Hψ±
a = Eaψ

±
a . (A4)

By combining these two equations one obtains the Lippmann-
Schwinger equation for ψ+

a ,

ψ+
a = [1 + G(Ea + iε)Va]φa, (A5)

where + stands for an incoming wave boundary condition and

Va = H − Ha. (A6)

Similarly, an outgoing solution in channel b is given by

ψ−
b = [1 + G(Eb − iε)Vb]φb. (A7)

One can define a transition matrix between a and b by

T +
baφa = Vbψ

+
a = [(Vb + VbG(Ea + iε)Va)]φa. (A8)

The transition probability from an incoming state in b to an
outgoing state in a is given by

S2
ab = |〈ψ−

b |ψ+
a 〉|2. (A9)

By interchanging ψ+
a and ψ−

b , the matrix element Sab can be
calculated from

Sab = δab − 2πiδ(Ea − Eb)〈φb|Tab|φa〉. (A10)

APPENDIX B: SIMPLIFICATION OF THE EXPRESSION
FOR THE TRANSMISSION COEFFICIENT

The sparse block structure of the Hamiltonian matrix can
be exploited to simplify the transmission coefficient [see
Eq. (14)]. To calculate the Green’s function matrix G one
has to invert

ES − H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ES1 − H1 0 . . . 0 0 τ+
1

0 ES2 − H2 . . . 0 0 τ+
2

...
...

. . .
...

...
...

0 0 . . . ESN−1 − HN−1 0 τ+
N−1

0 0 . . . 0 ESN − HN τ+
N

τ1 τ2 . . . τN−1 τN ESC − HC

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B1)

By defining

τ = ( τ1 τ2 . . . τN−1 τN ) (B2)

and the block diagonal matrix

ESL − HL =

⎛
⎜⎜⎜⎜⎝

ES1 − H1 0 . . . 0 0
0 ES2 − H2 . . . 0 0
...

...
. . .

...
...

0 0 . . . ESN−1 − HN−1 0
0 0 . . . 0 ESN − HN

⎞
⎟⎟⎟⎟⎠ (B3)

ES − H can be rewritten in the following block form

ES − H =
(

ESL − HL τ+
τ ESC − HC

)
. (B4)

The inverse of this matrix can be calculated by partitioning55

G(E) = (ES − H)−1 =
(

GL(E) − [GL(E)τ+]GC(E)[τGL(E)] −[GL(E)τ+]GC(E)
−GC(E) [τGL(E)] GC(E)

)
. (B5)
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In the above equation we have introduced the Green’s function
of the center

GC(E) = [ESC − HC − τGL(E)τ+]−1 (B6)

and the Green’s function of the leads

GL(E) = (ESL − HL)−1 =

⎛
⎜⎜⎜⎜⎝

g1 0 . . . 0 0
0 g2 . . . 0 0
...

...
. . .

...
...

0 0 . . . gN−1 0
0 0 . . . 0 gN

⎞
⎟⎟⎟⎟⎠ ,

(B7)

where the gi(E) matrices are the Green’s functions of the leads,

gi(E) = (ESi − Hi)
−1. (B8)

Using the Green’s functions of the leads, the GC matrix can
also be simplified to

GC(E) =
[
ESC − HC −

N∑
i=1

�i(E)

]−1

(B9)

where

�i(E) = τigi(E)τ+
i . (B10)

Now we can use these results to simplify the expression
of the transmission coefficient in Eq. (14). In Eq. (14), the
transmission coefficient

Tab(E) =
∑
αβ

∣∣〈�β

b

∣∣V bG(E)V a

∣∣�α
a

〉∣∣2
(B11)

can be simplified by using the equation〈
�

β

b

∣∣V bG(E)V a

∣∣�α
a

〉 = 〈
φ

β

b

∣∣τ+
b GC(E)τa

∣∣φα
a

〉
(B12)

which can be easily derived using Eqs. (B5), (5), and (9). Using
this expression the derivation on Eq. (14) can be repeated and
one obtains

Tab(E) =
∑
αβ

∣∣〈φβ

b

∣∣τ+
b GC(E)τa

∣∣φα
a

〉∣∣2

=
∑
αβ

〈
φ

β

b

∣∣τbGC(E)τa

∣∣φα
a

〉〈
φα

a

∣∣τ+
a GC(E)+τb

∣∣φβ

b

〉
=

∑
β

〈
φ

β

b

∣∣τbGC(E)�aGC(E)+τ+
b

∣∣φβ

b

〉
=

∑
β

∑
β ′

〈
φ

β

b

∣∣τb|β ′〉〈β ′|GC(E)�aGC(E)+τ+
b

∣∣φβ

b

〉
=

∑
β ′

〈β ′|GC(E)�aGC(E)+�b|β ′〉

= Tr[GC(E)�aGC(E)+�b], (B13)

where

�a = τ+
a

(∑
α

∣∣φα
a

〉〈
φα

a

∣∣) τa

= τ+
a (ga(E) − ga(E)+)τa (B14)

= i(�a(E) − �a(E)+).

APPENDIX C: TRANSMISSION COEFFICIENT
WITH CAPs

After the CAP is added to the Hamiltonian, the transmission
coefficient can be calculated using Eq. (14),

Tab(E) = Tr[G′(E)�′
a G′(E)+�′

b]. (C1)

In this equation the prime indicates that the CAP is added, that
is, the Green’s function is defined by

G′(E) = (ES − H ′)−1, (C2)

where H ′ is defined in Eq. (21). In a manner corresponding
to the partitioning of the Hamiltonian, the Green’s function
matrix can be partitioned as

G′ = (ES − H ′)−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

G′
11 G′

12 . . . G′
1N G′

1C

G′
21 G′

22 . . . G′
2N G′

2C

...
...

. . .
...

...
G′

N1 G′
N2 . . . G′

NN G′
NC

G′
C1 G′

C2 . . . G′
CN G′

C

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(C3)

Using the result of Appendix B, the transmission can be
rewritten as

Tab(E) = Tr[G′
C(E)�′

aG
′
C(E)+�′

b] (C4)

= Tr[G′
C(E)τ+

a (g′
a − g′+

a )τaG
′
C(E)τ+

b (g′
b − g′+

b )τb].

(C5)

Using the identity

i(g′
a − g′+

a ) = ig′
a

(
g′

a

+−1 − g′
a

−1)
g′

a

+ = 2g′
aWag

′
a

+ (C6)

one has

Tab(E) = 4Tr[G′
C(E)τag

′
aWag

′+
a τaG

′
C(E)τbg

′
bWbg

′
bτb].

(C7)

One can notice that in this equation we have

G′
ab = g′

aτ
+
a G′

Cτbg
′
b. (C8)

Using this the transmission becomes

Tab(E) = 4Tr[G′
abWaG

′
ab

+
Wb]

(C9)

= 4Tr
[
G′W a G+W b

]
where

W i =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 Wi 0 0
0 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C10)

APPENDIX D: ANALYTICAL SOLUTION FOR A
FOUR-TERMINAL DEVICE

In this appendix an analytical solution for the transmission
between leads of a four-terminal device described by a
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tight-binding Hamiltonian is presented. The system consists
of five regions: four leads and a central scattering region.
Assuming that leads only interact with the center region, the
Hamiltonian of the device is

H =

⎛
⎜⎜⎜⎝

H1 0 0 0 τ+
1

0 H2 0 0 τ+
2

0 0 H3 0 τ+
3

0 0 0 H4 τ+
4

τ1 τ2 τ3 τ4 HC

⎞
⎟⎟⎟⎠ , (D1)

where Hi is the Hamiltonian of lead i (i ∈ {1,2,3,4}), and τi

is the Hamiltonian matrix that couples lead i to the central
region C. Lead i is kept at a potential V i . Considering on-site
elements 2t and connecting elements −t , the Hamiltonian of
the central region is

HC =

⎛
⎜⎜⎜⎝

2t + V1 0 0 0 −t

0 2t + V2 0 0 −t

0 0 2t + V3 0 −t

0 0 0 2t + V4 −t

−t −t −t −t 4t + VC

⎞
⎟⎟⎟⎠ .

(D2)

The Hamiltonian of the lead i is an infinite tridiagonal matrix,

Hi =

⎛
⎜⎝

2t + Vi −t 0 0
−t 2t + Vi −t 0
0 −t 2t + Vi . . .

0 0 . . . . . .

⎞
⎟⎠ . (D3)

The connection matrices τi have one nonzero element, −t ,
located in the final column of row i, for example,

τ3 =

⎛
⎜⎜⎜⎝

. . . 0 0

. . . 0 0

. . . 0 −t

. . . 0 0

. . . 0 0

⎞
⎟⎟⎟⎠ . (D4)

The self-energy of a lead i is

�i = τigiτ
+
i . (D5)

The Green’s function of the lead is

gi = E − Vi

2t2
− i

2

√
1 − (E − Vi − 2t2)2

4t2
= e−iφi

t
, (D6)

where

φi = arccos

(
E − Vi − 2t

2t

)
. (D7)

With these definitions, the self-energy matrices �i are 5 × 5
and contain only one nonzero element te−iφi located on the
diagonal at (i,i). For example,

�2 =

⎛
⎜⎜⎜⎝

0 0 0 0 0
0 te−iφ2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎠ . (D8)

The Green’s function for the central region is

GC(E) = 1

E − HC − �1 − �2 − �3 − �4
. (D9)

With these definitions the Green’s function is

GC(E) =

⎛
⎜⎜⎜⎝

a1 0 0 0 −t

0 a2 0 0 −t

0 0 a3 0 −t

0 0 0 a4 −t

−t −t −t −t E − 4t − VC

⎞
⎟⎟⎟⎠

−1

,(D10)

where ai = E − 2t − Vi − te−tφi . The Green’s function can
be written in the following block form:

GC =
(

A T +
T B

)−1

(D11)

where

A =

⎛
⎜⎝

a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4

⎞
⎟⎠ , (D12)

T = −( t t t t ) and B = (E − 4t − VC) . (D13)

The inverse of block matrix can be found by partitioning55 [see
also Eq. (B5)]

GC =
(

A−1 + A−1T +ST A−1 −A−1T +S

−ST A−1 S

)
, (D14)

where S is the inverse of the Schur compliment of A,

S = (B − T A−1T +)−1. (D15)

Since A is diagonal,

A−1 =

⎛
⎜⎝

f1 0 0 0
0 f2 0 0
0 0 f3 0
0 0 0 f4

⎞
⎟⎠ (D16)

where fi = a−1
i . With the previous definitions,

S =
[
E − 4t − VC − t2

n=4∑
i=1

fi

]−1

. (D17)

From this point forward S is referred to as s to reflect the fact
that it is a scalar. We can now calculate elements of the Green’s
function explicitly,

GC =

⎛
⎜⎜⎜⎝

d1 F12 F13 F14 stf1

F21 d2 F23 F24 stf2

F31 F32 d3 F34 stf3

F41 F42 F43 d4 stf4

stf1 stf2 stf3 stf4 s

⎞
⎟⎟⎟⎠ , (D18)

where di = fi + st2f 2
i and Fij = st2fifj . The expression for

the transmission between two leads is

Tij = Tr[�iG
+
C�jGC], (D19)

where

�i = i[�i − �+
i ]. (D20)

The structure of �i is sparse. There is only one nonzero
element, ri = −2t sin φi , located at (i,i). Now consider �jG.
The effect of multiplying by �j is to pick out row j from G.
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For example,

�2G
+ =

⎛
⎜⎜⎜⎜⎝

0 . . . 0
r2G

+
21 . . . r2G

+
25

0 . . . 0
...

...
0 . . . 0

⎞
⎟⎟⎟⎟⎠ . (D21)

Multiplying the terms and taking the trace gives

Tij = 4t2 sin φi sin φj

∣∣Fij

∣∣2
(D22)

for i �= j . Note that this expression is general and holds for
any number of leads.
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