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Using a real-time renormalization group method we study the minimal model of a quantum dot dominated
by charge fluctuations, the two-lead interacting resonant level model, at finite bias voltage. We develop a set
of RG equations to treat the case of weak and strong charge fluctuations, together with the determination
of power-law exponents up to second order in the Coulomb interaction. We derive analytic expressions for the
charge susceptibility, the steady-state current, and the conductance in the situation of arbitrary system parameters,
in particular away from the particle-hole symmetric point and for asymmetric Coulomb interactions. In the
asymmetric situation we find that power laws can be observed for the current only as a function of the level position
(gate voltage) but in general not as a function of the voltage except for extremely large voltages. Furthermore,
we study the quench dynamics after sudden switch-on of the level-lead couplings. The time evolution of the dot
occupation and current is governed by exponential relaxation accompanied by voltage-dependent oscillations
and characteristic algebraic decay.
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I. INTRODUCTION

The standard setup for a quantum dot consists of a small
quantum system described by a finite-dimensional Hilbert
space which is coupled to several infinitely large reservoirs via
energy and/or particle exchange. A difference in the chemical
potentials of the reservoirs will generically lead to particle
transport and thus a finite current through the dot. Here we
will study the arguably simplest but nontrivial quantum dot
system, namely the interacting resonant level model (IRLM). It
is given by a local level coupled to two leads of noninteracting
spinless fermions. The fermions can hop on and off the level. In
addition, there is a Coulomb interaction between the level and
the reservoirs (see Fig. 1). The IRLM constitutes the minimal
model for a quantum dot dominated by charge fluctuations, as
spin degrees of freedom are not taken into account.

Originally the (one-lead) IRLM was introduced indepen-
dently by P. B. Wiegmann and A. M. Finkelstein1 as well
as Schlottmann2 to study the anisotropic Kondo model. They
generalized earlier works by Anderson and co-workers3 at
the Toulouse point,4 where the Coulomb interaction between
the level and the reservoir vanishes. In particular, in Refs. 1
and 2 it was shown that the IRLM and the anisotropic Kondo
model possess the same partition function in the so-called
long-time approximation and thus share the same universal
low-temperature characteristics. Equilibrium properties like
the static and dynamic susceptibilities and the relaxation rate
of the IRLM have been intensively studied in the early 1980s
using the Bethe ansatz5 as well as renormalization group
(RG) techniques.6 The equivalence between the IRLM and
the anisotropic Kondo model can be shown by bosonization
and refermionization of the latter model.7

Recently the interest in the IRLM has been revived as a
minimal model to describe nonequilibrium transport through
quantum dots. Initialized by the work of Mehta and Andrei,8

the model has been investigated using the Hershfield Y

operator,9 Keldysh perturbation10 and scattering theory,11,12

field theory approaches,13–15 the numerical renormalization
group method (NRG),16 and the time-dependent density matrix
renormalization group technique (TD-DMRG).14,15 Most of
these studies were performed at the special point of particle-
hole and left-right symmetry. The quantity of main interest
has been the steady-state current through the resonant level.
The main conclusions were that (i) at sufficiently large bias
voltages a negative differential conductance appears, and that
(ii) in the scaling limit, where all bare energy scales are much
smaller than the bandwidth of the leads, the current decreases
as a power law in the applied voltage. However, only at the
self-dual point14 has it been possible to derive closed analytic
expressions for the current as a function of the applied voltage.

Recently, perturbative RG techniques in
nonequilibrium16–18 have been applied to obtain more
insight into the physics of the IRLM at finite bias. In Ref. 16
a poor man scaling analysis has been performed up to
next-to-leading order providing power-law exponents up to
second order in the Coulomb interaction. In a nonequilibrium
situation, the RG flow was cut off heuristically by the voltage,
which induced an emergent power-law behavior of the current
as a function of the voltage. Subsequently, this analysis has
been put on a more firm basis by the application of recently
developed RG methods in nonequilibrium, the functional
RG,19 and the real-time RG method;20 see Ref. 21 for a
recent review. A short summary of the main results of the two
methods for the IRLM has been presented in Ref. 18, where
a leading-order expansion has been performed giving rise
to power-law exponents linear in the Coulomb interaction.
The results were compared to numerically exact NRG and
DMRG methods and a good agreement has been observed for
moderate Coulomb interactions. In particular, the conclusion
was drawn that power-law behavior does not take place in the
generic case of asymmetric Coulomb interactions between
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FIG. 1. (Color online) Sketch of the interacting resonant level
model. A local level with energy ε0 is coupled via hoppings t

(0)
L/R and

Coulomb couplings U
(0)
L/R to two spinless fermionic reservoirs held at

chemical potentials μL/R = ±V/2.

the dot and the left and right reservoir. In addition, the scaling
behavior at resonances away from the particle-hole symmetric
point has been reexamined.9 Details of the functional RG
method have been presented in Ref. 17.

In this paper we will present an extended version of
Ref. 18 concerning the real-time RG method, supplemented
by a generic treatment of strong charge fluctuations, a next-
to-leading order analysis in the Coulomb interaction, and
an interesting result concerning power laws as a function
of the level position away from the particle-hole symmetric
point. The real-time renormalization group in frequency space
(RTRG-FS)20 has recently been introduced in the theory of
dissipative quantum systems. It provides a powerful tool
in the description of nonequilibrium transport, in particular
the relaxation and decoherence rates naturally arise within
the proposed formalism. Previous applications to the Kondo
model22,23 in the weak-coupling regime are here generalized
to include charge fluctuations in strong coupling. To this end
we develop RG equations, where we expand all quantities
around zero Matsubara frequency, in contrast to previous
treatments,22,23 where a systematic expansion around the poor
man scaling solution has been performed. The RG equations
are set up in a generic form, which can also be used for other
models with strong charge fluctuations. In particular, for the
IRLM we demonstrate that this scheme allows the study of
observables close to resonances where the tunneling rate is
the only relevant energy scale quantifying charge fluctuations.
Furthermore, we extend the analysis in Ref. 18 by including
subleading terms, which gives the exponents of power laws
consistently up to second order in the Coulomb interaction.
A corresponding comparison of the power-law exponent with
NRG results for the charge susceptibility in equilibrium at
the particle-hole symmetric point yields excellent agreement.
We present approximate analytical solutions, which are con-
firmed by numerically integrating the corresponding full RG
equations and which describe the steady state as well as the
quench dynamics for arbitrary system parameters. Thereby
various microscopic cutoff scales of the RG flow can be
identified, which is essential for the precise determination of
the scaling behavior of observables. In particular, we derive
closed analytic expressions for the charge susceptibility, the
steady-state current, and the differential conductance. We find
(i) a negative differential conductance for arbitrary system
parameters, (ii) that for asymmetric Coulomb interactions the
current does in general not follow a power law as a function of
the bias and is recovered only in the limit of extremely large

voltages, (iii) that at resonance, i.e., when the level position is
aligned with one of the Fermi levels in the leads, the current
does not follow a power law even in the symmetric model,
and (iv) that the current or the linear conductance reveals a
power law as a function of the level position in the generic
case, i.e., even for asymmetric Coulomb interactions and/or
asymmetric tunneling couplings. The latter result was not
reported in Ref. 18.

In addition, we use the analytical solution of the RG
equations to study the quench dynamics in the IRLM, where
we assume the couplings to the leads to be switched on
suddenly. We derive closed integral representations for the
resulting time evolution of the dot occupation and the current.
The most notable characteristics of the time evolution of both
observables are (i) the relaxation toward the stationary values
is governed by two different decay rates describing the charge
relaxation on the level and its broadening induced by the
coupling to the leads, respectively, (ii) the voltage appears
as an important energy scale for the dynamics setting the
frequency of an oscillatory behavior, and (iii) the exponential
decay is accompanied by an algebraic behavior with an
interaction-dependent exponent. Similar results have been
obtained recently for the dynamics of the nonequilibrium
Kondo model,23 showing that these features are generic.

The paper is organized as follows: In Sec. II we introduce
the IRLM and discuss its description in Liouville space. In
Sec. III we summarize and solve the RG equations. In Sec. IV
we present the results for steady-state quantities as well as for
the time evolution. Here we also provide a simple derivation
of the appearance of the negative differential conductance.
Technical details together with the generic derivation of
nonequilibrium RG equations in the regime of strong charge
fluctuations are reported in the appendixes.

II. MODEL

The Hamiltonian of the interacting resonant level model
(IRLM) depicted in Fig. 1 is given by

H = Hres + HD + V, (1)

where

Hres =
∑
kα

(εk + μα)a†
kαakα (2)

describes a set of semi-infinite fermionic reservoirs with
chemical potentials μα . In the case of two reservoirs α =
L/R, we choose μL/R = ±V/2. Standard second-quantized
notation is used, and the energies εkα are restricted to a finite
band of width D. The dot Hamiltonian reads

HD = ε0c
†c, (3)

and the fermionic level is coupled to the reservoirs via

V =
∑

α

t (0)
α√
ρ

(0)
α

∑
k

(a†
kαc + c†akα)

+
(

c†c − 1

2

) ∑
α

U (0)
α

ρ
(0)
α

∑
kk′

: a
†
kαak′α :, (4)
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where : . . . : denotes normal ordering, and t (0)
α and U (0)

α are
real. In the following we denote the bare parameters by the
superscript (0). In the scaling limit the details of the frequency
dependence of the local density of states in the reservoirs ρα(ω)
do not play a significant role as long as it is sufficiently regular
on the energy scale of the applied voltage, which allows us to
approximate it by a constant. Following Ref. 20, we choose
the Lorentzian form

ρα(ω) = ρ(0)
α

D2

D2 + ω2
. (5)

We stress that the hybridization as well as the Coulomb
interactions to the leads are allowed to be asymmetric, which
corresponds to a generic setting. Furthermore, we do not
restrict ourselves to the particle-hole symmetric point given
by ε0 = 0.

We define a(†)
α (ω) = 1√

ρ
(0)
α

∑
k δ(ω − εk + μα)a(†)

kα , and in-

troduce the vertices

gηα = t (0)
α

{
c for η = +
c† for η = − (6)

and

gηα,η′α′ = δη,−η′δα,α′η U (0)
α

(
c†c − 1

2

)
. (7)

The different contributions to the Hamiltonian can then be
rewritten as

Hres =
∑

α

∫
dω(ω + μα)a†

α(ω)aα(ω), (8)

where we measure the energy ω of the reservoir states relative
to the chemical potentials μα ,

HD =
∑

s

Es |s〉〈s|, (9)

with s = 0,1, and E0 = 0, E1 = ε0 respectively, and

V = η

∫
dωa1(ω)g1

+1

2

∫
dω

∫
dω′ηη′: a1′ (ω′)a1(ω) :g11′ , (10)

with the multi-index 1 ≡ ηα containing η = ± for creation and
annihilation operators and the lead index α. Repeated incides
are assumed to be summed over. We consider the case of zero
temperature throughout the paper since temperature is a rather
trivial cutoff parameter for the RG flow, which at will can be
easily incorporated in the employed RG formalism.

III. RG ANALYSIS

We will study the nonequilibrium properties of the IRLM
using the real-time renormalization group method in frequency
space20 (RTRG-FS). The formalism is based on a description
of the system in Liouville space. The density matrix of the
full system, ρ(t), is given by the solution of the von Neumann
equation,

ρ(t) = e−iH (t−t0) ρ(t0) eiH (t−t0)

= e−iL(t−t0) ρ(t0), (11)

where L = [H,.] is the Liouvillian acting on usual operators
in Hilbert space via the commutator. Initially, we assume that
the density matrix is a product of an arbitrary dot part ρD(t0)
and grand-canonical distributions for the reservoirs,

ρ(t0) = ρD(t0)
∏
α

ρα
res. (12)

The object of main interest is the reduced density matrix of
the dot, which is obtained by tracing out the reservoir degrees
of freedom,

ρD(t) = Trres ρ(t) = Trres e−iL(t−t0) ρD(t0)
∏
α

ρα
res, (13)

and its Laplace transform (Im z > 0),

ρ̃D(z) =
∫ ∞

t0

dt eiz(t−t0) ρD(t) = Trres
i

z − L
ρ(t0). (14)

Here the Liouvillian admits the same decomposition as
Eq. (1), i.e., L = Lres + L

(0)
D + LV with Lres = [Hres,.], L

(0)
D =

[HD,.], and LV = [V,.]. Using the RTRG-FS we will derive
the effective Liouvillian of the quantum dot Leff

D (z) from which
the reduced density matrix can be calculated via

ρ̃D(z) = i

z − Leff
D (z)

ρD(t0). (15)

The stationary reduced density matrix is obtained as

ρst
D = lim

t→∞ ρD(t) = lim
z→i0+

z

z − Leff
D (z)

ρD(t0). (16)

The existence of a stationary density matrix was proven in
Ref. 20 using the RTRG-FS as well as for the Kondo model in
Ref. 24 using nonequilibrium perturbation theory to all orders.
The matrix elements of the effective Liouvillian involve the
rates for the processes between the two eigenstates of the
dot, leading to poles of the resolvent (15) at z1

p = −i�1 and
z±

p = ±ε̃ − i�2, where �1 corresponds to the charge relaxation
rate, �2 describes half of the broadening of the local level, and
ε̃ is the renormalized level position.

The calculation of the current follows along the same lines.
The operator for the particle current flowing from reservoir γ to
the dot is defined as I γ = −dNγ /dt = −i[H,Nγ ], where Nγ

denotes the corresponding particle number operator in lead γ .
The current in lead γ then reads 〈I γ 〉(t) = TrDTrres I γ ρ(t).
Tracing out the reservoir degrees of freedom it can be
written as

〈I γ 〉(z) = −i TrD 
γ (z) ρ̃D(z) (17)

in Laplace space, where 
γ (z) denotes the current kernel to
be derived below. The stationary current is given by 〈I γ 〉st =
−i TrD 
γ (i0+) ρst

D .
Through Leff

D (z), the RTRG-FS method provides direct
access to the microscopic cutoff scales. By systematically
integrating out the energy scales of the reservoirs step by step,
a formally exact RG equation can be derived for Leff

D (z) as
a function of a flow parameter �, where all reservoir energy
scales beyond � are included. This RG equation is coupled
to other RG equations for the couplings. Similar schemes
can be developed for the calculation of the transport current
and correlation functions.20,22 All RG equations involve
resolvents similar to the one occurring in Eq. (15), where
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z is shifted by the physical energy scales like the reservoir
electrochemical potentials. The cutoff scale is given by the
distance to resonances, being replaced by the corresponding
rate at resonance. The microscopic inclusion of decay rates
as cutoff scales into nonequilibrium RG methods was also
achieved within flow equation methods.25

A. Parametrization and initial conditions

In Liouville space, defined by the basis (00 11 10 01),
the bare Liouvillian is given by L

(0)
D = [HD,·], and the bare

vertices are

G
p(0)
1 = σp

{
g1· for p = +
− · g1 for p = − (18)

and

G
pp′(0)
11′ = δpp′

{
g11′ · for p = +
− · g11′ for p = − , (19)

where σ+ = I and

σ− =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎠ . (20)

The bare current vertex reads (I γ )p(0)
1 = − 1

2ηδαγ p G
p(0)
1 .

For the vertices the following notations are introduced:

Ḡ
(0)
1 =

∑
p

G
p(0)
1 , G̃

(0)
1 =

∑
p

p G
p(0)
1 , (21)

Ḡ
(0)
11′ =

∑
p

G
pp(0)
11′ , G̃

(0)
11′ =

∑
p

p G
pp(0)
11′ , (22)

together with Ī
γ (0)
1 = ∑

p(I γ )p(0)
1 . We note that Eqs. (21) and

(22) are related to the commutators and anticommutators of
Eqs. (6) and (7), respectively. In matrix notation, the bare
Liouvillian and the bare vertices are then given by

L
(0)
D = ε0

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ ,

Ḡ
(0)
+α = t (0)

α

⎛
⎜⎝

0 0 1 0
0 0 −1 0
0 0 0 0
1 1 0 0

⎞
⎟⎠ ,

Ḡ
(0)
−α = t (0)

α

⎛
⎜⎝

0 0 0 −1
0 0 0 1
1 1 0 0
0 0 0 0

⎞
⎟⎠ ,

G̃
(0)
+α = t (0)

α

⎛
⎜⎝

0 0 1 0
0 0 1 0
0 0 0 0

−1 1 0 0

⎞
⎟⎠ ,

G̃
(0)
−α = t (0)

α

⎛
⎜⎝

0 0 0 1
0 0 0 1
1 −1 0 0
0 0 0 0

⎞
⎟⎠ ,

Ḡ
(0)
+α,−α = U (0)

α

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎠ ,

G̃
(0)
+α,−α = U (0)

α

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎠ , (23)

with Ḡ
(0)
−α,+α = −Ḡ

(0)
+α,−α and G̃

(0)
−α,+α = −G̃

(0)
+α,−α . For the

current vertex we obtain

TrD Ī
γ (0)
+α = −δαγ t (0)

α (0 0 1 0)

TrD Ī
γ (0)
−α = δαγ t (0)

α (0 0 0 1). (24)

Within the RG treatment, the Liouvillian LD(z) and the
vertices Ḡ1(z; ω1), Ḡ11′ (z; ω1,ω

′
1), and Ī

γ

1 (z; ω1) are effective
quantities, which obtain an additional dependence on the
Laplace variable z and depend on frequency variables ω1 and
ω′

1 (the vertices G̃
(0)
1 and G̃

(0)
11′ are only needed for the initial

setup of the RG flow). In addition, the current kernel 
γ (z)
is generated. As shown in Appendix A, the dependence of the
vertices on the frequencies ω1 and ω′

1 can be treated in leading
order by expanding around ω1 = ω′

1 = 0. Therefore we omit
it in the following and, furthermore, replace z by its real part
E ≡ Re{z}. The full z dependence can be recovered finally by
analytic continuation, which will be done in Sec. IV B where
we study the time evolution.

Following Ref. 20, the parametrization of the renormalized
quantities follows from charge conservation and the following
symmetry properties:

TrDLD(E) = TrDḠ1(E) = TrDḠ11′ (E) = 0,

LD(E)c = −LD(−E), 
γ (E)c = −
γ (−E),

Ḡ1(E)c = −σ−Ḡ1̄(−E), Ḡ11′ (E)c = Ḡ1̄1̄′(−E),

Ī
γ

1 (E)c = −σ−Ī1̄(−E)γ ,

where (Ac)s1s1′ ,s2s2′ = A∗
s1′ s1,s2′ s2

and 1̄ ≡ −ηα.
As a consequence, the renormalized Liouvillian can be

written as

LD(E) =

⎛
⎜⎝

−i�+(E) i�−(E) 0 0
i�+(E) −i�−(E) 0 0

0 0 ε(E) 0
0 0 0 −ε(−E)∗

⎞
⎟⎠ ,

(25)

with �±(E) = �±(−E)∗. The renormalized vertices are given
by

Ḡ+α(E) =

⎛
⎜⎝

0 0 tα(E) 0
0 0 −tα(E) 0
0 0 0 0

t2
α(E) t3

α(E) 0 0

⎞
⎟⎠ ,

(26)

Ḡ−α(E) =

⎛
⎜⎝

0 0 0 −tα(−E)∗
0 0 0 tα(−E)∗

t2
α(−E)∗ t3

α(−E)∗ 0 0
0 0 0 0

⎞
⎟⎠ ,
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and

Ḡ+α,−α(E) =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 Uα(E) 0
0 0 0 −Uα(−E)∗

⎞
⎟⎠ , (27)

with Ḡ−α,+α(E) = −Ḡ+α,−α(E). This form of Ḡ11′ (E) holds
only in leading order, as higher-order RG contributions
generate nonzero elements in the upper left 2 × 2 block (see
Sec. III B), while the form (25) and (26) are retained to all
orders. For the renormalized current vertex we obtain the
parametrization

TrD Ī
γ
+α(E) = −tγα (E) (0 0 1 0),

(28)
TrD Ī

γ
−α(E) = tγα (−E)∗ (0 0 0 1),

as well as for the corresponding current kernel generated by
the RG flow,

TrD 
γ (E) = i
[
�1

γ (E) �2
γ (E) 0 0

]
, (29)

with �i
γ (E) = �i

γ (−E)∗.
The bare values, which serve as initial conditions for the

RG equations, read ε(E) = ε0, �±(E) = 0, tα(E) = t2
α(E) =

t3
α(E) = t (0)

α , Uα(E) = U (0)
α , �i

γ (E) = 0, and t
γ
α (E) = δαγ t (0)

α .

B. Flow equations

In this section we summarize the RG equations for the
renormalized quantities as introduced in the previous section;
a detailed derivation is given in Appendix A.

The diagrams taken into account are shown in Fig. 11.
We consider contributions to the flow of LD , Ḡ1, and Ḡ11′

to lowest order in � ∼ t2 to describe the scaling limit and to
leading and next-to-leading order in Uα to obtain exponents up
to order O(U 2

α ). Terms of order ∼�Uα for Ḡ11′ are neglected.
These would generate nonzero elements in the upper left 2 × 2
block of Eq. (27). For the Liouvillian and the vertices the full E
dependence crucial for the time evolution is taken into account.

Based on the parametrization of the Liouvillian, the current
kernel, and the vertices, we introduce the following definitions:

Z(E) =
(

1 − d

dE
ε(E)

)−1

,

�̃α(E) = 2πZ(E + μα)tα(E)2,

�α(E) = �1
α(E) − �2

α(E),

�′
α(E) = 1

2

[
�1

α(E) + �2
α(E)

]
, (30)

�(E) =
∑

α

�α(E), �′(E) =
∑

α

�′
α(E),

χ (E) = Z(E) [E − ε(E)] ,

χ ′(E) = χ (E) − 2iγ0� ln
2� − iχ (E)

� − iχ (E)
,

where γ0 = ∑
α(U (0)

α )2, and � is a high-energy cutoff which
cuts off the Matsubara frequencies of the Fermi functions of
the reservoirs. Under the RG the cutoff parameter � flows

from the initial value �0 to zero. The initial cutoff is related
to the physical reservoir band width D by Eq. (A56); see
Appendix A. As shown in Appendix A, the flow equations for
the effective model parameters read

d

d�
�̃α(E)

= −
(

2
(
U (0)

α − γ0
)

� − iχ ′(E + μα)
+ γ0

� − iχ ′(E + μα)/2

)
�̃α(E),

(31)

d

d�
�α(E) = − U (0)

α

� − iχ ′(E + μα)
�̃α(E) + (E → −E)∗,

(32)

d

d�
�′

α(E) = i

2π

1

� − iχ ′(E + μα)
�̃α(E) + (E → −E)∗,

(33)

d

d�
χ ′(E) = −i

∑
α

U (0)
α

� + �(E − μα) − i(E − μα)

× �̃α(E − μα). (34)

The remaining parameters of the Liouvillian and the vertices
are given by

�±(E) = 1

2
�(E) ± �′(E) = ±

∑
α

�1/2
α (E), (35)

tα2/3(E) = tα(E)
(
1 ± iπU (0)

α

)
, (36)

tγα (E) = δαγ tα(E), (37)

Z(E) Uα(E) = U (0)
α . (38)

As a consequence, it turns out that Z(E)Uα(E) is unrenormal-
ized up to the second order in the interaction, in agreement
with previous results.16

The initial conditions for the RG equations are �̃α(E) =
�α(E) = �(0)

α = 2π (t (0)
α )2, �′

α(E) = 0, and χ ′(E) = E − ε0 +
i
2�(0), where �(0) = ∑

α �(0)
α . For the numerical solution

of Eqs. (31)–(34) a discretization in E is required, the
involved numerical effort is, however, limited due to the fast
convergence.

The RG equations (31)–(34) reduce to poor man scaling
equations for large �, where all resolvents can be replaced
by 1/�. In this case similar power laws are obtained for
the stationary current as in Ref. 16, provided that the cutoff
parameter is intuitively inserted by hand. In contrast, the
RG equations derived in this paper reveal microscopically
the various cutoff parameters. As can be seen from Eqs.
(31)–(33), all rates are cut off by the distance to resonances,
given by χ ′(E + μα). On the other hand, we see from Eq.
(34) that the renormalization of the level broadening, which
is contained in the imaginary part of χ ′(E), is cut off by
|E − μα − i�(E − μα)|. The RG equations presented here
go beyond all previous RG analyses for the IRLM. Whereas
Ref. 16 provided a consistent poor man scaling analysis
without a microscopic derivation of the cutoff scales, Refs. 17
and 18 showed results from a full microscopic nonequilibrium
RG analysis, but only in leading order in U (0)

α for the exponent.
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C. Analytical solution

Within the RTRG-FS approach, the coupled differential
equations for the flow of the effective system parameters as a
function of the infrared cutoff � can be solved analytically.
The approximate solutions are confirmed by numerically
integrating the corresponding full RG equations (31)–(34).

The poor man scaling version of Eq. (31), i.e., where the
resolvents are replaced by 1/�, gives the power-law solution

�̃α → �(0)
α (�0/�)gα , (39)

with the exponent

gα = 2U (0)
α − γ0 = 2U (0)

α −
∑

β

(
U

(0)
β

)2
. (40)

According to Eq. (31) this power law is cut off by χ ′(E + μα).
Therefore the leading order solution is given by

�̃α(E) � �(0)
α

(
�0

� − iχ ′(E + μα)

)gα

, (41)

where the exponent is consistently calculated up to O(U 2).
Since, for small U (0)

α � 1, the power laws lead only to a
weak variation, we can use the poor man scaling solution (39)
for �̃α in the other RG equations (32)–(34), and read off the
cutoff scale by the remaining resolvents in these equations.
This gives the following leading-order solution:

�α(E) � 1
2 [�̃α(E) + �̃α(−E)∗], (42)

�′
α(E) � − i

4πU
(0)
α

[�̃α(E) − �̃α(−E)∗], (43)

χ ′(E) � E − ε0 + i

2
�ε(E), (44)

with the renormalized level broadening

�ε(E) =
∑

α

�(0)
α

(
�0

� + �(E − μα) − i(E − μα)

)gα

.

(45)

We note the properties

�α(E)∗ = �α(−E), (46)

�′
α(E)∗ = �′

α(−E). (47)

In the limit � → 0, we obtain

�ε(E) =
∑

α

�(0)
α

(
�0

�(E − μα) − i(E − μα)

)gα

, (48)

�̃α(E) = �(0)
α

(
�0

1
2�ε(E + μα) − i(E + μα − ε0)

)gα

, (49)

which, together with Eq. (42) gives a self-consistent set
of equations for the determination of �ε(E) and �(E). In
principle this set can be solved numerically but we will provide
further analytic evaluations in Sec. IV.

The reduced density matrix ρ̃D(E) =
[p0(E) p1(E) 0 0]T of the dot in Laplace space can be

obtained from Eqs. (15) and (25), with Leff
D (E) ≡ LD(E)|�=0.

After a straightforward algebra we obtain

p0/1(E) = i

E
p0/1(t0) + �(E)p0/1(t0) − �∓(E)

E [E + i�(E)]
, (50)

where p0/1(t0) are the initial occupation probabilities for the
dot and �±(E) = �(E)/2 ± �′(E), according to Eq. (35).

Finally, using Eqs. (17) and (29), the current in Laplace
space is computed using the density matrix by

〈Iα〉(E) = −iTrD 
α(E)ρ̃D(E)

= �1
α(E)p0(E) + �2

α(E)p1(E), (51)

where �
1/2
α (E) = �′

α(E) ± 1
2�α(E), according to Eq. (30).

The stationary probabilities pst
0/1 and the stationary cur-

rent I st
α follow from pst

0/1 = limE→0(−i)E p0/1(E) and I st =
�1

αpst
0 + �2

αpst
1 , with �i

α ≡ �i
α(E = 0). Using Eq. (50) this

gives

pst
0/1 = 1

2
∓ �′

�
, (52)

I st
α = �′

α − �′

�
�α, (53)

where all rates are evaluated at E = 0. As required, we obtain
conservation of probability pst

0 + pst
1 = 1 as well as current

conservation
∑

α I st
α = 0.

IV. RESULTS

A. Steady-state quantities

The stationary state is obtained for E = 0 from Eqs. (52)
and (53). Inserting solution (42) and (43) for �α and �′

α

together with expression (49) for �̃α , we obtain �α = Re�̃α

and �′
α = 1

2πU
(0)
α

Im�̃α , with

�̃α = �(0)
α

(
�0

1
2�ε(μα) − i(μα − ε0)

)gα

. (54)

Since the cutoff �ε(μα) is only relevant for |μα − ε0| ∼ O(�)
and since �ε(E) varies only weakly as a function of E, we
can replace with good accuracy �ε(μα) → �ε(ε0) in the last
equation. Furthermore, neglecting terms with higher powers
in U (0)

α , we find in leading order

�α � �(0)
α

(
�0∣∣ 1

2�ε(ε0) − i(μα − ε0)
∣∣
)gα

, (55)

�′
α � 1

π
�α arctan

μα − ε0

�ε(ε0)/2
. (56)

To determine the level broadening �ε(ε0), we use Eq. (48) and
replace �(ε0 − μα) → �(0) ≡ � in this equation by using the
same arguments as above. In leading order in U (0)

α this gives

�ε(ε0) � �(0)
α

(
�0

|� + i(μα − ε0)|
)gα

. (57)

Neglecting the factor 1
2 for the cutoff parameter �ε(ε0) in

Eq. (55), the self-consistent solution of Eqs. (57) and (55) is
approximately

� � �ε(ε0). (58)
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Inserting Eq. (56) into Eqs. (52) and (53), and using
Eq. (58), we find for the stationary dot occupation nst = pst

1
and the stationary current I st

α ,

nst = 1

2
+ 1

π

∑
α

�α

�
arctan

μα − ε0

�/2
, (59)

I st
α = G0

∑
β �=α

2�α�β

�

×
(

arctan
μα − ε0

�/2
− arctan

μβ − ε0

�/2

)
, (60)

with G0 = e2

h
= 1

2π
in our units. As a consequence, we find

in leading order the same form as in the noninteracting case
(where the result is exact) with Lorentzian resonances for the
differential conductance at μα = ε0. However, the rates �α

entering these equations are not the bare ones but are strongly
renormalized by the interaction. According to Eqs. (55) and
(58) they have to be determined from the self-consistent
equation

�α � �(0)
α

(
�0∣∣ 1

2� − i(μα − ε0)
∣∣
)gα

, (61)

with � = ∑
α �α . This equation will be further analyzed in the

next section. In particular, this renormalization is responsible
for a negative differential conductance at large voltage.

For simplicity, we will restrict ourselves in the following
mainly to the case of two reservoirs α = L,R with μL =
−μR = V/2. In this case the dot occupation and the current
I st ≡ I st

L = −I st
R read

nst = 1

2
+ 1

π

(
�L

�
arctan

V/2 − ε0

�/2
− �R

�
arctan

V/2 + ε0

�/2

)
(62)

and

I st = G0
2�L�R

�

(
arctan

V/2 − ε0

�/2
+ arctan

V/2 + ε0

�/2

)
.

(63)

1. The rates �α

As outlined above, the rates �α are determined by the self-
consistent Eq. (61). We define the cutoff scales

�α
c = max

{
|μα − ε0|,�

2

}
. (64)

From Eq. (61) we see that �α is renormalized by a power law
cut off by �α

c

�α � �(0)
α

(
�0

�α
c

)gα

. (65)

To write this equation in terms of invariant energy scales, we
introduce the strong-coupling scale

TK ≡ �|V =ε0=0, (66)

and write �α in the form

�α = T α
K

(
TK

�α
c

)gα

, (67)

with the independent scales

T α
K ≡ �(0)

α

(
�0

TK

)gα

. (68)

The scaling limit is defined by �(0)
α → 0 and �0 → ∞, such

that T α
K remains constant. From Eqs. (65) and (66) we see that

TK is determined from the self-consistent equation

TK =
∑

α

T α
K =

∑
α

�(0)
α

(
�0

TK

)gα

(69)

and remains also constant in the scaling limit. For symmetric
Coulomb interactions gα = g, we obtain the solution

TK = �(0)

(
�0

�(0)

)g/(1+g)

, T α
K = �(0)

α

�(0)
TK, (70)

with �(0) = ∑
α �(0)

α .
In the special case of two reservoirs α = L/R, we use in

the following instead of T α
K the invariant TK = T L

K + T R
K and

the asymmetry parameter c2 = T L
K /T R

K . We obtain

T L
K = c2

1 + c2
TK, T R

K = 1

1 + c2
TK, (71)

and for symmetric Coulomb interactions

c =
√√√√�

(0)
L

�
(0)
R

. (72)

TK is the energy scale which determines the importance
of charge fluctuations. Away from resonances, where |μα −
ε0| � TK , charge fluctuations are weak and the RG flow of �α

is cut off by the scale |μα − ε0|, which describes the distance
to the resonance. Close to resonances, where |μα − ε0| ∼ TK ,
charge fluctuations are strong, and �α is cut off by TK .
Nevertheless, �α is bounded by the scale T α

K for arbitrary
system parameters even for V = ε0 = 0, leading to finite
results for all cases. Although there is no rigorous argument
why our theory should be well controlled in the presence of a
single energy scale TK , we show in the next sections that in
the scaling limit our results for the charge susceptibility and
the current are in excellent agreement with exact numerical
methods, provided that U (0)

α � 1. This indicates that strong
charge fluctuations are covered by our theory.

Close to resonance, where μα � ε0, the rate �α is log-
arithmically enhanced, similar to corresponding logarithmic
enhancements for two-level models with spin fluctuations
(Kondo model); see Ref. 22. Defining an overall cutoff scale
by �c = max{�L

c ,�R
c } and expanding in gα , we find close to

the resonance

�α � �(0)
α

(
�0

�c

)gα
(

1 + gα ln
�c

|μα − ε0 + i�/2|
)

. (73)

In comparison to the Kondo model the IRLM is simpler in
the sense that the leading-order charge fluctuation processes
provide a unique cutoff scale |μα − ε0 + i�/2| for the rates. In
contrast, for the Kondo model, the distance to the resonance as
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well as the Zeeman splitting itself serve as cutoff parameters,
such that different logarithms can occur for the rates; see
Ref. 22 for details.

The appearance of a negative differential conductance in
the IRLM at large bias voltages (see Figs. 3 and 4) can be
understood26 very easily from the form of the rates �α , while
from the numerical or field-theoretical computation of the I -V
characteristics it is difficult to extract the physical mechanisms.
In the limit V � �,|ε0| current (63) for two reservoirs
reduces to I st(V ) � �L�R

�
, and to I st � (�(0)

L �
(0)
R /(�(0))2)� for

symmetric Coulomb interactions gL = gR = g. Substituting
the above expression (65) for � being cut off by the voltage,
and using Eq. (70), we obtain

I st(V ) = �
(0)
L �

(0)
R

�(0)2 TK

(
TK

V

)g

∼ V −g, (74)

leading to a negative differential conductance for repulsive
interactions. The power-law behavior (74) was previously
obtained using a variety of other methods.9,14,17,18,26 In
contrast, Nishino et al.12 find a critical value of U = 2 above
which negative differential conductance appears. For attractive
interactions, we obtain a power-law increase of the current as a
function of voltage which is consistent with DMRG results in
Ref. 14. However, we will show in Sec. IV A 3 that this result
no longer holds for asymmetric Coulomb interactions.

2. Charge susceptibility

The stationary charge susceptibility χ (or the static capac-
itance) describes the charge response of the dot due to a shift
of the level position ε0 and is defined by

χ = −∂nst

∂ε0
. (75)

It can be obtained directly from Eq. (59) and for arbitrary level
position reads

χ = 1

2π

∑
α

�α

(μα − ε0)2 + (
�
2

)2 , (76)

where we have neglected small corrections from the weak
dependence of �α on ε0 via power law (67). For the special
case of two reservoirs with μL = −μR = V/2 and for ε0 = 0,
this gives

χ |ε0=0 = 2

π

�

V 2 + �2
. (77)

In particular at V = 0, this result can be compared to exact
numerical results from NRG, which are shown in Fig. 2. We
obtain

χ |ε0=V =0 = 2

π�|ε0=V =0
= 2

πTK

, (78)

which can be used to define the physical scale TK even away
from the scaling limit. For symmetric Coulomb interactions
gL = gR = g, we can insert TK from Eq. (70) and get

χ |ε0=V =0 = 2

π�(0)

(
�0

�(0)

)−g/(1+g)

. (79)

As can be seen from Fig. 2, the exponent agrees surprisingly
well with the exact numerical result from NRG. Since
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FIG. 2. (Color online) Results for the static susceptibility χ for
the symmetric model with U

(0)
L = U

(0)
R = U (0) and �

(0)
L = �

(0)
R = �(0)

at ε0 = V = 0. Upper panel: comparison of RTRG-FS (solid lines)
results, the analytic solution of the flow equations (dashed lines), and
NRG data (symbols). Lower panel: exponent β = −g/(1 + g).

ε0 = V = 0 is the most critical regime where strong charge
fluctuations are present, this comparison strongly supports that
our general solution (76) for arbitrary voltage and arbitrary
level position is a very good analytical approximation to the
exact result.

For |V
2 ± ε0| � �, power laws occur as function of V or

ε0. From Eqs. (76), (67), and (71) we obtain

χ = 1

2π

c

1 + c2
TK

[
c(

V
2 − ε0

)2

(
TK∣∣V

2 − ε0

∣∣
)gL

+ 1

c

1

(V
2 + ε0)2

(
TK∣∣V

2 + ε0

∣∣
)gR

]
. (80)

For the symmetric case gL = gR = g this leads to

χ = 2

π

1

TK

(
TK

V

)2+g

(81)

for V � |ε0|, and to

χ = 1

2π

1

TK

(
TK

|ε0|
)2+g

(82)

for V � |ε0|.
We note that for asymmetric Coulomb interactions the

general result (76) does not exhibit a clear power law if the
system is coupled to more than one reservoir, neither as a
function of V , nor of ε0, nor of �(0). In this case, a linear
combination of different power laws is involved which does
not reveal a clear exponent except for if one of the energy
scales is much larger than the other two.

3. Current

In the case of two reservoirs, the stationary current I st

follows from Eq. (63). We take ε0 > 0 and study the off-
and on-resonance cases separately. A comparison of the full
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FIG. 3. (Color online) Results for the current I (V ) for asymmetric
Coulomb interactions U

(0)
L/R = (1 ± γU ) 0.1/π with γU = 0.75, 0.5,

0.25, 0 from top to bottom and t
(0)
L = t

(0)
R = 0.001, ε0 = 0; the

numerical solution (solid lines) is compared to the analytical result
(dashed lines). Lower panel: logarithmic derivative.

numerical solution of the flow equations to the analytical
results obtained from Eqs. (67) and (63) is provided in Fig. 3.
The excellent agreement shows that for this situation already
the simplified analytical treatment within poor man’s scaling
yields an accurate description.

The off-resonance case is defined by |V/2 ± ε0| � �.
Using Eq. (63) we obtain

I st = �L�R

�
for

V

2
> ε0, (83)

I st = G0
�L�R

ε2
0 − (V/2)2

V for
V

2
< ε0. (84)

Inserting for the rates from Eqs. (67) and (71), this gives

I st = c

1 + c2
TK

(
TK

|V/2−ε0|
)gL

(
TK

|V/2+ε0|
)gR

c
(

TK

|V/2−ε0|
)gL + 1

c

(
TK

|V/2+ε0|
)gR

(85)

for V/2 > ε0, and

I st = G0
c2

(1 + c2)2

T 2
K

ε2
0 − (V/2)2

×
(

TK

|V/2 − ε0|
)gL

(
TK

|V/2 + ε0|
)gR

V (86)

for V/2 < ε0.
From these results one can see in what cases a power law

can be expected. First, for large voltages V � ε0, a power
law can only be seen for the symmetric model gL = gR = g,
in which case I st ∼ V −g; see Fig. 3. This is the same result
obtained also in earlier studies9,14 of the IRLM. However, in
all other cases where gL �= gR , there are two terms in the
denominator of Eq. (85) with two different exponents. To
reveal a definite power law in this asymmetric case we need

either |gL − gR| � gL/R (in which case the two exponents are
almost indistinguishable) or we need a scale for the voltage
where one of the two terms is negligible compared to the other,
leading to the condition (TK/V )|gL−gR | � 1. The latter gives
a scale V ∼ TK x1/|gL−gR | with x � 1. Obviously, this scale is
unrealistically large for |gL − gR| � 1. In Fig. 3 this condition
is not met and the asymptotic behavior is not observed. Only
if in addition to gL �= gR the asymmetry in the bare rates is
large (c � 1 or c � 1), the power-law behavior of I st(V ) is
recovered (with exponents gL or gR , respectively).

Interestingly, for V � ε0, a power law also occurs in the
asymmetric case, since � does not appear in the denominator
of Eq. (86). In this case we obtain

I st = G0
c2

(1 + c2)2

(
TK

|ε0|
)2+gL+gR

V , (87)

i.e., a power law with exponent −(2 + gL + gR) always
appears as a function of the level position ε0 at fixed voltage.

In the on-resonance case ε0 = V/2 the current is given by

I st = �L�R

2�
= c

1 + c2

TK

2

(
TK

�

)gL
(

TK

V

)gR

c
(

TK

�

)gL + 1
c

(
TK

V

)gR
. (88)

It is important to note that if the level is in resonance with
one of the reservoirs it is not in resonance with the other one.
Therefore at resonance the cutoff scales are � for one rate
and V for the other. In contrast to the off-resonance case, no
power law appears even for the left-right symmetric model; see
Fig. 4. A power law is recovered only for unrealistically large
V , where the second term in the last denominator of Eq. (88)
can be neglected leading to I st ∼ V −gR . For the symmetric
model shown in Fig. 4 the condition (�/V )g = 0.01 � 1 is
fulfilled only for V ∼ 1030TK .

A microscopic determination of the cutoff scales is there-
fore essential to determine the correct on-resonance scaling
behavior as a function of the voltage, which does not simply
appear as an additional low-energy cutoff. The nonequilibrium
physics for the generic situation ε0 = ±V/2 and gL �= gR
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FIG. 4. (Color online) Results for the current I (V ) for the
symmetric model with t
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of resonance (solid lines) and on resonance (dashed lines). Inset:
logarithmic derivative.
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turns out to be more complex and cannot be inferred from
the linear-response behavior.

4. Conductance

Another transport property of experimental interest is
the conductance G = dI st

dV
, which most vividly features the

mentioned resonance at ε0 = ±V/2 as the voltage becomes
large; see Fig. 5. Analytically, the conductance follows from
differentiating Eq. (63). Neglecting small terms from the V

dependence of the rates �α , we obtain

G = G0
2�L�R

�2

( (
�
2

)2

(
V
2 − ε0

)2 + (
�
2

)2 +
(

�
2

)2

(
V
2 + ε0

)2 + (
�
2

)2

)
,

(89)

i.e., two Lorentzian resonances at V/2 = ±ε0.
For the off-resonance case V,� � |ε0| we obtain

G = G0
�L�R

ε2
0

= G0
c2

(1 + c2)2

(
TK

|ε0|
)2+gL+gR

(90)

in agreement with Eq. (87). Results from the solution of the
full flow equations are shown in Fig. 6.

On the other hand, as a function of V the current is given
by

I st = G0
2�L�R

�

(
π − 2

�

V

)
(91)

for V � �,|ε0|, where we took into account the first correction
to the expansion of the arctan function in Eq. (63). Interest-
ingly, the latter leads to an additional regime characterized by
a power law independently of the asymmetry. Whereas the first
term of Eq. (91) does not show a power law for asymmetric
Coulomb interactions (since � = �L + �R appears in the
denominator), the second term does show a power law because
� cancels out. Taking the derivative with respect to V , the
conductance reads

G = G0

(
∂

∂V

2�L�R

�

) (
π − 2

�

V

)
+ G0

2�L�R

�

(
2�

V 2

)
.

(92)
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FIG. 6. (Color online) Results for the conductance G(ε0) for
asymmetric Coulomb interactions U

(0)
L/R = (1 ± γU ) 0.1/π with γU =

0, 0.25, 0.5, 0.75 from top to bottom and t
(0)
L = t

(0)
R = 0.001 at V = 0;

the obtained power law is characterized by the exponent ∼2(g + 1)
in linear order, with g = 2U (0).

The derivative in the first term yields a factor ∼ g/V from the
weak voltage dependence of the rates �L/R , which has to be
compared with the factor �/V 2 in the second term. Thus for
g � �/V the second term dominates and yields a power law
as function of the voltage

G = G0
4�L�R

V 2
= G0

4c2

(1 + c2)2

(
TK

V

)2+gL+gR

. (93)

Thus in contrast to the current, the conductance shows always
a power law either for large voltage or for large level position
with the same exponent −(2 + gL + gR) in the range �,|ε0| �
V � �/g.

However, for V � �/g the first contribution in Eq. (91)
dominates leading to a negative differential conductance.

B. Time evolution

The time evolution of the reduced density matrix can be
obtained directly from Eq. (15) via inverse Laplace transform,

ρD(t) = i

2π

∫ ∞+i0+

−∞+i0+
dz

e−izt

z − Leff
D (z)

ρD(0), (94)

where we have set the initial time to t0 = 0. We recall that we
assume the initial density matrix of the full system to be of the
product form (12). This situation can be prepared by setting
the couplings between the leads and the dot to zero for times
t < 0. At t = 0 the couplings are suddenly switched on and
the system evolves under Hamiltonian (1), which results in
Eq. (94) for the time evolution of the reduced density matrix.
In conventional Markov approximation Leff

D (z) ≈ Leff
D (z = 0)

one neglects the z dependence of the Liouvillian, which
yields simple exponential decay toward the stationary reduced
density matrix. In contrast, we keep the z dependence of the
Liouvillian including its branch cuts. The time evolution of
the current is obtained similarly by inverse Laplace transform
of Eq. (17). This approach has previously been used to study
the real-time dynamics of the magnetization and current in the
anisotropic Kondo model.23
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Specifically, using Eq. (50) we find for the occupation
n(t) = p1(t) of the dot

n(t) = 〈c†c〉(t) = [1 + J+(t) + J−(t)]n(0) − J+(t), (95)

where the auxiliary functions J±(t) are defined as

J±(t) = 1

2π

∫ ∞+i0+

−∞+i0+

dz

z

e−izt

z + i�(z)
�±(z). (96)

Here �±(z) = 1
2�(z) ± �′(z) with �(z) = ∑

α �α(z) and
�′(z) = ∑

α �′
α(z) are obtained from the analytic continuation

of Eqs. (42), (43), and (49) (see below). Similarly, using
Eq. (51) we find for the current in lead γ

Iγ (t) = i

2π

∫ ∞+i0+

−∞+i0+

dz

z

e−izt

�(z)

[
�1

γ (z)�−(z) + �2
γ (z)�+(z)

]

+ i

2π

∫ ∞+i0+

−∞+i0+
dz

e−izt

�(z)

�1
γ (z) − �2

γ (z)

z + i�(z)
×[�+(z) − n(0)�(z)], (97)

where �
1/2
γ (z) = �′

γ (z) ± 1
2�γ (z).

In order to evaluate the dot occupation and the current in
the interacting case we start with the analytic continuation of
Eqs. (42), (43), (48), and (49). We consider the case of two
reservoirs with μL = −μR = V/2 and restrict ourselves to
the situation of symmetric couplings to the leads, i.e., U

(0)
L =

U
(0)
R = U (0) and �

(0)
L = �

(0)
R ≡ �(0)/2. In this case we can make

use of the helpful identity �ε(−E)∗ = �ε(E), which follows
from Eqs. (46) and (48). As a result the analytic continuation
reads

�ε(z) = �(0)

2

∑
α

(
�0

�(z − μα) − i(z − μα)

)g

, (98)

�α(z) = �(0)

4

[(
�0

1
2�ε(z + μα) − i(z + μα − ε0)

)g

+
(

�0
1
2�ε(z − μα) − i(z − μα + ε0)

)g]
, (99)

�′
α(z) = − i�(0)

8πU (0)

[(
�0

1
2�ε(z + μα) − i(z + μα − ε0)

)g

−
(

�0
1
2�ε(z − μα) − i(z − μα + ε0)

)g]
, (100)

with g = 2U (0)(1 − U (0)). To proceed we first calculate the
nonvanishing poles z1 ≡ −i�̃ and z± ≡ ±ε̃ − i

2 �̃ε of the
resolvent 1/[z − Leff

D (z)]. Using parametrization (25) we find
−i�(z1) = z1, ε(z+) = z+, and −ε(−z∗

−) = z∗
−, which results

in

�(−i�̃) = �̃, �ε(±ε̃ − i
2 �̃ε) = �̃ε ± 2i(ε̃ − ε0). (101)

Second, we approximate the functions �(z) and �ε(z) in the
denominators of Eqs. (98)–(100) by their fixed points, i.e., we
replace

�(z) → �̃, �ε(z) → �̃ε ± 2i(ε̃ − ε0). (102)

We use the upper (lower) approximation for �ε(z) in the terms
with a singularity at z ≈ ε0 (z ≈ −ε0). Inserting Eq. (102) we
obtain

�ε(z) = TK

2

∑
α

(
TK

�̃ − i(z − μα)

)g

, (103)

�α(z) = TK

4

[(
TK

1
2 �̃ε − i(z + μα − ε̃)

)g

+
(

TK

1
2 �̃ε − i(z − μα + ε̃)

)g]
, (104)

�′
α(z) = − iTK

8πU (0)

[(
TK

1
2 �̃ε − i(z + μα − ε̃)

)g

−
(

TK

1
2 �̃ε − i(z − μα + ε̃)

)g]
, (105)

where we have already taken the scaling limit �(0) → 0,
�0 → ∞ with T

1+g

K = �(0)�
g

0 kept constant. The decay rates
�̃ and �̃ε and the renormalized level position ε̃ can be evaluated
numerically from Eq. (101). The physical interpretation of
these quantities is as follows: Whereas �̃ describes the charge
relaxation processes on the dot and thus the relaxation of the
diagonal elements of the reduced density matrix with respect
to the charge states, �̃ε is the broadening of the local level
induced by the coupling to the leads, i.e., it characterizes
the relaxation of the off-diagonal elements. Furthermore, the
coupling to the leads yields a renormalization of the level
position from the bare value ε0 to ε̃. For weak Coulomb
interactions, U (0) � 0.1, this renormalization is found to be
small, |ε̃/ε0| � 0.01. The approximate analytical expressions
(103)–(105) show excellent agreement with the full numerical
solution of the RG equations (31)–(34).

Inspecting the integral representations (96) and (97) we see
that the dominant contributions stem from the singularities in
the lower half plane of the involved functions. We stress that
approximations (102) preserve this analytic structure, i.e., the
poles as well as the positions and exponents of the branch cuts
from the power laws remain unchanged. Integrals (96) and
(97) can then be treated using standard techniques of contour
integrations (see Appendix B). Numerical evaluation yields
the occupation of the dot n(t) as well as the current IL(t) in
the left lead shown in Figs. 7–9.

Furthermore, for the long-time behavior off resonance
(|ε0 − V/2| � TK,1/t) we are able to derive approximate
analytical expressions for the dot occupation,27

n(t) ≈ nst −
(

1

2
+ �′(−i�̃)

�̃

)
e−�̃t

+ (TKt)1+g

2π
e−�̃ε t/2

[
sin

[(
ε̃ + V

2

)
t
]

(ε̃ + V
2 )2 t2

− πU

4

cos
[(

ε̃ + V
2

)
t
]

(
ε̃ + V

2

)2
t2

+ (V → −V )

]
(106)
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FIG. 7. (Color online) Time evolution of the dot occupation n(t)
for V = ε0 = 10 TK and different values of U (0). The initial condition
is given by n(0) = 0. We observe oscillating behavior at short times,
TKt � 5.

as well as for the current (we assume V � TK,1/t in addition)

IL(t) ≈ I st
L + �L(−i�̃)

(
1

2
+ �′(−i�̃)

�̃

)
e−�̃t + TK

2π
(TKt)g

× e−�̃ε t/2

[
cos

[(
ε̃ − V

2

)
t
]

(
ε̃ − V

2

)
t

− (V → −V )

]
, (107)

with the stationary values given by Eqs. (52) and (53),
respectively. For simplicity we have considered the level to be
initially empty, n(0) = 0. n(t) is shown up to O(U (0)) and I (t)
up to O(1). From Figs. 7–9 as well as Eqs. (106) and (107) we
observe that the time evolution is governed by an exponential
decay toward the stationary values, characterized by the decay
rates �̃ and �̃ε/2. In addition, oscillating terms with explicitly
voltage-dependent frequencies ε̃ ± V/2 appear, accompanied
by an interaction-dependent power-law decay ∼ tg−1. The
last result is of particular importance for applications in error
correction schemes of quantum information processing as it
violates the standard assumption28 of a purely exponential
decay. The same qualitative features were observed for the
time evolution in the anisotropic Kondo model.23 We stress
that these qualitative features are independent of the approx-
imations leading to Eqs. (103)–(105) as they are completely
determined by the analytic structure. The imaginary parts of
poles and branch points lead to exponential decay, their real

0 2 4 6 8 10
T

K
 t

0

0.1

0.2

0.3

0.4

0.5

0.6

n(
t)

ε
0
 = 48 T

K
ε

0
 = 49 T

K
ε

0
 = 50 T

K
ε

0
 = 51 T

K
ε

0
 = 52 T

K

FIG. 8. (Color online) Time evolution of the dot occupation n(t)
for U (0) = 0.1/π , V = 100 TK , and different values of ε0. The initial
condition is given by n(0) = 0.
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FIG. 9. (Color online) Time evolution of the current IL(t) in the
left lead for U (0) = 0.1/π , ε0 = 10 TK , and different values of V .
The initial condition is given by n(0) = 0. The nonzero current at
t = 0 is determined by the displacement current dn(t)/dt . The current
oscillates with frequency ∼ε0 − V/2; note the absence of oscillations
on resonance.

parts yield oscillating behavior, and the integrations along the
branch cuts result in power laws.

In Fig. 9 we observe that the current starts at a nonzero
value. This is due to a nonvanishing displacement current29

dn(t)/dt , i.e., the fluctuating number of particles on the
dot. Specifically, the particle number conservation in the full
system implies

IL(t) + IR(t) = dn(t)

dt
, (108)

where IL/R(t) = −dNL/R/dt is the current flowing out of
lead L/R. The initial condition n(0) chosen in Fig. 9 causes
particles to flow from the leads to the dot as soon as the
couplings t

(0)
L/R are switched on. These initial currents establish

on the time scale t ∼ 1/D with D denoting the band width,
i.e., they start instantaneously in the scaling limit. The strong
charge fluctuations on the dot further result in situations where
particles flow off the dot into the leads even against the applied
bias voltage, as can be seen by the appearance of IL(t) < 0 in
Fig. 9. A similar displacement current has been observed by
Schmidt et al.30 in the transient dynamics of the Anderson
impurity model, where also the effects of different reservoir
cutoffs have been investigated.

In the noninteracting case U (0) = 0 the rates and the level
position are simply given by �̃ = �̃ε = TK = �(0), and ε̃ = ε0.
The contour integrals (96) and (97) can be evaluated explicitly
(see Appendix B), resulting in

n(t) = e−TK tn(0) + 1 − e−TK t

2
+ F0(t) − F1(t) (109)

and

Iγ (t) = TKe−TK t 1 − 2n(0)

4

+TK

2
[F0,γ (t) − F0,γ̄ (t)] + TK

2
F1(t), (110)
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where γ̄ = −γ and F0/1(t) = ∑
α F0/1,α(t). The final expres-

sion for F0/1,α(t) is given by the formula

F0/1,α(t) = e−TK t/2±TK t/2

2π

[
± arctan

μα − ε0

TK/2

− Im Ei

(
∓TKt

2
+ i(ε0 − μα)t

)]
. (111)

In the stationary limit t → ∞ we recover from Eqs. (109) and
(110) the stationary values (62) and (63), respectively. In the
opposite limit, at t = 0+, we use property (B9) and observe a
nonzero initial value of the current

Iγ (t = 0+) = TK

1 − 2n(0)

4
, (112)

i.e., the displacement current discussed above. We note that
Eqs. (109)–(111) contain exponentially decaying terms with
rates TK and TK/2, oscillations with frequencies ε0 ± V/2,
and power-law behavior ∼ 1/t .

Finally, we would like to compare our results for the
noninteracting model (109)–(111) with the literature. As is
well known31 there exists a mapping (in a certain parameter
regime) between the resonant level model (and thus the
anisotropic Kondo model) and the spin-boson model (or
double-well problem) of dissipative quantum mechanics. By
studying the time evolution in the latter, Lesage and Saleur32

showed that generically one has to expect relaxation with
various decay rates as well as oscillating terms in qualitative
agreement with our results. Later Anders and Schiller33

addressed the time evolution in the resonant level model.
They derived analytic results for the dot occupation n(t) in
the single-lead model, which are identical to the V → 0 limit
of Eq. (109). They further considered quite general initial
density matrices beyond the product form (12) and observed
a decay with two different relaxation rates accompanied by
algebraic decay as well as oscillations with frequency ε0 in
this more general setting as well. Komnik34 extended their
results to the two-lead model and studied the current through
the system. The results he obtained are similar to Eqs. (109)
and (110). Furthermore, time evolution and quench dynamics
in the resonant level model have been studied in the context of
the anisotropic Kondo model at the Toulouse point.35

V. CONCLUSION

We presented a nonequilibrium RG scheme to study
transport properties of quantum dots in the regime of strong
charge fluctuations. We developed a gauge-invariant approx-
imation scheme to solve the RG equations analytically by
expanding all quantities around zero Matsubara frequency. We
illustrated the approach by a minimal and nontrivial model:
the IRLM. Whereas many previous works treated the problem
numerically or at the self-dual point, our analytical treatment
in the scaling limit and for moderate Coulomb interactions
reveals the renormalized tunneling rates �α parametrizing
the occupation and the current in the same form as the
noninteracting solution. The tunneling rates are given by
a power law cut off by the distance to resonances. At
resonance the total tunneling rate � = ∑

α �α itself is the
cutoff scale leading to a self-consistent equation for �. We
calculated the power-law exponents up to second order in the
Coulomb interaction and found a very accurate agreement

with NRG. Each �α has its own power-law exponent gα =
2U (0)

α − ∑
β(U (0)

β )2 determined by the Coulomb interaction
U (0)

α between the dot and reservoir α. As already pointed out in
Ref. 18, it turned out that the current does not reveal power laws
as a function of the voltage in the generic case of asymmetric
Coulomb interactions except for extremely large voltages. The
reason is that an asymmetry factor �L�R/� occurs, which
contains a linear combination of all rates in the denominator.
In contrast, away from the particle-hole symmetric point, we
found that power laws occur as a function of the level position
in the generic case, since, for the large level position, only a
factor �L�R appears for the current or the linear conductance.
However, the charge susceptibility shows a power law neither
as function of the voltage nor of the level position in the
presence of more than one reservoir, since it contains a sum of
terms, each being proportional to the rate �α .

Whereas the RTRG-FS scheme is limited to the scaling
limit, the functional RG allows us to access the steady
state for arbitrary tunneling parameters beyond the scaling
limit. As shown in Ref. 18, both methods provide excellent
agreement in the scaling limit. The combined use of both
RG approaches provides hence a complete picture of the
nonequilibrium physics under consideration. As shown in this
paper, an advantage of the RTRG-FS method is the analytic
treatment of Coulomb interactions up to next-to-leading order,
providing an excellent agreement of power-law exponents
with NRG results. Furthermore, the time evolution can be
studied with RTRG-FS, where we found complex relaxation
dynamics similarly to previous studies of the dynamics of the
nonequilibrium Kondo model.23

The understanding of basic models of spin and charge
fluctuations opens the way for applications to more complex
quantum dot models. A fundamental issue for the future
concerns the universality of the effects of strong charge fluc-
tuations at resonances found for the IRLM where they induce
a level broadening and a renormalization of the tunneling
couplings. In particular, in the presence of both spin and charge
fluctuations, as, e.g., in the nonequilibrium Anderson model,
the level position itself becomes renormalized, and still an open
question is what the precise line shape of resonances looks like.
Whereas strong charge fluctuations at resonances seem to be
described by the RTRG-FS method, an open question remains
whether strong spin or orbital fluctuations can be covered as
well. In both cases, a single energy scale dominates the physics
and cuts off the RG flow. Surprisingly, although no rigorous
argument allows the truncation of the RG equations in this case,
for strong charge fluctuations within the IRLM we have shown
here that our results agree very accurately with exact numerical
methods. Whether such an agreement holds also for strong spin
and orbital fluctuations will be studied in future works.

ACKNOWLEDGMENTS

We thank N. Andrei, B. Doyon, C. Karrasch, D. Kennes,
V. Meden, P. Schmitteckert, A. Tsvelik, and A. Zawadowski
for discussions. This work was supported by the DFG-FG 723
and 912, the Robert Bosch Foundation, and by the AHV.

APPENDIX A: DERIVATION OF THE RG EQUATIONS

In this appendix we report a detailed derivation of the
flow equations and their evaluation. As outlined in detail in
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FIG. 10. Diagrams of the discrete RG step. Double vertices are
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to the symmetric/antisymmetric part of the reservoir contraction.

Ref. 20, the RG consists of two steps: The first one is a
discrete step where the symmetric part of the reservoir Fermi
function is integrated out, and in the second step a continuous
RG transformation where the Matsubara frequencies of the
reservoir Fermi function are integrated out successively (note
that at T = 0 the Matsubara frequencies are continuous). In
addition to Ref. 20 we will present here a systematic treatment
of the frequency dependence of the vertices, which can be quite
generically used for the treatment of strong charge fluctuations.
In contrast to Refs. 20 and 22, where a systematic weak-
coupling expansion around the poor man scaling solution
has been presented, we propose here a systematic expansion
around the point where all Matsubara frequencies are set
to zero. The dependence on the Laplace variable E is fully
taken into account, leading to a gauge-invariant theory. Many
considerations presented here hold in general and can also
be used for other models in the charge fluctuation regime. In
particular, we will make use of various generic cancellations
of diagrams which simplify the RG analysis considerably.

We consider a model with single and double vertices,
described by interaction (10) initially. In Liouville space the
vertices are defined in Eqs. (18)–(22). Following Ref. 20, we
start with the discrete RG step and integrate out the symmetric
part of the reservoir Fermi function by a perturbative treatment.
The respective diagrams are shown in Fig. 10 and define the
initial values of the second continuous RG procedure. For the
initial Liouvillian we obtain

LD(E) = L
(0)
D − i

π

2
Ḡ

(0)
1 G̃

(0)
1̄ − i

π2

16
DḠ

(0)
11′Ḡ

(0)
1̄′1̄

+π2

32
Ḡ

(0)
11′

(
E11′ − L

(0)
D

)
Ḡ

(0)
1̄′1̄ − π

4
DḠ

(0)
11′G̃

(0)
1̄′1̄

−i
π

4
Ḡ

(0)
11′

(
E11′ − L

(0)
D

)
G̃

(0)
1̄′1̄, (A1)

where we used the shorthand notation E1...n = E + μ̄1 +
. . . + μ̄n with μ̄i = ηiμαi

. The reservoir bandwidth D is
related in a certain way to the initial value �0 of the continuous
RG flow; see Eq. (A56) below.

The initial vertices are given by

Ḡ1 = Ḡ
(0)
1 − i

π

2
Ḡ

(0)
12 G̃

(0)
2̄ − i

π

2
Ḡ

(0)
2 G̃

(0)
2̄1 (A2)

and

Ḡ11′ = Ḡ
(0)
11′ − i

π

2

(
Ḡ

(0)
12 G̃

(0)
2̄1′ − Ḡ

(0)
1′2G̃

(0)
2̄1

)
. (A3)

The equations for 
γ and Ī
γ

1 are determined analogously,
the first vertex just has to be replaced by Ī

γ (0)
1 . We note

that Ī
γ (0)
12 = 0 for our model where double vertices describe

a Coulomb interaction between the dot and the reservoirs, i.e.,
these processes cannot contribute to the current vertex. For
other models, where double vertices describe spin or orbital
fluctuations, Ī

γ (0)
12 has to be included as well.

Inserting form (23) of the initial matrices into above
expressions and comparing with parametrizations (25)–(29)
yield the following initial values for the continuous RG flow:

�+ = �− = 1

2
�(0)

α , �(0)
α = 2π

(
t (0)
α

)2
,

ε(E) = ε0

(
1 − π2

16

(
U (0)

α

)2
)

+ E
π2

16

(
U (0)

α

)2

− i

2
�(0)

α − i
π2

8
D

(
U (0)

α

)2
,

tα = t (0)
α , tγα = δαγ t (0)

α ,

t2
α = t (0)

α − iπt (0)
α U (0)

α , t3
α = t (0)

α + iπt (0)
α U (0)

α ,

�1
γ = 1

2
�(0)

γ , �2
γ = −1

2
�(0)

γ , Uα = U (0)
α . (A4)

We proceed with the flow equations for the continuous
RG procedure. The Laplace variable is decomposed into real
and imaginary parts as z = E + iω ≡ (E,ω). The Liouvillian
LD(E,ω) and the vertices Ḡ1(E,ω; ω1) and Ḡ11′ (E,ω; ω1,ω

′
1)

acquire an additional dependence on the Laplace variable and
on Matsubara frequencies ω1 and ω′

1. The diagrams taken into
account are shown in Fig. 11. We consider contributions to
the flow of LD , Ḡ1, and Ḡ11′ to lowest order in � and to
next-to-leading order in Uα to describe the scaling limit and to
obtain exponents up to order O(U 2

α ). Terms of order ∼�Uα for
Ḡ11′ are neglected. These would generate nonzero elements in
the upper left 2 × 2 block of Eq. (27).

Using the diagrammatic rules developed in Ref. 20, the RG
equations for the Liouvillian and the vertices read

− d

d�
LD(E,ω) = −i Ḡ1(E,ω; �) �(E1,ω + �) Ḡ1̄(E1,ω + �; −�)

+ (−i)2 Ḡ12(E,ω; �,ω2) �(E12,ω + � + ω2) Ḡ2̄1̄(E12,ω + � + ω2; −ω2, − �)

+ (−i)2 Ḡ12(E) �(E12,ω + � + ω2) Ḡ2̄(E12) �(E1,ω + �) Ḡ1̄(E1)

+ (−i)2 Ḡ1(E) �(E1,ω + �) Ḡ2(E1) �(E12,ω + � + ω2) Ḡ2̄1̄(E12)

+ (−i)3 Ḡ12(E) �(E12,ω + � + ω2) Ḡ2̄3(E12) �(E13,ω + � + ω3) Ḡ3̄1̄(E13), (A5)
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− d

d�
Ḡ1(E,ω; ω1) = −i Ḡ12(E,ω; ω1,�) �(E12,ω + ω1 + �) Ḡ2̄(E12,ω + ω1 + �; −�)

−i Ḡ2(E,ω; �) �(E2,ω + �) Ḡ2̄1(E2,ω + �; −�,ω1)

+ (−i)2 Ḡ23(E) �(E23,ω + � + ω3) Ḡ1(E23) �(E123,ω + ω1 + � + ω3) Ḡ3̄2̄(E123)

+ (−i)2 Ḡ12(E) �(E12,ω + ω1 + �) Ḡ3(E12) �(E123,ω + ω1 + � + ω3) Ḡ3̄2̄(E123)

+ (−i)2 Ḡ23(E) �(E23,ω + � + ω3) Ḡ3̄(E23) �(E2,ω + �) Ḡ2̄1(E2)

− (−i)2 Ḡ23(E) �(E23,ω + � + ω3) Ḡ3̄1(E23) �(E12,ω + ω1 + �) Ḡ2̄(E12)

− (−i)2 Ḡ2(E) �(E2,ω + �) Ḡ13(E2) �(E123,ω + ω1 + � + ω3) Ḡ3̄2̄(E123), (A6)

− d

d�
Ḡ11′ (E,ω; ω1,ω

′
1) = −i Ḡ12(E,ω; ω1,�) �(E12,ω + ω1 + �) Ḡ2̄1′(E12,ω + ω1 + �; −�,ω′

1)

+i Ḡ1′2(E,ω; ω′
1,�) �(E1′2,ω + ω′

1 + �) Ḡ2̄1(E1′2,ω + ω′
1 + �; −�,ω1)

+ (−i)2 Ḡ23(E) �(E23,ω + � + ω3) Ḡ11′ (E23) �(E11′23,ω + ω1 + ω′
1 + � + ω3) Ḡ3̄2̄(E11′23)

− (−i)2 Ḡ23(E) �(E23,ω + � + ω3) Ḡ3̄1(E23) �(E12,ω + ω1 + �) Ḡ2̄1′ (E12)

+ (−i)2 Ḡ23(E) �(E23,ω + � + ω3) Ḡ3̄1′ (E23) �(E1′2,ω + ω′
1 + �) Ḡ2̄1(E1′2)

− (−i)2 Ḡ12(E) �(E12,ω + ω1 + �) Ḡ1′3(E12) �(E11′23,ω + ω1 + ω′
1 + � + ω3) Ḡ3̄2̄(E11′23)

+ (−i)2 Ḡ1′2(E) �(E1′2,ω + ω′
1 + �) Ḡ13(E1′2) �(E11′23,ω + ω1 + ω′

1 + � + ω3) Ḡ3̄2̄(E11′23),

(A7)

where

�(E,ω) = 1

E + iω − LD(E,ω)
(A8)

and

Ḡ1(E) ≡ Ḡ1(E,0; 0), Ḡ11′ (E) ≡ Ḡ11′ (E,0; 0,0). (A9)

Implicitly, one has to sum over all indices on the right-hand
side of Eqs. (A5)–(A8), which do not appear on the left-hand
side. In addition, one has to perform the integral

∫ �

0 dω2 and∫ �

0 dω3 at all places where the frequencies ω2/3 occur. The
RG equations for the current kernel and the current vertex
are analogous to Eqs. (A5) and (A6), respectively; the only

difference is that the first vertex has to be replaced by the
current vertex.

Except for the real part E of the Laplace variable, all
frequencies are bounded by the cutoff �. Since � → 0 finally,
it is natural to account for the dependence on the Matsubara
frequencies by expanding the vertices around the reference
value (A9), where all Matsubara frequencies are set to zero.
Therefore we have neglected the frequency dependence of
the vertices in the higher-order terms of Eqs. (A5)–(A8).
The frequency dependence of the vertices is calculated in
leading order by neglecting the frequency dependence of the
vertices on the right-hand side of Eqs. (A6) and (A8) together
with omitting the higher-order terms in these equations.
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FIG. 11. Diagrams of the RG equations. Double vertices are represented by dots lying close to each other. For Ḡ11′ , diagrams have to be
subtracted where the indices 1 and 1′ are interchanged, provided this gives a new diagram. This guarantees the relation Ḡ11′ = −Ḡ1′1.
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This gives
d

d�
{Ḡ1(E,ω; ω1) − Ḡ1(E)} � i Ḡ12(E) [�(E12,ω + ω1 + �) − �(E12,�)] Ḡ2̄(E12)

+i Ḡ2(E)[�(E2,ω + �) − �(E2,�)] Ḡ2̄1(E2), (A10)

d

d�
{Ḡ11′ (E,ω; ω1,ω

′
1) − Ḡ11′ (E)} � i Ḡ12(E) [�(E12,ω + ω1 + �) − �(E12,�)] Ḡ2̄1′ (E12)

−i Ḡ1′2(E)[�(E1′2,ω + ω′
1 + �) − �(E1′2,�)] Ḡ2̄1(E1′2). (A11)

To integrate these equations in leading order we first define a
function F (E,ω) by

i�(E,ω) = d

dω
F (E,ω). (A12)

Neglecting the weak logarithmic � dependence of LD(E,ω)
generated by the RG [note that �(E,ω) ≡ ��(E,ω) depends
implicitly on � via LD(E,ω)], we can use

i�(E,ω + �) � d

d�
F (E,ω + �). (A13)

Using this in Eqs. (A10) and (A11), and neglecting in addition
the weak logarithmic � dependence of the vertices generated
by RG, we can integrate these equations to

Ḡ1(E,ω; ω1)

� Ḡ1(E) + Ḡ12(E)[F (E12,ω + ω1 + �)

−F (E12,�)] Ḡ2̄(E12) + Ḡ2(E)

× [F (E2,ω + �) − F (E2,�)] Ḡ2̄1(E2), (A14)

Ḡ11′ (E,ω; ω1,ω
′
1)

� Ḡ11′ (E) + Ḡ12(E)[F (E12,ω + ω1 + �)

−F (E12,�)] Ḡ2̄1′ (E12) − Ḡ1′2(E)

× [F (E1′2,ω + ω′
1 + �) − F (E1′2,�)] Ḡ2̄1(E1′2).

(A15)

To find the RG equations for Ḡ1(E), Ḡ11′ (E) and

LD(E) = LD(E,0), (A16)

we set ω = ω1 = ω′
1 = 0 in Eqs. (A5)–(A8), and insert

results (A14) and (A15) for the frequency dependence of the
vertices in the lowest-order terms. Furthermore, the frequency
integrations can be performed by using

i

∫ �

0
dω �(E,ω + �) = K(E), (A17)

with

K(E) = F (E,2�) − F (E,�). (A18)

Collecting the various terms one finds after some straightfor-
ward algebra

d

d�
LD(E)

= iḠ1(E) �(E1,�)Ḡ1̄(E1) − iḠ12(E)K(E12)Ḡ2̄1̄(E12)

− 2iḠ12(E)K(E12)Ḡ2̄3(E12)K(E13)Ḡ3̄1̄(E13),

(A19)

d

d�
Ḡ1(E)

= i Ḡ12(E)�(E12,�) Ḡ2̄(E12) + i Ḡ2(E)�(E2,�)

Ḡ2̄1(E2) + Ḡ23(E)�(E23,� + ω3) Ḡ1(E23)

×�(E123,� + ω3) Ḡ3̄2̄(E123), (A20)

d

d�
Ḡ11′ (E) = i Ḡ12(E) �(E12,�) Ḡ2̄1′ (E12)

− i Ḡ1′2(E) �(E1′2,�) Ḡ2̄1(E1′2)

+ Ḡ23(E) �(E23,� + ω3) Ḡ11′ (E23)

×�(E11′23,� + ω3) Ḡ3̄2̄(E11′23). (A21)

It turns out that many generic cancellations occur. In particular
the corrections from the frequency dependence of the vertices
from the lowest-order terms cancel with corresponding dia-
grams in higher orders. For Ḡ1(E) [Ḡ11′(E)] only the first three
(two) diagrams of Fig. 11 remain with frequency independent
vertices. For LD(E) the cancellation is not complete but the
third and fourth diagrams cancel against frequency-dependent
corrections of the first two diagrams, whereas the last diagram
obtains a factor 2. These cancellations simplify the RG analysis
considerably and appear to be a generic model-independent
feature.

To calculate the remaining frequency integrations in Eqs.
(A20) and (A21), and to find explicit representations for
�(E,ω), F (E), and K(E), we first introduce the spectral
decomposition of the Liouvillian,

LD(E,ω) =
∑

i

λi(E,ω) Pi(E,ω). (A22)

Here, λi denote the eigenvalues of the Liouvillian and Pi

denote the projectors onto the eigenstates (note that the
Liouvillian is non-Hermitian, so that the eigenvalues are
complex valued, and the right and left eigenvectors are not
identical). Equation (A22) leads to a corresponding spectral
representation of the resolvent �(E,ω), defined in Eq. (A8).
In leading order, we again expand in ω up to first order for the
eigenvalues λi(E,ω), whereas we neglect the ω dependence of
the projectors Pi(E,ω). This leads to the approximation

�(E,ω) � −i
∑

i

Zi(E)

ω − iχi(E)
Pi(E), (A23)

where we defined the Z factor

Zi(E) = 1

1 − d
dE

λi(E)
(A24)
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and the distance to the resonant positions

χi(E) = Zi(E)[E − λi(E)]. (A25)

Here, λi(E) ≡ λi(E,0) and Pi(E) ≡ Pi(E,0). Within this
approximation we obtain

F (E,ω) �
∑

i

Zi(E) ln[ω − iχi(E)]Pi(E), (A26)

K(E) �
∑

i

Zi(E) ln

(
2� − iχi(E)

� − iχi(E)

)
Pi(E). (A27)

The set of RG equations (A19)–(A21) is thus complete and can
be solved for a specific model. In particular, it turns out that our
approximations are gauge invariant, i.e., if all single-particle
levels of the dot, all chemical potentials of the reservoirs, and
the Laplace variable E are shifted by the same amount, all
physical observables remain the same. This is only the case if
the E dependence of all quantities is fully taken into account,
an expansion around a fixed value of E, like, e.g., E = 0,
would not lead to a gauge-invariant theory.

We now turn to the evaluation of the RG equations for the
IRLM. Using form (25) for the Liouvillian, the eigenvalues
are given by

λ0(E) = 0, λ1(E) = −i�(E),

λ+(E) = ε(E), λ−(E) = −ε(−E)∗, (A28)

with the corresponding projectors

P0(E) = 1

�(E)

⎛
⎜⎝

�−(E) �−(E) 0 0
�+(E) �+(E) 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠ ,

P1(E) = 1

�(E)

⎛
⎜⎝

�+(E) −�−(E) 0 0
−�+(E) �−(E) 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠ ,

P+(E) =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎠ , P−(E) =

⎛
⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎞
⎟⎠ .

(A29)

Using �(E) = �(−E)∗, we obtain for the Z factors and the χ

functions

Z1(E) = Z1(−E)∗ =
(

1 + i
d

dE
�(E)

)−1

, (A30)

χ1(E) = −χ1(−E)∗ = Z1(E)[E + i�(E)], (A31)

Z(E) ≡ Z+(E) = Z−(−E)∗ =
(

1 − d

dE
ε(E)

)−1

,

(A32)

χ (E) ≡ χ+(E) = χ−(−E)∗ = Z(E)[E − ε(E)]. (A33)

Summing over η and taking into account Ḡ+α,−α(E) =
−Ḡ−α,+α(E), the flow equations (A19)–(A21) can be simpli-
fied to

d

d�
LD(E) = iḠ+α(E)�(E + μα,�)Ḡ−α(E + μα)

+ iḠ−α(E)�(E − μα,�)Ḡ+α(E − μα)

− 2iḠ+α,−α(E)K(E)Ḡ+α,−α(E), (A34)

d

d�
Ḡ+α(E) = iḠ+α,−α(E)�(E,�)Ḡ+α(E) − iḠ+α(E)

×�(E + μα,�)Ḡ+α,−α(E + μα), (A35)

d

d�
Ḡ+α,−α(E) = 2Ḡ+α′,−α′ (E)�(E,� + ω3)Ḡ+α,−α(E)

×�(E,� + ω3)Ḡ+α′,−α′ (E). (A36)

The RG equations for the current kernel and vertex read

d

d�

γ (E) = iĪ

γ
+α(E)�(E + μα + i�)Ḡ−α(E + μα)

+iĪ
γ
−α(E)�(E − μα + i�)Ḡ+α(E − μα),

d

d�
Ī

γ
+α(E) = −iĪ

γ
+α(E)�(E + μα + i�)Ḡ+α,−α(E + μα),

d

d�
Ī

γ
−α(E) = iĪ

γ
−α(E)�(E − μα + i�)Ḡ+α,−α(E + μα).

(A37)

For the derivation of the explicit flow equations for the ef-
fective parameters as introduced in the matrix representations
of the Liouvillian and the vertices, we use the following helpful
identities:

ḠηαP−η = PηḠηα = 0,

Ḡ+α,−α′P1 = P1Ḡ+α,−α = 0,

P+Ḡ−αP− = P−Ḡ+αP+ = 0,

Ḡ12PiḠ3PjḠ45 = 0 for i,j = 1, ± , (A38)

Ḡ+α(E)P1(E1)Ḡ−α′ = −(t2
α − t3

α)(E)tα
′

1 (−E′)∗P−,

Ḡ−α(E)P1(E1)Ḡ+α′ = (t2
α − t3

α)(−E)∗tα
′

1 (−E′)P+,

Ḡ+α,−α′ (E)P+ = P+Ḡ+α,−α(E) = Uα(E)P+,

Ḡ+α,−α′ (E)P− = P+Ḡ+α,−α(E) = −Uα(−E)∗P−,

and

Ḡ+α(E)P+(E1)Ḡ−α′ (E′)

= tα(E)

⎛
⎜⎝

t2
α(−E′)∗ t3

α(−E′)∗ 0 0
−t2

α(−E′)∗ −t3
α(−E′)∗ 0 0

0 0 0 0
0 0 0 0

⎞
⎟⎠ , (A39)

with

Ḡ+α(E)P+(E1)Ḡ−α′ (E′) = −Ḡ−α(−E)∗P−Ḡα(−E′)∗.
(A40)

Using Eqs. (A23) and (A27), the explicit flow equations
for the rates �±(E) and the level position ε(E) are determined
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from the above Eq. (A34) for LD and its parametrization (25)
to

d

d�
�±(E) = ±i

∑
α

Z(E + μα)

� − iχ (E + μα)
tα(E)tα2/3(−E − μα)∗

+ (E → −E)∗, (A41)

d

d�
ε(E) =

∑
α

Z1(E − μα)

� − iχ1(E − μα)
tα(E − μα)t ′α(E − μα)

− 2iZ(E) γ (E) ln
2� − iχ (E)

� − iχ (E)
, (A42)

with γ (E) = ∑
α Uα(E)2 and t ′α(E) = t2

α(−E − μα)∗ −
t3
α(−E − μα)∗. Similarly Eq. (A35) is evaluated using matrix

(26) to

d

d�
tα(E) = − Z(E + μα)

� − iχ (E + μα)
Uα(E + μα)tα(E),

d

d�
t2/3
α (E) = − Z(−E)∗

� + iχ (−E)∗
Uα(−E)∗t2/3

α (E),

which yields

tα(E) = 1
2

[
t2
α(−E − μα)∗ + t3

α(−E − μα)∗
]
,

t ′α(E) = t2
α(−E − μα)∗ − t3

α(−E − μα)∗ = 2πiU (0)
α tα(E),

since the corresponding flow equations have the same form
and the initial conditions are equal. As a consequence,
introducing the rates �(E) = �+(E) + �−(E) and �′(E) =
[�+(E) − �−(E)]/2, the flow equations for the two rates can
be expressed in terms of the single hopping variable tα(E).
The flow equation for Uα is obtained by using Eq. (27) and
integrating Eq. (A36) over ω3,

d

d�
Uα(E) = − 2�Z(E)2

[� − iχ (E)][2� − iχ (E)]
Uα(E) γ (E).

(A43)

Equations (28) and (29), together with the RG equation for the
Liouvillian (A34), yield

d

d�
tγα (E) = − Z(E + μα)

� − iχ (E + μα)
Uα(E + μα)tγα (E)

for the current hopping amplitude, and

d

d�
�1/2

γ (E) = i
∑

α

Z(E + μα)

� − iχ (E + μα)
tγα (E)t2/3

α (−E − μα)∗

+ (E → −E)∗

for the current rates. Comparing with the equations for tα(E)
and �±(E) and considering the respective initial conditions of
Sec. III B it follows that

tγα (E) = δαγ tα(E), �±(E) = ±
∑

α

�1/2
α (E). (A44)

Summarizing, the flow equations for the effective model
parameters read

d

d�
�α(E)

= −2π
Z(E + μα)

� − iχ (E + μα)
U (0)

α tα(E)2 − (E → −E)∗,

d

d�
�′

α(E) = i
Z(E + μα)

� − iχ (E + μα)
tα(E)2 + (E → −E)∗,

d

d�
tα(E) = − Z(E + μα)

� − iχ (E + μα)
Uα(E + μα)tα(E),

d

d�
ε(E) = 2πi

∑
α

Z1(E − μα)

� − iχ1(E − μα)
U (0)

α tα(E − μα)2

− 2iZ(E) γ (E) ln
2� − iχ (E)

� − iχ (E)
,

d

d�
Uα(E) = − 2�Z(E)2

[� − iχ (E)][2� − iχ (E)]
Uα(E) γ (E),

(A45)

where we introduced the rates �α(E) = �1
α(E) − �2

α(E)
and �′

α(E) = (1/2)[�1
α(E) + �2

α(E)], according to definitions
(30).

We now determine and discuss the equations for the Z

factors Z(E) and Z1(E), and subsequently for χ (E) and χ1(E).
For Z(E) and Z1(E) we find

d

d�
Z(E) = Z(E)2 d

dE

d

d�
ε(E),

d

d�
Z1(E) = −iZ1(E)2 d

dE

d

d�
�(E). (A46)

We insert the flow equations (A45) for ε(E) and �(E) and
neglect the derivative with respect to E of Zi(E), tα(E),
and Uα(E) on the right-hand side, as their E dependence is
logarithmically weak. This implies that d

dE
χi(E) � Zi(E)[1 −

d
dE

λi(E)] = 1 and hence

d

d�
Z(E)

= −Z(E)2

[
2π

∑
α

Z1(E − μα)

[� − iχ1(E − μα)]2
U (0)

α tα(E − μα)2,

− 2�Z(E)

[� − iχ (E)][2� − iχ (E)]
γ (E)

]

d

d�
Z1(E) = 2πZ1(E)2

∑
α

Z(E + μα)

[� − iχ (E + μα)]2
U (0)

α tα(E)2

+ (E → −E)∗. (A47)

The first terms include an additional factor t2
α/� and can be

neglected to leading order, yielding

d

d�
Z(E) � 2�Z(E)3γ (E)

[� − iχ (E)][2� − iχ (E)]
(A48)

and a constant for Z1(E) � 1. The comparison with the
equation for Uα(E) implies

Z(E)Uα(E) � U (0)
α , (A49)

i.e., the product Z(E)Uα(E) being unrenormalized. This
simplifies the flow equation for tα(E) in Eq. (A45) to

d

d�
tα(E) = − U (0)

α

� − iχ (E + μα)
tα(E). (A50)
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We can now derive the equation for χ (E) = Z[E(E −
ε(E))]. The above expressions yield

d

d�
Z(E)ε(E)

= 2πi
∑

α

Z(E)

� − iχ1(E − μα)
U (0)

α tα(E − μα)2

− 2γ0

[
i ln

2� − iχ (E)

� − iχ (E)
− �Z(E)ε(E)

(2� − iχ (E))(� − iχ (E))

]
,

(A51)

with χ1(E) = E + i�(E) and γ0 = ∑
α(U (0)

α )2. From
Eq. (A48) for Z(E) the equation for χ (E) reads

d

d�
χ (E)

= −2πi
∑

α

Z(E)

� − iχ1(E − μα)
U (0)

α tα(E − μα)2

+ 2γ0

[
i ln

2� − iχ (E)

� − iχ (E)
+ �χ (E)

[2� − iχ (E)][� − iχ (E)]

]
.

(A52)

In leading order, this equation can approximately be integrated
by

χ (E) = 2iγ0� ln
2� − iχ (E)

� − iχ (E)
+ χ ′(E), (A53)

with

d

d�
χ ′(E) = −2πi

∑
α

Z(E)

� − iχ1(E − μα)
U (0)

α tα(E − μα)2.

(A54)

The terms neglected stem from the � dependence of χ (E)
leading to higher-order terms of order γ0

d
d�

χ (E) ∼ O(U 3).
The first term of Eq. (A54) is important since it cancels the
large term proportional to D in the initial condition for ε(E);
see Eq. (A4). To achieve this, the following relation is needed
between the physical reservoir bandwidth and the initial cutoff
of the RG flow:

�0 = π2

16 ln 2
D. (A55)

Using Eq. (A4) and neglecting unimportant terms ∼ O(γ0),
the initial condition for χ ′(E) then reads

χ ′(E)|�0 = E − ε0 + i
�(0)

2
. (A56)

The RG equation (A54) together with the initial condition
(A56) lead to the RG equation (34) with the definition �̃α(E) =
2πZ(E + μα)tα(E)2. Since the first term of Eq. (A53) is of
order ∼γ0 it can be neglected in all denominators of Eq. (A45)
and [� − iχ (E)]−1 � [� − iχ ′(E)]−1. Thus the first two RG
equations of Eq. (A45) are identical to the RG equations (32)
and (33). Finally, one obtains the RG equation (31) for �̃α(E)
if one combines the RG equations (A50) for tα(E) with the
RG equation (A48) for Z(E) and uses Eq. (A49).

APPENDIX B: CONTOUR INTEGRATIONS FOR THE TIME
EVOLUTION

The evaluation of the auxiliary functions J±(t) defined in
Eq. (96) is performed using standard techniques for contour
integrations. The integrand has poles at z = 0 and z = −i�̃

as well as branch cuts starting at z = ε̃ ± V/2 − i�̃ε/2 and
z = −ε̃ ± V/2 − i�̃ε/2; see Fig. 12.

Let us first consider the noninteracting case. The solution
of RG equations yields a result for the rates �α and �′

α , which
appears to be exact in the scaling limit. In particular, for
symmetric coupling we obtain �(z) = �

(0)
L + �

(0)
R = �(0) ≡

TK , �±(z) = 1
2TK ± ∑

α �′
α(z), �

1/2
α = �′

α ± 1
4TK , and

�′
α(z) = iTK

4π

[
ln

(
TK

2
− i(z + μα − ε0)

)

− ln

(
TK

2
− i(z − μα + ε0)

)]
. (B1)

Using these values we obtain Eqs. (109) and (110) from
Eqs. (95) and (97), respectively, where the functions F0/1,α(t)
are originally defined by

F0/1,α(t) = i

2πTK

∫ ∞+i0+

−∞+i0+
dze−izt �′

α(z)

z + i TK

2 ∓ i TK

2

. (B2)

We note their important property

d

dt
[F0,α(t) − F1,α(t)] = TKF1,α(t), (B3)

which guarantees the current conservation d
dt

n(t) = ∑
γ Iγ (t).

Let us now show that the result of integration in Eq. (B2)
leads to Eq. (111). To this end we deform the contour of
integration from the real axis to the paths embracing the poles
and the branch cuts shown in Fig. 12. The positions of the
nonzero pole as well as of the branch points of �′

α(z) [see
Eq. (B1) above] in the integrand of Eq. (B2) are given by
the bare values of �̃ = �̃ε = TK and ε̃ = ε0. We obtain the
following contributions to F0/1,α(t) = F

p

0/1,α(t) + F br.c.
0/1,α(t):

The pole contribution equals

F
p

0,α(t) = �′
α(0)

TK

, F
p

1,α(t) = �′
α(−iTK )

TK

e−TK t , (B4)

where

�′
α(0) = −�′

α(−iTK ) = TK

2π
arctan

μα − ε0

TK/2
. (B5)

−ε
−

V
/2

−ε −ε~
+

V
/2

ε−
V

/2

ε ε+
V

/2

−Γ

−Γ~
ε 2

~~ ~ ~ ~

~

FIG. 12. (Color online) Analytic structure of the integrand of
J±(t). All singularities appear in the lower half plane. Red dots stand
for poles while red solid lines represent branch cuts. The pole at z = 0
corresponds to the stationary state. The blue dashed and green dotted
lines are the original and deformed integration contours, respectively.
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The branch-cut contribution equals

F br.c.
0/1,α(t) = iei(ε0−μα )t

2πTK

∫ −iTK/2

−i∞

d(iy)eyt

iy + i TK

2 ∓ i TK

2 − (ε0 − μα)

× iTK

4π
(−2πi) − (ε0 − μα → −ε0 + μα)

= −Im
ei(ε0−μα)t−TK t/2

2π

∫ 0

−∞

dy eyt

y ∓ TK

2 + i(ε0 − μα)

= Im
ei(ε0−μα )t−TK t/2

2π

∫ ∞

0

dx e−x

x ± TK t
2 − i(ε0 − μα)t

= −e−TK t/2±TK t/2

2π
Im Ei

(
∓TKt

2
+ i(ε0 − μα)t

)
,

(B6)

where we exploit the analytic continuation of the exponential
integral function (see Eq. 8.212.5 of Ref. 36, and Ref. 37)

Ei(±z) = −e±z

∫ ∞

0

e−x

x ∓ z
dx (Re z > 0). (B7)

Combining Eqs. (B4), (B5), and (B6) we obtain formula (111).
We also note that

Fbr.c.
0/1,α(t = 0+) = − 1

2π
Im

∫ 0

−∞

dy

y ∓ TK

2 + i(ε0 − μα)

= ± 1

2π
arctan

ε0 − μα

TK/2
, (B8)

which implies the property

F0/1,α(t = 0+) = 0. (B9)

In the interacting case, the analytic structure remains very
similar to that of the noninteacting case. The main difference
is contained in the type of branching behavior, which changes
from the logarithmic to the power-law one. Additionally,
positions of the branch point as well as a position of the nonzero
pole are shifted to interaction-dependent values.

−ε~
+

V
/2

ε−
V

/2
~−ε~ ε~−ε

−
V

/2

ε+
V

/2

~ ~

FIG. 13. (Color online) Integration contour for J±(t) on reso-
nance |ε̃ − V/2| � TK .

For |ε̃ − V/2| � TK we can treat all poles and branch cuts
separately. Thus the evaluation of J±(t) boils down to

J±(t) = −1

2
∓ �′(0)

�(0)

+
(

1

2
± �′(−i�̃)

�̃

)
e−�̃t Res

(
1

z + i�(z)
,z = −i�̃

)

+ i

2π

∑
α=±V/2

∑
β=±ε̃

e−i(α+β)t
∫ −�̃ε/2

−∞

dy eyt

α + β + iy

×
(

�±(α + β − η + iy)

α + β + iy + i�(α + β − η + iy)

−(η → −η)

)
. (B10)

Using �±(z) = 1
2�(z) ± �′(z) it can be cast in the form

J±(t) = −1

2
∓ �′(0)

�(0)
+

(
1

2
± �′(−i�̃)

�̃

)
e−�̃t

+ Jb(t) ± J ′
b(t), (B11)

where the first two terms equal nst. Then a straightforward
calculation yields

Jb(t) = sin(πg)

2π

e(−�̃ε/2)t

(tTK )1+g

∑
α=±V/2

∑
β=±ε̃

e−i(α+β)t (B12)

×
∫ ∞

0

ds

sg

e−s[
4 (α+β−i�̃ε/2)t−is

(tTK )1+g + i
(−s−2iαt)g + i

(−s−2iβt)g + i
[−s−2i(α+β)t]g + i

sg cos(πg)
]2 + sin2(πg)

s2g

,

J ′
b(t) = sin(πg)

π2U (0)
e(−�̃ε/2)t

∑
α=±V/2

∑
β=±ε̃

β

ε̃
e−i(α+β)t

∫ ∞

0

ds

sg

e−s

(α + β − i�̃ε/2)t − is

×
1

(−s−2iβt)g + 1
[−s−2i(α+β)t]g − 2i

(α+β−i�̃ε/2)t−is

(tTK )1+g[
4 (α+β−i�̃ε/2)t−is

(tTK )1+g + i
(−s−2iαt)g + i

(−s−2iβt)g + i
[−s−2i(α+β)t]g + i

sg cos(πg)
]2 + sin2(πg)

s2g

. (B13)

We note that the factor β/ε̃ just gives a sign. For V,|ε̃ −
V/2| � TK,1/t we obtain Eq. (106). Close to resonance, |ε̃ −
V/2| � TK , the two branch cuts starting at z = ±ε̃ ∓ V/2 −
i�̃ε/2 are very close to the pole at z = −i�̃, which leads to a

numerical instability in the calculation of its residue. Therefore
it is advantageous to directly evaluate J±(t) as defined in Eq.
(96) on the contour shown in Fig. 13, thereby encircling the
pole at z = −i�̃.
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The time evolution of the current given in Eq. (97) can be
cast in the form

IL(t) = J 1(t) + (
1
2 − n(0)

)
J 2(t) + J 3(t), (B14)

where

J 1(t) = i

2π

∫ ∞+i0+

−∞+i0+

dz

z
�′

L(z) e−izt , (B15)

J 2(t) = i

2π

∫ ∞+i0+

−∞+i0+

dz

z + i�(z)
�L(z) e−izt , (B16)

J 3(t) = 1

2π

∫ ∞+i0+

−∞+i0+

dz

z

�′(z) �L(z)

z + i�(z)
e−izt . (B17)

The evaluation is analogous to the one for J±(t) above.
In particular, in the long-time limit V t,|ε̃ − V/2|t � 1 off
resonance we find

J 1(t) = �′
L(z = 0) + TK

2π
(TKt)g e−�̃ε t/2 cos[(ε̃ − V/2)t]

(ε̃ − V/2)t
,

J 2(t) = �L(−i�̃) e−i�̃t ,

J 3(t) = −�′(0)

�(0)
�L(0) + �′(−i�̃)

�̃
�L(−i�̃) e−i�̃t ,

(B18)

where for J 2 and J 3 terms in O(U (0)) were neglected. The
first terms in J 1 and J 3 together yield the stationary current
(53).
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