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Ab initio study of elastic constants in InxGa1−xN and InxAl1−xN wurtzite alloys
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Dependence of elastic constants on composition and atomic arrangement in wurtzite InxGa1−xN and
InxAl1−xN alloys is studied by self-consistent ab initio calculations within a supercell model. It is found that
a Vegard’s-like law, i.e., linear dependence on the alloy content, x, can be accepted for C12, C13, and C44 in
InxGa1−xN, and for C12, C13, and C33 in InxAl1−xN, whereas significant sublinear deviations are obtained for
C11 and C33 in InxGa1−xN and for C11 and C44 in InxAl1−xN. The effect of In atoms clustering, modeled by
grouping In atoms in a part of a supercell, leads to a decrease in C11, C12, and C44, and an increase in C33,
in both InxGa1−xN and InxAl1−xN alloys. Therefore, in the alloys with clustered In atoms, C11, C12, and C44

show significant sublinear behavior on composition in both InxGa1−xN and InxAl1−xN, whereas the composition
dependence of C33 is almost linear in InxGa1−xN and significantly superlinear in InxAl1−xN. The dependence of
the bulk modulus on composition is slightly sublinear in InxGa1−xN and InxAl1−xN alloys and changes little due
to the In clustering effect.
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The group III nitride alloys are strategic materials for
optoelectronics and high-power/high-temperature electronics.
Despite both experimental and theoretical efforts, many fun-
damental properties of these materials, including the band gap,
the band gap deformation potentials, strain, the macroscopic
polarization, and even the structural parameters, are still the
subject of vigorous debate.1–6 The difficulties in determination
of the band gap of InxGa1−xN and InxAl1−xN originate from
the specific role of In atoms in these alloys. A decade ago, it
was demonstrated that alloying of GaN with In leads to strong
localization of the hole wave function and, consequently, the
band gap and optical properties of InxGa1−xN alloys depend
on microscopic arrangement of In atoms.7 Recent calculations
of the band gap in InxGa1−xN and InxAl1−xN alloys have
shown that the band gap bowing is significantly enlarged
when In atoms are grouped in clusters.1 The knowledge about
the deformation potentials of the band gap in nitride alloys
is far from being satisfactory and even for binary nitride
compounds, the values of these parameters are a subject of
intensive research.2 Regarding InxGa1−xN and InxAl1−xN
alloys, recent study of the pressure coefficient of the band
gap has revealed that the effect of In clustering significantly
changes the hydrostatic deformation potential of the band gap,
whereas it only slightly influences the bulk modulus.3 It has
been suggested that large variations in the band gap and its
pressure coefficient, determined on various samples of similar
composition are caused by different degree of In clustering.1,3

The presence of the macroscopic polarization and strain
is a common feature of nitride heterostructures and has a
profound impact on their optical and electrical properties.
Therefore, description of elastic and polarization related
properties of InxGa1−xN and InxAl1−xN alloys has a decisive
influence on the design criteria of nitride nanostructures. It was
established that similarly to the behavior of the band gap in
InxGa1−xN and InxAl1−xN, the spontaneous and piezoelectric
polarizations in these alloys depend not only on In content
but also on the microscopic distribution of In atoms in the
alloys.8 Particularly, ordering of In atoms in superlattice-like
structures alters dramatically the spontaneous polarization

and significantly influences the piezoelectric constants in
these alloys.8–10 For description of the effect of strain in the
framework of continuum elasticity theory, the knowledge of
the lattice parameters and the elastic constants of InxGa1−xN
and InxAl1−xN alloys is needed. Theoretical calculations show
that in InxGa1−xN and InxAl1−xN alloys with a uniform
distribution of In atoms, both the a and c lattice parameters
follow Vegard’s law, i.e., depend linearly on composition.1,11,12

Small deviations from linear behavior of the lattice parameter c
have been found for the alloys with clustered In atoms.1 Recent
x-ray diffraction and Rutherford backscattering spectroscopy
experiments performed for strained InxAl1−xN films have
questioned the applicability of Vegard’s rule to describe the
lattice parameters in these structures.5,6

The elastic constants in wurtzite InxGa1−xN and InxAl1−xN
alloys have not been studied thus far. In nanostructure
modeling (see, for example, Refs. 4 and 13) or interpretations
of experiments,5,6 it has been assumed that the elastic con-
stants in these alloys would follow a Vegard-like behavior,
i.e., interpolate linearly between the corresponding values
determined for the binary compounds. On the other hand,
sublinear composition dependencies of the elastic constants
in random InxGa1−xN and AlyInxGa1−x − yN alloys of
zinc-blende symmetry have recently been calculated using
the Keating valence force field model.14 The experimental
determination of the elastic constants in nitride alloys is
difficult. Theoretical calculations performed by means of
ab initio density-functional techniques are the most promising
approach to deliver reliable predictions of the elastic constants
in nitride alloys.15–17

In the present work, we study the dependence of the
elastic constants on composition and atomic arrangement
in InxGa1−xN and InxAl1−xN alloys using self-consistent
ab initio calculations with a supercell model. The indium
concentrations, x = 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, and
0.875, have been realized by substituting 2, 4, 6, 8, 10,
12, and 14 Al or Ga atoms by In in a 32-atom supercell.
Two extreme atomic arrangements (identical for InxGa1−xN
and InxAl1−xN) have been considered for a given x by
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FIG. 1. (Color online) Schematic arrangement of atoms for
uniform (a) and clustered (b) In0.25Ga0.75N alloys.

either distributing In atoms as uniformly as possible over the
supercell (uniform alloys) or by clustering In atoms on cation
sites in a part of the supercell (clustered alloys).1 There is
no unique procedure to obtain the most clustered structures,
thus for the clustered alloys we choose the structures in which
the largest reductions of the band gap have been found in
comparison to uniform alloys of the same composition.1 Take
as an example In0.25Ga0.75N. In the uniform case, In atoms are
distributed in such a way that to each N atom belongs one In and
three Ga atoms [Fig. 1(a)], whereas in a clustered In0.25Ga0.75N
alloy, every fourth cation hexagonal layer consists entirely of
In atoms [Fig. 1(b)].1 Note that the distribution of In and Ga
atoms in the uniform configuration does not correspond to the
random distribution of cations in an ideal alloy.

In the linear theory of elasticity, the elastic properties
of wurtzite crystals are described in terms of five elastic
constants denoted by C11, C12,C13, C33, and C44.15 We
perform the calculations of this set of elastic constants
in two steps. In the first step, InxGa1−xN and InxAl1−xN
alloys are optimized by minimization of the total energy
with respect to volume and shape of the supercell. In
the second step, to every optimized alloy supercell, we
apply five types of strains εij = (εxx,εyy,εzz,εzx,εzy,εyx),
defined as ε

(1)
ij = (δ,δ,0,0,0,0), ε

(2)
ij = (δ,δ,δ,0,0,0),

ε
(3)
ij = (0,0,δ,0,0,0), ε

(4)
ij = (δ, − δ,0,0,0,0), and ε

(5)
ij =

(0,0,0,δ/2,δ/2,0). For each type of the deformation, the
strain variable δ varies between –0.02 and 0.02 in steps of
0.004. When the deformations are applied, new positions
of atoms in the supercell are obtained by allowing atomic
relaxation and modification of the supercell shape. The elastic
constants are determined by comparing the parabolic fits
to the calculated values of the total energy vs. parameter
δ with expressions derived from the strain-energy relation
in the framework of the linear theory of elasticity.15

For the above types of deformations, the strain-energy
expressions are as follows: U (1) = (C11 + C12)δ2,
U (2) = (C11 + C12 + 2C13 + C33/2)δ2, U (3) = C33δ

2/2,
U (4) = (C11 − C12)δ2, and U (5) = C44δ

2.
The total energy calculations have been performed using

the VASP, package which is a plane-wave pseudopotential
implementation of the density-functional theory.18 Projector
augmented wave pseudopotentials have been used.19 For the
exchange-correlation functional, the local density approxima-
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FIG. 2. (Color online) The elastic constants in uniform (a) and
clustered (b) InxGa1−xN alloys, as a function of In molar fraction.
The values of the bulk modulus (stars), calculated using Eq. (2), are
also presented. Solid lines are linear interpolations between the values
obtained for the binary compounds. Dotted lines are added to guide
the eye.

tion with the Perdew-Zunger parametrization of the Ceperley-
Alder functional has been applied.20,21 The semicore 3d and
4d electrons for Ga and In have been explicitly included in the
calculations. The Brillouin-zone integrals have been calculated
using a 5 × 5 × 5 Monkhorst-Pack mesh. The cutoff energy for
the plane-wave basis set has been chosen to be equal to 600 eV.

The results of calculations are presented in Figs. 2 and 3,
where the elastic constants C11, C12,C13, C33, and C44 are
plotted against composition for InxGa1−xN and InxAl1−xN,
respectively. In order to discuss the composition dependencies
of the elastic constants quantitatively, we have performed
quadratic parametrization of the ab initio data shown in Figs. 2
and 3, according to the formula

CMInN
ij (x) = (1 − x)CMN

ij + xCInN
ij + bx(1 − x), (1)

where the symbol M is used to denote Ga and Al, for
InxGa1−xN and InxAl1−xN, respectively, and b is the bowing
parameter that accounts for the deviation from the Vegard-
like rule. The results of the fitting procedure are listed in
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FIG. 3. (Color online) The elastic constants in uniform (a) and
clustered (b) InxAl1−xN alloys, as a function In of molar fraction.
The values of the bulk modulus (stars), calculated using Eq. (2), are
also presented. Solid lines are linear interpolations between the values
obtained for the binary compounds. Dotted lines are added to guide
the eye.

Tables I and II. Additionally, we have included in Tables I
and II the values of the average absolute deviations from
the parabolic expressions, �C

par
ij , and from the Vegard-like

dependences �C
Veg
ij . These quantities have been determined

according to the standard formula used in statistics, �Cfit
ij =

1
n

∑n
i=1 |Cfit

ij − Cab
ij |, where Cfit

ij denotes the elastic constants
found using the parabolic or the Vegard-like dependence on
composition, Cab

ij are the results of ab initio calculations, and
n denotes the number of studied InxGa1−xN or InxAl1−xN
ternary alloys. The �C

par
ij and �C

Veg
ij indicate the validity of

using the parabolic and the Vegard-like approximations to the
composition dependencies of the elastic constants.

Discussing the results for InxGa1−xN, one can see that
in uniform alloys [Fig. 2(a)], the composition dependences
of C11 and C33 show significant sublinear character, whereas
C12, C13, and C44 follow the Vegard-like behavior. In the case
of clustered InxGa1−xN alloys [Fig. 2(b)], C11, C12, and C44

TABLE I. The results of quadratic parametrization of the compo-
sition dependences of the elastic constants in uniform and clustered
InxGa1−xN alloys. The average absolute deviations, �C

par
ij and

�C
Veg
ij , are also listed. The values for clustered alloys are given in

brackets. All data are in GPa.

CGaN
ij CInN

ij b �C
par
ij �C

Veg
ij

C11 368 229 60 (100) 1.2 (1.5) 11.4 (18.7)
C12 153 116 14 (43) 0.6 (1.2) 2.8 (7.9)
C13 117 97 −4 (−4.5) 0.7 (0.5) 0.9 (0.9)
C33 400 238 71 (−1) 2.2 (3.2) 13.0 (3.2)
C44 92 50 16 (35) 0.3 (0.9) 3.0 (6.5)

depend sublinearly on In content, whereas the Vegard-like
dependences occur for C13 and C33. Consequently, the bowing
parameters are significant for C11 and C33 in uniform alloys and
for C11, C12, and C44 in clustered alloys. In all these cases, the
values of �C

Veg
ij are considerably larger than the corresponding

values of �C
par
ij which indicates that the Vegard-like rule is not

fulfilled and the quadratic parametrization is reasonably valid.
Comparing the results obtained for uniform and clustered
alloys, we note that the effect of In clustering in InxGa1−xN
decreases the values of C11, C12, and C44, which leads to an
increase of the bowing parameters for these elastic constants.
On the other hand, In clustering increases significantly C33,
decreasing its bowing parameter dramatically.

In the case of InxAl1−xN alloys, we observe that for
uniform alloys [Fig. 3(a)], the composition dependencies of
C11 and C44 clearly show sublinear character, which correlates
with significant values of the bowing parameters and large
differences between �C

par
ij and �C

Veg
ij . On the other hand,

Vegard-like dependencies are obtained for C12 and C13 (note
small bowing parameters and similar values of �C

par
ij and

�C
Veg
ij ). For C33, a slightly sublinear deviation is found. For

clustered InxAl1−xN alloys [Fig. 3(b)], C11, C12, and C44

depend sublinearly on composition that results in significant
bowing and small values of �C

par
ij compared to �C

Veg
ij . For

C13, the Vegard-like dependence can be accepted, whereas
significant superlinear dependence on composition occurs for
C33 giving a large and negative bowing parameter. Comparison
of the results obtained for uniform and clustered alloys allows
us to note that, similarly to the case of InxGa1−xN, clustering

TABLE II. The results of quadratic parametrization of the
composition dependences of the elastic constants in uniform and
clustered InxAl1−xN alloys. The average absolute deviations, �C

par
ij

and �C
Veg
ij , are also listed. The values for clustered alloys are given

in brackets. All data are in GPa.

CAlN
ij CInN

ij b �C
par
ij �C

Veg
ij

C11 397 229 80 (141) 2.5 (2.2) 15.5 (26.1)
C12 145 116 8.7 (47) 1.2 (1.4) 2.1 (8.8)
C13 115 97 −3 (−11) 0.7 (1.2) 0.7 (2.1)
C33 371 238 25 (−93) 5.6 (4.3) 6.0 (17.0)
C44 115 50 35 (70) 0.9 (2.3) 6.8 (13.0)
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of In atoms in InxAl1−xN alloys decreases C11, C12, and C44

and increases C33.
Finally, we discuss the composition dependence of the bulk

modulus in InxGa1−xN and InxAl1−xN alloys. The set of elastic
constants of a wurtzite material determines its bulk modulus
according to the well-known formula15

B = C33(C11 + C12) − 2(C13)2

C11 + C12 − 4C13 + 2C33
. (2)

The values of B, calculated via Eq. (2), for InxGa1−xN and
InxAl1−xN alloys are included in Figs. 2 and 3, respectively.
One can see that the composition dependence of B shows
slightly sublinear character in both uniform and clustered
alloys. The bowing parameters are rather small, i.e., 14 and
23 GPa, for uniform and clustered InxGa1−xN, and 19 and
26 GPa, for uniform and clustered InxAl1−xN, respectively.
We note that the influence of In clustering on the values of B is
small in both materials. The behavior of B with composition is
then in agreement with the results presented in Ref. 3, where
the values of B were calculated from the dependence of the
total energy vs. the supercell volume according to the formal
definition of the bulk modulus.

In conclusion, our study reveals that for alloys with a
uniform distribution of In atoms, a Vegard-like approximation
can describe the composition dependences of C12, C13, and
C44 in InxGa1−xN alloys and C12, C13, and C33 in InxAl1−xN,
whereas significant sublinear deviations are found for C11 and
C33 in InxGa1−xN and for C11 and C44 in InxAl1−xN. The
effect of In clustering reduces C11, C12, and C44 and increases
C33 in both InxGa1−xN and InxAl1−xN alloys. Consequently,
C11, C12, and C44 depend sublinearly on x in clustered
InxGa1−xN and InxAl1−xN alloys, whereas C33 shows a linear
and superlinear dependence on the composition in clustered
InxGa1−xN and InxAl1−xN, respectively. The dependence of
the bulk modulus on composition is slightly sublinear in
InxGa1−xN and InxAl1−xN alloys and changes little due to
the In clustering effect.
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