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Scaling of island size and capture zone distributions in submonolayer growth
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(Received 13 May 2011; published 31 May 2011)

Island size and capture zone distributions (ISDs, CZDs) are studied numerically in submonolayer growth with
various critical island sizes and shapes. CZDs scaled by the variance show excellent agreement with the Wigner
surmise, confirming the Pimpinelli-Einstein approach for large CZs/large island dynamics. The ISDs decay as
exp(−sγ ), with γ = 4, ≈2.4, and 2 for point, fractal, and square islands, respectively. A scaling approach explains
the values of γ from the Gaussian decay of CZDs and the efficiency of islands to capture diffusing adatoms.
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Since island nucleation in the submonolayer regime
determines several features of the subsequent growth of a
thin film,1–4 it motivated many theoretical works to explain
the island size distributions (ISDs) and the capture zone
distributions (CZDs). Theoretical distributions are frequently
compared to experimental data from various materials and
processes or with simulation data from atomistic models,
providing estimates of parameters such as critical nucleus
sizes and binding energies. Recent works on submonolayer
growth of organic molecules5–7 and colloidal epitaxy8 increase
the interest in the subject for the possibility of extending the
knowlegde on atomic epitaxy.

However, the exact forms of the CZDs and ISDs still remain
unknown and, consequently, the basic mechanisms governing
their kinetics are unclear. Most theoretical approaches assume
irreversible aggregation of adatoms to islands whose size
exceeds a critical value i. Important examples are that of
Amar and Family (AF), who proposed an empirical formula
for the ISDs,9 the Mulheran and Blackman (MB) approach to
relate ISDs to distributions of areas of Voronoi polygons,10

and the recent proposal of Pimpinelli and Einstein (PE)11

that CZD are described by the Wigner surmise (WS) from
random matrix theory.12 The AF formula is widely used to
fit the peaks of experimental ISDs and to estimate critical
island sizes (see, e.g., Ref. 13), but deviations from point
island model distributions are significant.1,14 The solution of
equations from the MB approach provides ISDs very close
to point island model simulations, but it is not so popular as
the AF formula for fitting experimental data. The WS works
better than the MB curves for fitting simulated CZDs of point
and circular islands,11 but recent numerical work by Amar
and Evans groups15,16 showed deviations in the peaks and
in the left tails. Alternatively, a � distribution was used to
fit CZDs.17

Here we analyze very accurate simulation data of ISDs and
CZDs of growth models of point and extended (fractal and
square) islands with irreversible aggregation (i = 1 and 2).
The CZDs are fitted by the WS after rescaling by the variance,
which reduces deviations in the peaks and left tails and
hightlights the Gaussian right tail predicted by PE for all
island shapes. The ISD shows deviations from the AF formula,
but have universal right tail decays dependent on the island
shape and related to the Gaussian CZD. This confirms the PE
approach for describing the dynamics of large islands and large
capture zones (CZs).

We performed simulations in square lattices of size 2048 ×
2048 and confirm negligible finite-size effects with runs in
size 1024 × 1024. Diffusion-to-deposition ratios R ≡ D/F

between 106 and 1010 were analyzed, with critical island sizes
i = 1 and i = 2. For i = 2, detachment probability ε = 10−3

was used with point islands to facilitate island growth and
reduce fluctuations, but for extended islands we used ε = 1
(in other words, ε is the ratio of diffusion coefficients of atoms
in islands with size 2 and free atoms). Averages are taken from
104 lattice configurations for each i, R, and coverage θ . In point
island models, all atoms of an island aggregate at a single
lattice site. The model version of Shi, Shim, and Amar15,18

was simulated, with an adatom aggregating to an island as
it is deposited or hops onto it (however, simulations of the
neighbor-attachment version19 leads to similar conclusions).
In fractal island models, each atom permanently aggregates at
the site where it collides with an island,20 generating branched
clusters that resemble those of diffusion-limited aggregation
(DLA).21 In the square island model, instantaneous relaxation
to compact (square) shape is performed after an adatom
collides with an island.22 A site belongs to the CZ of an island
if its distance to the island border is smaller than its distance to
any other island border. The CZ area x is the number of sites
in the CZ, and the island size s is its number of atoms.

It is expected that the probability density of CZ area x

follows the scaling form

P (x) = 1

〈x〉f
(

x

〈x〉
)

, (1)

and an equivalent relation is assumed for the density of islands
of size s, Q(s). The alternative scaling of CZD with the
variance σx ≡ 〈(x − 〈x〉)2〉1/2

as

P (x) = 1

σx

g(u), u ≡ x − x

σx

, (2)

was used in a recent study of roughness distributions23 to
reduce the effect of scaling corrections in x and σx (here cor-
rections are expected to arise from small CZs, whose dynamics
continuous theories fail to describe). For comparison, the
WS is

Pβ(x) = aβxβ exp (−bβx2), (3)
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with the parameter β = 2
d

(i + 1) predicted by the PE theory,
where d is the substrate dimension (d = 2 in this work). The
AF formula for ISDs is

fi(u) = Ciu
i exp (−iaiu

1/ai ), (4)

where u ≡ s/〈s〉 and Ci and ai are normalization constants.
In Fig. 1(a) we show scaled CZD for point islands with

i = 1. An excellent collapse of the data for different R is
observed with scaling by the variance, as shown in the inset
of Fig. 1(a). This is an important starting point for comparison
with (R-independent) theoretical approaches. This contrasts
to the scaling by the average, which shows significant R

dependence of the peak heights.15 Figure 1(a) also shows four
theoretical curves for comparison with the simulation data.
The WS with β = 2, predicted by PE theory, is a good fit for
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FIG. 1. (Color online) (a) Scaled CZD for point islands with i = 1
and θ = 0.10 [R = 107 (crosses, red), R = 108 (triangles, blue), and
R = 109 (squares, green)] compared with the WS with β = 2 (solid
curve), the � distribution (dashed curve), the WS with β = 3 (dotted
curve), and the GG fit with β = 4 and n = 1.5 (dash-dotted curve).
The inset is a linear-linear plot of the same data and the WS with
β = 2. (b) Same simulation data of (a) with abscissa u2. The solid
straight line highlights the Gaussian tail. (c) Scaled CZD for point
islands with i = 2 and the same values of θ and R, compared with
the WS with β = 3 (solid curve).

the peaks under this rescaling [inset of Fig. 1(a)], but shows
deviations in the tails, as previously observed in Refs. 15
and 16. The � distribution that best fits the CZD peaks has
remarkable differences in both tails. The WS with β = 3 was
suggested in Refs. 16 and 24 and turns out to be a good fit
for the peak and left tail of the simulation data, but also
differs from the right one. Finally, the generalized � (GG)
fit g(x) ∼ xβexp(−bsn) with β = 4 and n = 1.5, proposed in
Ref. 16, has small deviation only in the right tail.

Figure 1(b) shows the same simulation data of Fig. 1(a)
with abscissa u2. The fit for u2 � 15 highlights the Gaussian
right tail. This is the universal decay of CZD predicted by PE
theory.

Figure 1(c) shows scaled CZD for point islands with i = 2,
compared to the WS with β = 3, as predicted by PE theory.
Good data collapse is also obtained with this rescaling [inset
of Fig. 1(c)]. There is discrepancy from the PE curve in the
left tail, but the agreement in the right tail is very good, which
confirms the Gaussian decay.

The comparison of the skewnesses 〈(x − 〈x〉)3〉/σ 3 of the
simulated CZD and the WS gives additional support to the PE
approach: Simulation gives S = 0.51 ± 0.01 and S = 0.41 ±
0.01 for i = 1 and i = 2, respectively, while the values of the
WS are 0.486 for β = 2 and 0.406 for β = 3. It is also observed
that CZDs for point islands have a negligible dependence on
the substrate coverage θ when scaled by the variance.

Scaled CZDs of fractal islands with i = 1 are shown in
Fig. 2(a), with the predicted WS curve (β = 2). The good fit
in the tails confirms the Gaussian decay, and scaling by the
variance also leads to a good data collapse for different R and
agreement with the WS peaks. Results for square islands with
i = 2 are shown in Fig. 2(b), again in good agreement with the
respective WS curve (β = 3). Similar good fits by WS curves
are obtained for fractal islands with i = 2 and square islands
with i = 1.

For fractal islands, the good data collapse shown in
Fig. 2(a) is obtained for coverages θ � 0.20. For square
islands, subisland overlap enhances coalescence effects; thus,
the behavior shown in Fig. 2(b) is observed only for θ � 0.10.
Also note that, for small R (typically R � 105), the right tails
for extended islands deviate to simple exponential decays, and
data for R = 106 show crossover behavior.

These results are striking evidence that the PE theory
actually captures the main ingredients of the dynamics of large
CZs. Indeed, the phenomenological model introduced by PE11

extracts the Wigner distribution from a Langevin equation,
which is a continuous approach expected to apply for large
x. The deviations in scaling by the average [Eq. (1)] and
the better data collapse in scaling by the variance [Eq. (2)]
confirm that scaling corrections are reduced by the latter.
Those corrections are related to small CZs, whose dynamics is
not accurately described by the continuous PE approach. For
instance, this explains the larger deviations for point islands
with i = 1, particularly in the left tails (as previously observed
in Refs. 15 and 16): Since adatoms have to move for long
times before reaching an existing island, the probability of
two diffusing adatoms to meet (nucleating a new stable island)
is great, leading to division of large CZs into smaller ones.
For i = 2, the instability of two-atom islands reduce this
effect.
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FIG. 2. (Color online) Scaled CZD for (a) fractal island model
with i = 1 and (b) square island model with i = 2, with R = 107

(crosses, red), R = 108 (triangles, blue), R = 109 (squares, green),
and R = 1010 (stars, magenta). The solid curves are the WS with
(a) β = 2 and (b) β = 3. The insets are linear-linear plots of the same
data.

The scaling by the variance makes the peaks of CZDs
indistinguishable for different i’s in a linear plot, in contrast to
the log-linear plots that highlight the differences in the tails.
Thus, it will probably be not useful to distinguish the critical
nucleus in experimental data, where fluctuations in the tails
are large. However, it is certainly important for comparisons
in theoretical works.

Now we present results for ISDs.
Figure 3(a) shows results for point islands. The variable

(s/〈s〉)4 highlights the right tail decay as exp (−s4) for large
R. The inset of Fig. 3(a) shows the same data scaled by
the variance σs [with z ≡ (s − 〈s〉)/σs]. This rescaling does
not provide collapse of ISD data for different R and θ and
introduces corrections in the right tail decay shown in the main
plot. Figure 3(a) also shows the AF formula, which does not
represent these ISDs because it gives Q(s) → 0 as s/〈s〉 → 0,
as noted before.1,14

For fractal islands, scaling by the variance provides good
data collapse for different R, as shown in Fig. 3(b). The AF
formula is a good fit for the ISD peaks [inset of Fig. 3(b)],
which explains its wide use, but it does not represent the right
tail (main plot). The decay of the ISD is only slightly faster
than the Gaussian decay of the CZD. The good fits of the right
tails by exp (−z2.4) (main plot) or exp (−s2.4) (if scaled by the
average) explain the choice of the abscissa in Fig. 3(b).

The ISDs for square islands are shown in Fig. 3(c). Good
data collapse for different R is obtained in the right tails with
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FIG. 3. (Color online) Scaled ISD for (a) point islands, (b) fractal
islands, and (c) square islands, with i = 1 and θ = 0.10. Symbols
correspond to R = 107 (crosses, red), R = 108 (triangles, blue), R =
109 (squares, green), and R = 1010 (stars, magenta). The insets show
linear-linear plots of the same quantities. The solid curve in all plots
is the AF formula with i = 1. The dashed straight lines in the main
plots are guides for the eye.

scaling by the variance, despite the large differences in the left
tails and peak heights. The same Gaussian decay of the CZD
is obtained. Again, the AF formula shows deviations from the
simulated ISD.

The ISDs for extended islands (fractal or square) have
significant coverage dependence. For very low coverage, point
island decay [∼e(−s4)] is found, and, for large coverage, the
right tails tend to simple exponentials. The behavior shown in
Figs. 3(a)–3(c) is typical of a narrow (though widely studied)
range 0.05 � θ � 0.2. Analogous results are obtained for
i = 2.

Now we establish a connection between the CZD and the
ISD which explains the observed decays of the latter. Since
the decay of CZD is universal, as predicted by PE, it is natural
to expect that the decay of ISD will be related to that Gaussian
decay and to the particular island shape. Working with large
islands and CZs is certainly necessary for such continuous
approach.
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For fractal islands, it is plausible that larger islands have
larger CZ. This is shown for circular islands in Ref. 25. Thus,
consider that islands of size s have CZ of typical size x, so
that P (x) ∼ Q(s). The shape of that island resembles that of a
DLA cluster for small coverage because most of the attached
atoms came from the island neighborhood by diffusion and
not by deposition inside that island. Thus, the typical radius
of the island is R ∼ s1/DF , with the fractal dimension DF ≈
1.694 of DLA.26 The area of the CZ is expected to scale as
the area of a circle with that radius; thus, x ∼ R2 ∼ s2/DF .
Consequently, the Gaussian tail of the CZD implies a tail
for the ISD as exp (−x2) ∼ exp (−s4/DF ) ≈ exp (−s2.36). This
faster-than-Gaussian decay is in excellent agreement with the
results in Fig. 3(b).

For compact (square or circular) islands, the fractal dimen-
sion is DF = 2; thus, the same arguments lead to a Gaussian
decay of the ISD, again in excellent agreement with our
numerical results [Fig. 3(c)].

For point islands, consider a typical CZ of area x of an
island with size s (s atoms in a single site), with x,s � 1.
The radius of this CZ is R ∼ x1/2, and its border has length
of order R. It is surrounded by other CZs, whose number
grows proportional to the border length R (typically they are
small CZs neighboring a large one). Now consider islands
whose CZ is of size x + �x and size s + �s. The increase
in the size is due to atoms deposited in the additional area
�x which were able to reach this point island, instead of
being absorbed by the neighboring islands. We expect that a
fraction ∼ 1

R
of those deposited atoms will actually reach the

central point island. Thus, �s ∼ �x 1
R

, which gives ds
dx

∼ 1
x1/2

in the continuum limit and, consequently, x ∼ s2 (this means
that large CZ area x corresponds to not so large island size
s ∼ x1/2). The Gaussian tail of the CZD implies a tail for
the ISD as exp (−x2) ∼ exp (−s4). This is also in excellent
agreement with our numerical results for i = 1 [Fig. 3(a)] and
reasonable agreement for i = 2.

In summary, we studied numerically the ISD and CZD in
submonolayer growth of islands with different shapes (point,
fractal, and square) and critical sizes i = 1 and i = 2. The WS
describes the CZD when scaled by the variance of CZ area,
with deviations in the left tails for point islands with i = 1.
This confirms the superuniversal Gaussian decay predicted by
PE, in contrast with the fits proposed by other approaches,
and improves recent numerical work which did not focus on
the CZD decay and used scaling by the average. The ISDs
are also not represented by well known fitting formulas, but
universal decays of the right tails are found for each island
shape and are explained by connections to the Gaussian tails of
the CZDs. We believe that these results motivate experimental
efforts to measure accurate ISDs and CZDs, which are possible
with the advance in microscopy techniques.27 It also motivates
theoretical efforts to understand ISD features other than the
right tails, the reversible growth processes of atomic islands,
and growth of more complex nanostructures.8
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