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Excited states of incipient Wigner molecules
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An accurate configuation-interaction method employing a mean-field basis set is used to study the excitation
spectrum of localized Wigner states in the strongly interacting regime of a quasi-two-dimensional parabolic
quantum dot with N = 6 electrons. The approach achieves errors of order 1 part in 104 (or better) in the
energies of low-lying states for a Wigner-Seitz radius rs = 12 a∗

0 –16 a∗
0 , and is used to study low-lying spin,

rotational, vibrational, and isomeric excitations. The vibrational excitations at rs = 50 a∗
0 are shown to correspond

qualitatively with the classical normal modes of the N = 6 electron dot, although the excitation energies agree
only semiquantitatively with the classical normal-mode frequencies as a result of residual quantum fluctuations.

DOI: 10.1103/PhysRevB.83.195444 PACS number(s): 73.21.La, 73.22.Gk

I. INTRODUCTION

A semiconductor quantum dot (QD), or artificial atom,
is formed when a finite number of free-carrier electrons
(or holes) is confined electrostatically to a nanometer-sized
region.1 QDs are highly tunable in experiments; their size and
shape, and the number and average density of the confined
electrons can all be varied. This opens up the possibility
of studying a finite electron system at very low electron
densities, where one enters the strongly interacting regime
in which the Coulomb interaction energy greatly exceeds
the kinetic energy ECoul � Ekin. (In contrast, real atoms or
molecules have fixed sizes with ECoul ≈ Ekin.) In the strongly
interacting regime, the electrons are expected to localize under
their mutual Coulomb repulsion into a Wigner molecule,2,3

a finite-sized analog of the electron lattice (Wigner solid)
that forms in the infinite homogeneous electron gas at low
density.4 It has been possible to observe evidence of the
bulk transition to a Wigner solid,5 but the effect in finite
systems has proved more elusive. Recently, however, Singha
et al.6 have observed low-lying excitations of a correlated
two-electron molecularlike state in optically tuned GaAs
quantum dots. Further advances in experimental methodology,
such as improved growth techniques for semiconductor QDs,
may soon make it possible to observe Wigner molecule states
of several electrons in quasi-two-dimensional (2D) QDs at
zero magnetic field.

Much recent theoretical work has been devoted to studying
the strongly interacting regime in quantum dots.6–12 Very
precise studies of the ground and low-lying excited states
of quantum dots have recently been made using a form
of quantum Monte Carlo (QMC), variational Monte Carlo–
diffusion Monte Carlo (VMC–DMC).8,9,11 This approach has
been applied for up to N = 18 electrons and down to low
densities rs � 55 a∗

0 . [Here, rs = (πn̄)−1/2 is the average
Wigner-Seitz radius for a quasi-2D QD, where n̄ is the average
electron density in the plane of the dot, and a∗

0 is the effective
Bohr radius1 in the semiconductor.] The VMC–DMC method
is applicable to the ground state or to the lowest state of a given
symmetry (such as spin S and orbital angular momentum Lz),
but it can not be used to study excited states systematically.

Another approach, configuration interaction (CI),13 is well
suited to extracting excited states, but until recently its applica-
tion to the strongly interacting regime has been limited to more

moderate sizes N or electron densities, such as rs � 20 a∗
0 for

N = 4 electrons in Ref. 12, or rs � 13 a∗
0 for N = 8 electrons

in Ref. 7, with a reported precision significantly worse than
that of the VMC–DMC approach discussed above. A third
approach is the two-step approach,10,14 where a Hartree-Fock
solution is followed by the projection of a rotational state. The
two-step method is computationally rapid but is expected to
lose some accuracy in the regime of partial Wigner localization
at the intermediate electron densities that concern us here.14

We have recently developed a high-precision CI approach
for quasi-2D quantum dots that uses a numerical mean-field
basis set and applied it to the high-density limit (rs ∼ 1.7 a∗

0 )
for 3 � N � 20 confined electrons.15 For the smaller sizes
N � 7, the accuracy of the energies of low-lying states
was found to be comparable to or better than VMC–DMC
calculations16 for the same density. Our CI approach is
particularly suited to the strongly interacting regime because
the low-lying members of the mean-field basis set already
“know” about the electron localization. We made an initial
application of the approach to the low-density limit of the
N = 6 electron dot in Ref. 17, where we gave evidence that the
ground-state energy at rs ≈ 12 a∗

0 could be extracted with an
accuracy that was comparable to or better than that achieved by
VMC–DMC.9 We also used the method to study the isomeric
excitations of the six-electron dot (that is, excitations to
different geometrical arrangements of the localized electrons),
finding that, at intermediate densities rs � 25 a∗

0 , the isomeric
excitations had lower energy than vibrational excitations for a
given orbital angular momentum Lz.

This paper extends and elaborates on the work reported
in Ref. 17. We give a detailed description of the CI method
employed in Ref. 17, with the added refinements necessary for
the strongly interacting regime, and then apply it to perform
precise calculations of the energy of the lowest eight states
of the six-electron dot at two densities rs ≈ 12 a∗

0 and 16 a∗
0 ,

comparing with other precise calculations in the literature
where available. These calculations are intended to serve as
benchmarks to assess the accuracy of both the present CI
approach and other calculations in the literature. We also
extract the spin splittings of the ground-state spin multiplet
with high precision over a large range of electron densities, as
well as the first rotational excitation energy, which is compared
to a semiclassical estimate. We then focus on the vibrational
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excited states at rs = 50 a∗
0 , analyzing the excitation energies

and giving a group-theoretical analysis of the allowed spins
in order to make a correspondence with the classical normal
modes of the six-electron dot.

Much earlier work has been devoted to studies of the
vibrational and rotational excitation modes of small quan-
tum dots with up to N = 5 electrons (see, for example,
Refs. 18 and 19). However, parabolic quantum dots with
N � 6 electrons in general have more than one classical isomer
(that is, stable arrangements of classical point electrons in
a parabolic confining potential),20,21 and therefore isomeric
states should form an important part of the phenomenology
of excited states in the strongly interacting regime. For this
reason, the main part of this work is a case study of the
excited states of the N = 6 electron quasi-2D dot, which is
the smallest N dot to show isomeric excited states as well
as rotational, vibrational, and spin excitations. We consider
a density range 2.75 a∗

0 � rs � 50 a∗
0 , including intermediate

values of rs ∼ 6 a∗
0 where the localization is only partial, but

which may be accessible in initial experiments.
Note that molecularlike states can also be induced at high

densities (rs ∼ 1.5 a∗
0 ) by an intense magnetic field or by

very high angular momentum,22,23 and the molecular model
of quantum dots has also been studied in this context.10,23,24 In
addition, experimental evidence for “rigid-rotor” behavior of
low-angular-momentum states has recently been found12 in a
four-electron QD at high densities rs ∼ 1.7 a∗

0 .
The plan of this paper is as follows. In the next section, we

describe our CI method as applied to the strongly interacting
regime and carry out test calculations to demonstrate its
convergence properties. In Sec. III, we then use the method
to calculate precise energies of low-lying states to compare
to other precise calculations in the literature. Section IV is
devoted mainly to vibrational excitations. To motivate this
discussion, we begin in Sec. IV A with a discussion of
the classical limit (rs → ∞); Sec. IV B then analyzes the
vibrational excitations at low density and compares with the
normal modes of the classical model. Although the main part
of the work is for the N = 6 electron dot, we give arguments
in Sec. IV D as to why many of our conclusions should
be expected to generalize to higher N . The conclusions are
summarized in Sec. V.

II. METHOD

We consider the confined electron gas to be quasi-2D and
wish to solve for the many-body envelope wave function in the
effective mass approximation.25 The N -electron Hamiltonian
is taken to be

H =
N∑

i=1

[
− ∇2

i

2m∗ + Vext(ri)

]
+

N∑
i<j

e2

(4πε0)ε|ri − rj | , (1)

where m∗ is the effective mass in the conduction band of
the semiconductor, ε is the dielectric constant, Vext(r) is the
external confining potential, and the vectors r are 2D. We
consider here confinement by a circular parabolic potential

Vext(r) = 1
2 m

∗ω2r2 . (2)

Throughout this paper, we work in effective atomic units (a.u.)
corresponding to scaled coordinates with lengths expressed
in units of a∗

0 = (ε/m∗)a0, where a0 is the Bohr radius,
and energies in units of Ha∗ = (m∗/ε2) Ha. One can thus
effectively set m∗ = ε = e = (4πε0) = 1 in Eq. (1) and,
accordingly, we drop m∗ and ε and the other constants from
most of the subsequent equations.

The average density n̄ of the confined electrons is controlled
by the harmonic frequency ω in Eq. (2). We use as our density
parameter the average Wigner-Seitz radius rs = (πn̄)−1/2,
which is given approximately by26

r3
s = 1

ω2
√

N
(3)

(in effective a.u.). We take this equation to define rs in terms
of ω. An alternative density parameter is λ = l0/a

∗
0 , the ratio

of the confinement length scale l0 = √
h̄/m∗ω to the effective

Bohr radius; it is related to the Wigner-Seitz radius rs defined
in Eq. (3) by r3

s = λ4/
√

N (in effective a.u.).
We solve the Schrödinger equation H� = E� by a CI

approach,13 in which the many-electron envelope function �

is expanded in terms of Slater determinants (configurations)
�α ,

� =
∑

α

cα�α . (4)

In our recently developed CI approach,15 the Slater deter-
minants are built from a single-particle basis of mean-field
type generated numerically on a 2D Cartesian grid. However,
even when as here the external potential Vext(r) is circularly
symmetric, in the low-density limit, mean-field approaches
such as Hartree-Fock (HF) or mean-field-like methods such
as spin-density functional theory generally yield an electronic
density with broken circular symmetry displaying localized
electrons.3 It is inconvenient here to use such a mean-field
potential to generate the single-particle basis because the
single-particle states would not then have definite orbital
angular momentum 	z. Consequently, it would not be possible
to reduce the number of configurations included in Eq. (4)
by restricting the Slater determinants �α to those with a
definite total orbital angular momentum Lz, which is an exact
quantum number for a circularly symmetric external potential.
Moreover, a basic theorem27 for the 2D electron gas states that,
when the external confining potential is circularly symmetric,
the exact one-body density (in the laboratory frame) is also
circularly symmetric for a state of definite total orbital angular
momentum Lz. If we used a basis set for a broken-symmetry
mean field, these symmetries of the exact solution would
only be recovered in the limit of full CI (that is, all possible
Slater determinants included) and single-particle basis-set
completeness (no upper energy cutoff to the basis).15

Instead, to generate the single-particle basis set, we
choose an approximate mean-field potential that is circularly
symmetrized. First, we construct an approximate analytical
one-body density as a sum of M concentric Gaussian rings

ρ0(r) =
M∑

I=1

NI exp[−αI (r − RI )2] . (5)
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TABLE I. CI energies of the ground state (S = 0) and the lowest-lying S = 3 state of an N = 6 electron dot for density parameter λ = 8
(rs ≈ 12 a∗

0 ) using a model space formed from either 10 [v10] or 8 [v8] single-particle orbitals. The notation [v8′] indicates a model space
of size 8 with a modified single-particle potential (see text). QMC: variational-diffusion quantum Monte Carlo, with the quoted error being
statistical. Units: Ha∗.

Excitation S = 0 [v10] S = 0 [v8] S = 0 [v8′] S = 3 [v10] S = 3 [v8]

Lowest order 0.96757 0.97614 0.99313 0.96170 0.96841
Singles −0.01695(2) −0.01991(2) −0.03007(3) −0.01127(2) −0.01372(2)
Doubles −0.00672(2) −0.01024(2) −0.01552(2) −0.00559(3) −0.00842(3)
Triples −0.00154(4) −0.00312(4) −0.00457(5) −0.00111 −0.00215
Quadruples −0.00026(3) −0.00072(3) −0.00085(2) −0.00017(2) −0.00052(3)
Pentuples −0.00002 −0.00008(1) −0.00009(1) −0.00001 −0.00005(1)
Hextuples 0.00000 −0.00001 0.00000(1) 0.00000 0.00000
Total 0.94206(6) 0.94208(6) 0.94204(7) 0.94354(4) 0.94355(5)
QMC, Ref. 9 0.942580(5) 0.943631(3)

The ring radii RI and width parameters αI are chosen either by
minimizing a semiclassical (extended Thomas-Fermi) energy
functional28 or by performing an unrestricted HF calculation.
These approaches generally give broken-symmetry solutions3

with localized electrons in a pattern of concentric rings, thus
permitting suitable values for RI and αI to be estimated; we
choose the RI as the radius of each ring, and αI can be based on
the width of a single localized electron peak. The normalization
parameters NI can then be chosen to fix the number of electrons
in each ring.

Finally, we generate the single-particle basis in the Kohn-
Sham effective potential28 Veff[ρ0](r) corresponding to the
density ρ0, following the procedure described in Ref. 15.
The potential Veff[ρ0](r) is also circularly symmetric, and the
single-particle states can therefore have definite 	z with the
form

ψj (r) = exp(imjθ )fj (r) , (6)

where fj (r) is a radial function and mj an angular quantum
number. The low-lying members of the basis typically have
charge density |ψj (r)|2 = |fj (r)|2 located in the vicinity of
the ring radii RI , and in this sense the set forms an efficient
basis for constructing a CI solution. As we shall see, there
does not seem to be much difference in the performance of
the basis for small variations in the parameters RI or αI . In
principle, one could optimize RI and αI by taking improved
estimates iteratively from the CI solution, but at least in the
examples presented here, one gains little from this procedure.
Since the basis states have definite 	z, it is now easy to arrange
for the CI solution to have definite Lz (and spin), and for the
density to be circularly symmetric, for any truncation of the
configurations included, which is very convenient.

III. ENERGY OF LOW-LYING STATES

In this section, we use our CI method to calculate the
energy of the ground and low-lying excited states of the N = 6
electron dot in order to compare with other precise calculations
in the literature, at the same time describing further aspects of
our methodology. We consider two intermediate densities λ =
8 (rs ≈ 12 a∗

0 ) and λ = 10 (rs ≈ 16 a∗
0 ), where the low-lying

states are spin and rotational excitations of the ground state.

Table I shows full CI calculations for the 1S ground state
and lowest 7S excited state. Following the general procedure
of Ref. 15, we employ a model space consisting of all
determinants that can be formed by distributing the electrons
over the lowest 8 or 10 orbitals in the basis, and we then
consider successively all possible single, double, . . . , etc.,
excitations from this model space up to the full CI limit
(hextuple excitations). For any given truncation (to triples,
say), we perform the calculation for a series of upper energy
cutoffs εcut to the single-particle basis, and we then extrapolate
this cutoff to infinity εcut → ∞ as described in Ref. 15. The
only significant error in this entire procedure is the error in
these extrapolations; we perform the extrapolation separately
for each degree of excitation and show an estimate of the
error in the table. Although the contributions from each
degree of excitation differ, the two different sizes of model
space give the same final total energy to within the estimated
extrapolation errors. This is an important consistency check in
our calculation.

In Table I, we have also considered basis sets for two
different potentials for the 1S ground state. The first (used
for the columns v8 and v10) uses ring radii RI and widths
αI [Eq. (5)] estimated by minimizing a semiclassical energy
functional. This minimization yields a Wigner molecule with
a central electron and an outer ring of five electrons in a
pentagonal arrangement (see Sec. IV); for a density parameter
λ = 8, we obtain (R1,α1) = (0,6.3) and (R2,α2) = (22.4,7.0)
(in effective a.u.). The converged CI calculation gives a radius
for the outer ring of R2,CI = 21.6 a∗

0 , so the parameters ob-
tained from the semiclassical minimization are quite physical.
For the second potential (used for the column v8′), we have
modified these parameters somewhat to (R′

1,α
′
1) = (0,8.3) and

(R′
2,α

′
2) = (20.0,9.0). Once again, we find agreement in the

final totals to within our estimated extrapolation error. Note
that the v8′ calculation displays a somewhat slower rate of
convergence than the v8 calculation, reflecting the fact that
the second potential is less physical. However, the overall
extrapolation error is comparable to that obtained from the
first potential.

We have used this procedure to calculate the energies of the
ground state and the first eight excited states at two densities,
λ = 8 and λ = 10 (see Table II). All the energies in this
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TABLE II. Energy of the ground state and the first eight excited
states of the N = 6 electron dot for two densities: λ = 8 (rs ≈ 12 a∗

0 )
and λ = 10 (rs ≈ 16 a∗

0 ). CI: configuration interaction; VMC–DMC:
variational-diffusion quantum Monte Carlo, with the quoted error
being statistical. PIMC: path-integral quantum Monte Carlo. Units:
Ha∗.

λ S Lz CI VMC–DMC CI PIMC
(This paper) (Ref. 9) (Ref. 7) (Ref. 2)

8 0 0 0.94206(6) 0.942580(5) 0.9475
2 0 0.94279(5) 0.943000(3) 0.9489
1 1 0.94280(5) 0.943792(5) 0.9486 0.9433(3)
1 0 0.94350(4)
3 0 0.94355(4) 0.943631(3) 0.9500 0.9441(3)
2 1 0.94360(3)
1 1 0.94365(4)
0 1 0.94378(5)
0 2 0.94378(4)

10 0 0 0.68896(11) 0.689202(5) 0.6974
2 0 0.68916(9) 0.689254(6) 0.6981
1 1 0.68924(10) 0.690568(7)
1 0 0.68938(9)
3 0 0.68938(9) 0.689458(4) 0.6986
2 1 0.68947(9)
1 1 0.68951(10)
0 1 0.68954(10)
0 2 0.68968(10)

table have been checked by calculating them at least twice,
either with different sizes of model space, or with different
basis-set potentials. Note that our energies are systematically
lower (more negative) than those of Ghosal et al.,9 who used
a VMC–DMC method. For instance, our 1S ground-state
energy is about 0.5 mHa∗ less than the VMC–DMC value,
a discrepancy which is about 100 times the statistical error
in the VMC–DMC value and about 10 times our estimated
error. Now, the VMC–DMC energy may be regarded as
a variational upper bound to the true energy, containing a
systematic error due to the fixed-node approximation used
in DMC step; this fixed-node error is difficult to estimate
within the approach, but is expected to be small.9 Since all our
values are lower (more negative) than the VMC–DMC values,
a possible explanation for the discrepancies is that we have
revealed the fixed-node error in the VMC–DMC. A similar
conclusion was reached15 at high densities (rs ≈ 1.7 a∗

0 ) in a
comparison between our CI approach and another VMC–DMC
calculation.16 Our CI energies are also lower than those from
a different CI approach,7 which employs a simple-harmonic-
oscillator (SHO) basis set; the SHO basis set is less efficient for
describing the low-density regime than the basis set employed
here. However, we note that the energy orderings of the 3P and
7S states in the two CI approaches agree (with 3P having lower
energy), but disagree with the ordering given by VMC–DMC.
Finally, we note that there are two 1P states among the first
eight excited states, which can both be calculated by CI; in
contrast, only the lowest-energy state of a given symmetry can
be studied by VMC–DMC, which is essentially a variational
method.

0.00010

0.00100

0.01000

5 10 15 20

ex
ci

ta
tio

n 
en

er
gy

  (
H

a*
)

rs  (a0*)

5S

3P

7S

3S

FIG. 1. (Color online) Excitation energy relative to the 1S ground
state of the lowest-lying 3S, 5S, 7S, and 3P states of the N = 6
electron dot versus Wigner-Seitz radius rs [Eq. (3)].

In Fig. 1, we show the evolution of the excitation energy of
the lowest 3S, 5S, 7S, and 3P states relative to the 1S ground
state for 6 a∗

0 � rs � 20 a∗
0 . The three S-wave states (members

of the S-wave ground-state spin multiplet) yield approximately
parallel straight lines on a logarithmic plot, the excitation
energy 
E of these states being well fit in this range of rs by
an expression of the form 
E = c exp(−mrs), with c(3S) =
0.048 Ha∗, c(5S) = 0.028 Ha∗, and c(7S) = 0.054 Ha∗. The
constant m ≈ 0.30 (a∗

0 )−1 for all three states. Therefore, if one
considered a Heisenberg-type model for the spin-spin interac-
tions of localized electrons Hspin = ∑

{ij} Jij Si · Sj , this result
would imply that the effective spin couplings Jij decrease
approximately exponentially with rs , Jij ∼ exp(−mrs), with
m ≈ 0.30 (a∗

0 )−1 in the range 6 a∗
0 � rs � 20 a∗

0 . The 3P state,
however, shows a clear curvature on the logarithmic plot,
which arises from a rotational contribution to the excitation
energy with an approximate r−2

s dependence (from the moment
of inertia, see Sec. IV A). This contribution will eventually
become dominant at large rs � 15 a∗

0 as the spin splittings
become smaller than the rotational energies (see Sec. IV A for
a further discussion).

IV. LOW-LYING EXCITATIONS

A. Classical limit

At very low densities (rs → ∞), the localized electronic
system may be described as a classical vibrating and rotating
Wigner (or electron) molecule.18,19,23 There is also the possibil-
ity of excitations to different geometrical arrangements of the
localized electrons, or isomers.17 The stable configurations of
classical pointlike electrons in a parabolic confining potential
have been considered by Bolton and Rössler20 and by Bedanov
and Peeters.21 These authors used a simulated annealing
strategy to find the minima (stable configurations) of the
classical energy

Ecl({ri}) =
N∑
i

1

2
ω2r2

i +
N∑

i>j

1

rij

(7)
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(a) (b)

FIG. 2. (Color online) Stable configurations of the classical six-
electron parabolic dot (from Ref. 20): (a) pentagonal ground-state
configuration and (b) excited isomer (staggered hexagon).

(in effective a.u.). If we further rescale coordinates as ri →
ω−2/3si , this becomes equivalent to minimizing

Ecl({si}) ≡ ω−2/3Ecl({ri}) =
N∑
i

1

2
s2
i +

N∑
i>j

1

sij

, (8)

showing that the energy of a stable classical configuration
scales as Ecl ∝ ω2/3 and that distances (such as bond lengths
dij ) scale as dij ∝ ω−2/3.

We have repeated the search for the global minimum-energy
configuration and excited isomers using a basin-hopping29

algorithm. The stable configurations for the six-electron dot
are shown in Fig. 2; in agreement with Ref. 20, the ground-state
configuration is a pentagonal (1,5) arrangement and there is
an excited (0,6) isomer in the form of a staggered hexagon.
(We find that the perfect hexagon is a saddle point on the
potential-energy surface.) These configurations have energy

Ecl(1,5) = 13.355 87 ω2/3, Ecl(0,6) = 13.452 08 ω2/3 , (9)

that of the ground state agreeing with the value found in
Ref. 21. By using Eq. (3) to define rs in terms of ω, we then
obtain for the isomeric excitation energy (in effective a.u.)17


Eiso ≡ Ecl(0,6) − Ecl(1,5) = 0.0714 r−1
s

. (10)

Now, at large rs , the quantum excitation energy of a quasi-
2D Wigner molecule may be written approximately in a way
analogous to that for a planar molecule30

E(K)=Ecl(K) + L2
z

2IK

+
∑

α

�(K)
α (nα + 1/2) + Espin , (11)

where Ecl(K) is the classical energy of isomer K [Eq. (9)], IK

is its moment of inertia, and nα is the number of vibrational
quanta in a normal mode with frequency �(K)

α . The energy
Espin is the spin-spin interaction energy of the spins of the
localized electrons. As an example of a typical rotational
excitation energy, we note that the ground-state (1,5) isomer
has a moment of inertia IK = 8.904 ω−4/3, and it then follows
using Eqs. (3) and (11) that the S- to P -wave excitation energy
is given in the classical limit by (in effective a.u.)17


Erot = 0.0309 r−2
s . (12)

Similarly, noting that the frequency of the first classical normal
mode of the (1,5) isomer is �1 = 0.650 ω (see Sec. IV B), we
find that the excitation energy of one vibrational quantum in
this mode is (in effective a.u.)17


Evib = 0.415 r−3/2
s . (13)

Owing to the differing dependence on the length scale rs

displayed in Eqs. (10), (12), and (13), for sufficiently large
rs → ∞, the rotational, vibrational, and isomeric excitation
energies must eventually satisfy


Eiso � 
Evib � 
Erot , (14)

analogously to the Born-Oppenheimer (BO) approximation
in molecular physics.30 However, this separation of energy
scales is not necessarily satisfied at the intermediate values of
rs that may be accessible in initial experiments. Indeed, as we
showed in Ref. 17, there is a crossover between 
Eiso and

Evib, which is expected to occur around rs ≈ 34 a∗

0 using the
classical estimates of excitations energies (10) and (13), and
which was found to occur between rs = 25 a∗

0 and 30 a∗
0 from

CI calculations. At smaller rs � 25 a∗
0 , there is an inversion

of the BO-type energy ordering of Eq. (14), with the isomeric
excitation energy comparable to or smaller than the vibrational
excitation energy.

To clarify the role of rotational excitations, we show in
Fig. 3 the classical estimate of the S- to P -wave excitation
energy 
Erot as a function of rs , together with the excitation
energy calculated by CI (from the ground 1S state to the lowest
3P state, which is the lowest-lying P -wave state). We also
show a typical spin excitation energy 
E(3S), defined as the
energy of the lowest 3S state relative to the 1S ground state,
as calculated by CI. From Fig. 3, one sees that the smallest
rotational excitation for rs � 10 a∗

0 is, in fact, somewhat larger
than the classical estimate 
Erot. This is simply because a
spin excitation is also involved. Moreover, the 1P states are
even higher in energy than the 3P state (see Table II). The
allowed spin couplings are constrained by the Pauli exclusion
principle and the symmetry of the wave function, including
orbital angular momentum Lz (see the Appendix), so there
can again be an indirect effect of atomiclike exchange and
correlation effects, responsible for spin excitations, even for 1P

states. However, as Fig. 1 shows, the spin couplings decrease
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FIG. 3. (Color online) Excitation energies of the six-electron
dot versus Wigner-Seitz radius rs (partly taken from Ref. 17).
The quantities 
Erot, 
Evib, and 
Eiso are approximate rotational,
vibrational, and isomeric excitation energies, respectively, inferred
from a classical model (see text); 
E(3S) and 
E(3P ) are excitation
energies to the lowest 3S and 3P states calculated by CI. All excitation
energies are scaled by rs .
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approximately exponentially with rs , so that, for sufficiently
large rs , we will eventually find


Erot � 
Espin . (15)

The crossover is seen in Fig. 1 to occur for rs ≈ 15 a∗
0 , and

as rs increases further, the rotational energy starts to dominate
the spin energy. The classical estimate 
Erot then becomes
accurate for rs � 15 a∗

0 .
One also sees in Fig. 3 that, for rs � 6 a∗

0 , the “spin”
excitation energy (due to atomiclike exchange and correla-
tion effects) is nominally comparable to the isomeric and
vibrational energies. Thus, although at these values of rs it
is possible to find partial Wigner localization in a recognizable
geometry (see Sec. IV C and, for example, Refs. 8 and 31), it
is not generally possible to discuss isomeric and vibrational
excitations separately from spin excitations at these densities.

B. Vibrational normal modes

As mentioned above, in Ref. 17 we found evidence for a
crossover around rs = 25 a∗

0 –30 a∗
0 between the (0,6) excited

isomer and the first vibrational excitation of the (1,5) ground-
state isomer. We showed there that, for rs > 30 a∗

0 , the excited
states involved both (1,5) and (0,6) geometries, and interpreted
the (1,5) geometries as vibrational excitations of the ground
state. In this section, we explore further the interpretation of
the excited (1,5) isomers as vibrational excitations.

Low-lying excited states at rs = 50 a∗
0 are shown in Fig. 4.

In order to focus on vibrational and isomeric excitations rather
than rotational excitations, we here restrict to S-wave states
(Lz = 0). At rs = 50 a∗

0 , the typical vibrational and isomeric
excitation energies are of order several mHa∗ (see Fig. 3),

S = (0123)

S = (0012)

S = (00111122)

(a) (b) (c)

(e)(d)

S = (00111122)

S = (00111122)

rs = 50 a∗0

FIG. 4. (Color online) Charge-charge pair-correlation functions
g(r,r0) of low-lying S-wave states for N = 6 electrons for rs = 50 a∗

0

(partly taken from Ref. 17). We show representative PCFs for each
spin multiplet. (a) Ground-state spin multiplet; (b)–(e) first to fourth
excited S-wave spin multiplets, respectively. The position r0 of the
reference electron is indicated by a dot, and the set of total spins S

present in each multiplet is shown.

while the spin excitation energies are very small, 
Espin 

0.05 mHa∗. Therefore, the excitation spectrum for fixed Lz

consists of a series of nearly degenerate “spin multiplets,” with
a fine structure due to the spin-spin interaction and separated
by a few mHa∗ due to vibrational and isomeric excitations.
Now, as mentioned earlier, for a circularly symmetric external
potential and a state of definite Lz, the electronic density (in the
laboratory frame) in 2D must also be circularly symmetric,27

and in the Wigner limit the density therefore becomes a series
of concentric rings (see, for example, Ref. 8). To reveal the
Wigner localization, we therefore consider the internal many-
body correlations by means of the electronic (charge-charge)
pair-correlation functions (PCFs) g(r,r0),19,23,31

g(r,r0) = 〈�|
∑
i �=j

δ(ri − r)δ(rj − r0)|�〉 , (16)

where ri is the position of electron i, and the many-body wave
function |�〉 is given in the CI representation by Eq. (4). The
quantity g(r,r0) is proportional to the conditional probability
of finding an electron at the position r given that another
electron is present at r0. For high rs ∼ 50 a∗

0 , the PCFs for
each state in a spin multiplet are nearly the same, and so we
show only a representative PCF for each multiplet in Fig. 4.
One sees that the first three excited multiplets have underlying
(1,5) geometry, while the fourth is a (0,6) isomeric excitation.

The classical normal modes for the ground-state isomer
of the classical model [Eq. (7)] are shown in Fig. 5. There

Ω = 1.000

Ω = 1.000Ω = 0.650

Ω = 1.223

Ω = 1.314 Ω = 1.732

Ω = 1.887

Ω = 0.650

Ω = 1.223

Ω = 1.314

Ω = 1.887

FIG. 5. (Color online) Normal modes of the ground-state isomer
of the classical six-electron dot. The normal-mode frequency �

is indicated as a multiple of the frequency ω of the parabolic
confinement potential [Eq. (2)].
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TABLE III. Excitation energies δE of vibrational spin multiplets relative to the ground-state multiplet for the N = 6 electron dot at
rs = 50 a∗

0 . The notations (b), (c), and (d) refer to the spin multiplets shown in Fig. 4, while [v11] and [v13] indicate use of a model space of
size 11 and 13, respectively. Units: mHa∗.

Excitation δE(b) [v11] δE(b) [v13] δE(c) [v11] δE(c) [v13] δE(d) [v11] δE(d) [v13]

Lowest order 4.25 3.77 6.91 5.64 8.77 7.73
Singles −2.01(3) −1.87(2) −4.39(10) −3.43(10) −5.22(8) −4.82(8)
Doubles −0.69(5) −0.47(4) −0.59(5) −0.60(9) −1.08(2) −0.63(9)
Triples −0.29(3) −0.17(2) −0.47(8) −0.26(1) −0.35(27) −0.36(10)
Quadruples −0.02(1) −0.01 −0.09(2) −0.01 −0.19(5) −0.06(2)
Pentuples 0.00 0.00 −0.02(1) 0.00 −0.01 0.00
Hextuples 0.00 0.00 0.00 0.00 0.00 0.00
Total 1.25(10) 1.26(7) 1.35(17) 1.33(16) 1.92(35) 1.87(19)

are 2N − 1 = 11 normal modes grouped into five doubly
degenerate modes and one nondegenerate mode, which is a
breathing mode at high frequency. The lowest-frequency mode
can be thought of as a dipolar oscillation of the central electron
accompanied by a distortion of the outer ring. The third and
fourth modes, at � = 1.223 ω and 1.314 ω, correspond to
quadrupole and octupole distortions, respectively, of the outer
ring, with the central electron remaining fixed. The second
mode is a collective dipolar oscillation of the center of mass
(c.m.) of the system at frequency � = ω (exactly), in which the
whole structure remains undistorted during the oscillation. The
existence of such a classical mode can be shown to be a general
result for a system in a harmonic confining potential having
an interaction depending only on the relative coordinates
of the particles. The quantum-mechanical analog of this
result is the Kohn theorem,1 according to which under the
same circumstances the c.m. motion decouples exactly from
the “relative coordinates,” and one can describe the system
by a wave function in relative coordinates combined with
oscillations of the c.m. in the harmonic confining potential.

Thus, if the ground-state energy is E0, there will exist
an excited state (Kohn mode) with one vibrational quantum
in the c.m. mode having energy E0 + ω. One quantum in a
simple-harmonic oscillator yields a P -wave state, and, since
in the present case the ground state is a 1S state, it follows
that the Kohn mode must be a P wave overall. However,
according to Eq. (12), the rotational excitation energy at
rs = 50 a∗

0 is 
Erot ≈ 0.01 mHa∗, which is small compared
to the excitation energy of the Kohn mode 
EK = ω ≈
1.81 mHa∗. Thus, it should be possible to find an S-wave
state with an excitation energy close to 
E ≈ 1.81 mHa∗

corresponding to the collective normal mode.
In Table III, we make an extrapolation of the excitation

energy of the three excited (1,5) multiplets in Fig. 4 to the limit
of basis-set completeness. For the purposes of the calculation,
we here define the excitation energy as the difference between
the energy of spin S = 2 states of the ground state and excited
multiplets (although this choice of S is immaterial since the
spin energy at rs = 50 a∗

0 is tiny, and is also much smaller
than our numerical error). The convergence of the excitation
energies with respect to the upper cutoff of the basis set is
rather slow at this large value of rs , and the extrapolation
errors have accordingly been estimated as rather large, but
as a check we have obtained agreement with calculations

performed with two different sizes of model space. According
to these results, of the three multiplets, Figs. 4(b), 4(c), and
4(d), only (d) is energetically consistent with the collective
Kohn-type oscillation.

Further insight into the nature of the (1,5) excited multiplets
may be gained by considering the sets of total spins present
in the multiplet as a function of the total orbital angular
momentum Lz, which are shown in Table IV. The spins in
this table were obtained directly from the CI diagonalization,
but they can also be shown to emerge from symmetry
considerations (see the Appendix). Thus, the set of spins for
the ground state S = (0123) for Lz = 0 and S = (0112) for
1 � Lz � 4 is just that required for the C5v pentagonal internal
symmetry of the state; this pattern repeats with a periodicity
of 5 (so that Lz = 5 is equivalent to Lz = 0) related to the
five-fold symmetry of the state. Similarly, for the (0,6) isomer
[column (e) in Table IV], the set of allowed spins corresponds
to a C6v hexagonal internal symmetry and repeats with a
periodicity of 6. It is interesting that the corresponding classical
isomer [see Fig. 2(b)] has a slight distortion from exact C6v

symmetry since there are two groups of three electrons with
slightly different radii, resulting in only three-fold symmetry.
One can show that the allowed spins for this lower symmetry
for Lz = 0 would be S = (00011123), which is not what
is found in our calculations. As emphasized by Bolton and
Rössler,20 the classical potential-energy surface for this isomer

TABLE IV. Total spin quantum numbers present in low-lying spin
multiplets of the N = 6 electron dot at rs = 50 a∗

0 as a function of
total orbital angular momentum Lz. The notations (a)–(e) refer to the
spin multiplets shown in Fig. 4: (a) is the ground-state multiplet, and
(b)–(e) are the first to fourth excited multiplets, respectively. Notation:
An entry such as (0112) indicates that four levels are present in the
multiplet, with total spins S = 0, 1 (twice), and 2.

Lz (a) (b) (c) (d) (e)

0 (0123) (00111122) (00111122) (00111122) (0012)
1 (0112) (00111223) (00111122) (00111223) (112)
2 (0112) (00111122) (00111223) (00111122) (012)
3 (0112) (00111122) (00111223) (00111122) (0113)
4 (0112) (00111223) (00111122) (00111223) (012)
5 (0123) (00111122) (00111122) (00111122) (112)
6 (0112) (00111223) (00111122) (00111223) (0012)
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(a)

rs = 2.75 a∗0 rs = 4 a∗0 rs = 6 a∗0 rs = 8 a∗0 rs = 10 a∗0

(b)

FIG. 6. (Color online) Charge-charge pair-correlation functions g(r,r0) of (a) the 1S ground state, and (b) the first excited 1S state of the
N = 6 electron dot at high-to-intermediate electron densities. The position r0 of the reference electron is indicated by a dot.

in the vicinity of the perfect and staggered hexagons is very
flat. It is possible that, when the localized electrons are of finite
width (as they are for rs = 50 a∗

0 ) rather than pointlike (as in
the classical model), the exact C6v symmetry is preferred.

Turning to the excited (1,5) isomers [columns (b), (c),
and (d) in Table IV], we note that (b) and (d) have the
same pattern of spins, but (c) has a different pattern. In the
Appendix, we show that (b), (c), and (d) are consistent with
one vibrational quantum in three different normal modes. The
larger number of allowed spin values compared to the ground
(1,5) isomer (eight spin values instead of four) is related to
the two-fold degeneracy of the normal modes. Further, as
we show in the Appendix, the pattern of spins for (b) and
(d) corresponds to a normal mode with dipolar symmetry,
while that for (c) corresponds to a normal mode with either
quadrupolar or octupolar symmetry. Now, the first two classical
normal modes in Fig. 5 have dipolar symmetry, and the third
is quadrupolar (see the Appendix). It is natural to assume that
the excitation energy of a quadrupolar mode is lower than
that of an octupolar mode (as is the case for the classical
normal modes, Fig. 5). Thus, the spin signatures and the
excitation-energy analysis suggest a tentative correspondence
of (b) with the first classical normal mode (at � = 0.650 ω),
(c) with the third (at � = 1.223 ω), and (d) with the collective
mode (at � = ω). Note that the excitation energies found
in Table IV are of the right order of magnitude for this
correspondence, but do not agree precisely with the classical
values. In particular, the correspondence involves an inversion
of the energy ordering of the second and third classical
modes relative to the quantum result. Once again, this can be
attributed to the finite localization width (and residual quantum
fluctuations) at rs = 50 a∗

0 .

C. Isomeric hybridization for rs � 10 a∗
0

In Ref. 17, it was observed that the (1,5) and (0,6) isomers
could quantum mechanically hybridize when a vibrational and
an isomeric excitation occurred at nearby energies, as in the
vicinity of the vibrational-isomeric crossovers, which were
shown to occur for rs � 25 a∗

0 . Thus, the PCF for the (0,6)
structure acquired a small central peak, and that for the (1,5)
structure showed evidence of a weak sixth peak in the outer

ring. At higher densities rs � 10 a∗
0 , one also finds isomeric

hybridization, but of a different type, this time involving
hybridization between the 1S ground state and the first excited
1S state.

Charge-charge PCFs for these two 1S states are shown in
Fig. 6 for various values of rs . The images here have been
rescaled to have the same size for each rs ; the radius of the
outer ring is in fact given approximately by Rring ≈ 1.7 rs .
Now, the “equilibrium” density (that is, the density at which
the total energy of the system is minimized) for a quasi-2D
quantum dot is around rs ≈ 1.4 a∗

0 –1.8 a∗
0 , a density that occurs

in many experiments.1 At equilibrium densities, the electronic
structure is described approximately by an atomiclike shell
model,1 and as we have seen, as the density is reduced from its
equilibrium value, one eventually finds Wigner localization.
The onset of Wigner localization in a quantum dot with a
small, finite number of electrons is not a sharp transition
but evolves gradually as a function of rs (see, for example,
Ref. 8). As can be seen from Fig. 6, even at slightly lower
densities rs ≈ 2.75 a∗

0 –4 a∗
0 than equilibrium, there is already

evidence of partial Wigner localization into patterns that are
recognizable as predominantly (1,5) or (0,6).8,31 Reimann
et al.31 had observed earlier that the 1S ground state at rs = 4 a∗

0
had a predominantly (0,6) geometry, and Güçlü et al.11 found
that, as rs increased further, this state transformed into a (1,5)
geometry. From Fig. 6, we see that the transformation is quite
complete by rs = 10 a∗

0 .
We can analyze this phenomenon in more detail by

considering the first excited 1S state, which changes from
predominantly (1,5) at rs = 4 a∗

0 to (0,6) at rs = 10 a∗
0 . Thus,

at rs = 4 a∗
0 , the (1,5) and (0,6) isomers are inverted from

their classical energy ordering, with the (1,5) isomer above the
(0,6). By rs = 10 a∗

0 , the classical ordering is reestablished,
with (1,5) as the ground isomer, and the ordering stays this
way for all higher rs (see Ref. 17 and Fig. 4). At intermediate
densities rs ≈ 6 a∗

0 , there is hybridization of the (1,5) and (0,6)
isomers in both 1S states.

As we noted in Sec. IV A, at rs ≈ 6 a∗
0 , the spin excita-

tion energy (atomiclike exchange and correlation effects) is
comparable to the nominal vibrational and isomeric excitation
energies. There is no reason why the exchange and correlation
effects in this case can not mix isomers for states with the same
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values of Lz and S. We note that, as the spin excitation energy
becomes significantly smaller than the isomeric excitation
energy for rs � 10 a∗

0 (see Fig. 3), the classical energy ordering
of the (1,5) and (0,6) isomers is reestablished and the isomeric
hybridization of the ground 1S state disappears.

Note that the inversion of the (1,5) and (0,6) isomers
only occurs for the S = 0 member of the ground-state spin
multiplet. For the S = 1, 2, and 3 states (not shown), we
find the (1,5) isomer to be below the (0,6) isomer already
for rs ≈ 2.75 a∗

0 –4 a∗
0 and for all higher rs .

D. Generalization to larger sizes N

The main part of this paper is a case study for N = 6
electrons, but we can use the classical arguments that worked
well for N = 6 (Sec. IV A) to show that aspects of the same
excited-state phenomenology apply to larger N as well.

The classical model yields more than one isomer for
N = 6 and for N � 9.20,21 We have used the basin-hopping
algorithm29 to generate and study the classical isomers in the
size range up to N = 20. As N increases, the energy separation
of isomers tends to become smaller. Thus, the excitation energy

Eiso(N ) for N electrons satisfies 
Eiso(6) = 0.10 ω2/3,

Eiso(9) = 0.044 ω2/3, and 
Eiso(19) = 0.013 ω2/3 (in effec-
tive a.u.). It is then generally the case that the first excited
level (spin multiplet) for fixed Lz at intermediate rs is an
isomer rather than a vibrational excitation of the ground state.
In fact, the crossovers between 
Eiso and 
Evib (such that

Evib becomes smaller than 
Eiso for larger rs) tend to occur
for several hundred a∗

0 or more for N > 6.32 For example,
for N = 19, the crossover occurs for rs ≈ 800 a∗

0 . We thus
expect low-lying isomeric states to be a generic feature of the
excitation spectrum of dots with N = 6 or N � 9 electrons at
intermediate rs values.

Also, the rotational excitation energies 
Erot are generally
found to be small compared to 
Eiso and 
Evib, similar to
Fig. 3 for N = 6.

V. CONCLUSIONS

We have presented an accurate CI method, using a numer-
ical basis set of mean-field type, that is capable of treating
quasi-2D quantum dots (in the effective-mass approximation),
with up to at least six confined electrons, at low electron
densities rs ∼ 50 a∗

0 in the strongly correlated regime of
Wigner localization. Precise calculations of energies of low-
lying states for N = 6 electrons at densities rs ≈ 12 a∗

0 –16 a∗
0

achieve errors of order 1 part in 104 of the total energy (or
better) and apparently reveal the fixed-node error in recent
quantum Monte Carlo results (VMC–DMC).9

For six or more confined electrons, the excitation spectrum
of Wigner molecule states at intermediate rs � 3 a∗

0 involves
isomeric excitations as well as rotational, vibrational, and
spin excitations. By direct calculation with CI for N = 6
at rs = 50 a∗

0 , we found that vibrational excitations had a
qualitative correspondence with the classical normal modes for
confined pointlike electrons, although the excitation energies
only agreed approximately, and the energy ordering of the
quantum vibrational modes could be different from the classi-
cal ones, presumably due to residual quantum fluctuations in
the electron gas.

Since, at intermediate rs , isomeric states are likely to be a
low-lying excitation, it may be possible to observe them exper-
imentally. As in molecules,30,33 the selection rules for various
processes such as optical absorption or inelastic scattering12

can be strongly dependent on the isomers involved or the
vibrational normal modes through the symmetry constraints.
Theoretically, we found that a useful approach to interpreting
the spectrum of CI eigenstates was to consider the pattern
of allowed spins. It may be possible to make use of spin
selection rules experimentally. Finally, recent improvements
in high-spatial-resolution scanning probe techniques34 may
make it possible to observe the geometry of a Wigner molecule
directly.
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APPENDIX: SYMMETRY-ALLOWED SPIN COUPLINGS

The consequences of the symmetry of localized Wigner
states can be analyzed using the same group-theoretical
methods that have been developed for planar (and nonplanar)
molecules.30,33 In this section, we outline instead a more
elementary derivation that suffices in 2D to understand the
sets of allowed spins in Table IV.

First, consider the stretched state Sz = 3 for total spin S = 3
and Lz = 0. The assignments of individual electron spins for
the internal C5v and C6v molecular symmetries are represented
pictorially in Figs. 7(a) and 7(b). Now, configuration 7(b)
for C6v is symmetric (+1) under a rotation through 1/6 of
a turn (θ = π/3). But this rotation is equivalent to a cyclic
permutation of the six electrons (imagine enumerating the
electrons 1 to 6 around the hexagon), which requires an odd
number of electron interchanges and should yield a factor (−1)
for fermionic antisymmetry. Therefore, S = 3 is incompatible
with fermion antisymmetry and is excluded for C6v .

In a similar way, configuration 7(a) for C5v is also
symmetric (+1) under a rotation through θ = 2π/5, but this
time there are an odd number of electrons in the outer ring,
which yields an even number of fermion interchanges with the

(c)

C5v C6v

Sz = 3

Sz = 2

(a)

(d) (e)

(b)

FIG. 7. Spin configurations for Sz = 3 (top row) and Sz = 2
(bottom row) for C5v (left group) and C6v (right group) molecular
symmetries. A full circle indicates spin up, and an empty circle spin
down.
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required symmetry (+1). Therefore, S = 3 is compatible with
fermion antisymmetry for C5v .

We now proceed to Sz = 2 (still for Lz = 0). The distinct
electron spin configurations for Sz = 2 are shown in Figs.
7(c)–7(e), where by distinct we mean that the configurations
can not be transformed into each other under rotations.
Now, configurations 7(c) and 7(e) with a spin-down electron
in the outer ring have no symmetry under rotations, and
there is thus no difficulty in constructing states from them
with the required fermion antisymmetry. On the other hand,
configuration 7(d) with a spin-down in the center is again
symmetric under five-fold rotations, but as just discussed,
this is compatible with fermion antisymmetry. We conclude
that, for C6v symmetry, there is one allowed S = 2 state. For
C5v symmetry, there are two allowed Sz = 2 configurations,
but one of these corresponds to the S = 3 state found
above, and so there is also one allowed S = 2 state for
C5v .

Continuing this procedure systematically for Sz = 1 and 0
yields straightforwardly the allowed spins S = (0123) for C5v

and S = (0012) for C6v given in Table IV for Lz = 0.
The procedure for Lz �= 0 is identical, except that now

under a rotation through an angle θ we pick up an additional
factor of exp(iθLz), which can modify the conclusions. For
instance, consider again the Sz = 3 configurations. A rotation
of configuration (a) for C5v through θ = 2π/5 now yields a
factor exp(i2πLz/5). But, this can only equal +1 as required
for fermions for Lz = 0,5,10, . . . . Therefore, for 1 � Lz � 4

(and cyclically with period 5 in Lz), the S = 3 state is forbidden
for C5v .

Similarly, a rotation of configuration 7(b) for C6v through
θ = π/3 yields a phase exp(iπLz/3), which can only equal
−1 as required for fermions when Lz = 3,9,15, . . . . Thus,
S = 3 is forbidden for C6v unless Lz = 3 (and cyclically with
period 6 in Lz).

By continuing this procedure for Sz = 2, 1, and 0, one can
readily deduce the spin patterns in columns (a) and (e) of
Table IV.

So far, we have implicitly assumed the molecular state
to be in the ground state of its vibrational modes, which is
symmetric under rotations. When one vibrational quantum
is present, the vibrational mode carries the symmetry of the
corresponding normal-mode vector shown in Fig. 5. Now,
the doubly degenerate modes in this figure can be arranged
into linear combinations that contribute phases exp(±i|M|θ )
under rotations, with |M| = 0, 1, 2, or 3 according to the
mode.35 This is analogous to the effect of Lz, and so the
allowed spins are simply those for Leff

z = Lz ± |M| for the
C5v isomer. As an example, consider a mode with dipolar
symmetry |M| = 1 (such as the collective mode at � = ω in
Fig. 5) for Lz = 1. This gives Leff

z = 0 or 2, and so the allowed
spins are S = (0123) and (0112) or (00111223). In this way,
one sees that columns (b) and (d) in Table IV follow from an
|M| = 1 dipolar normal mode, while column (c) can arise from
a normal mode with either |M| = 2 (quadrupolar) or |M| = 3
(octupolar).
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