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Grain boundary loops in graphene
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Topological defects can affect the physical properties of graphene in unexpected ways. Harnessing their
influence may lead to enhanced control of both material strength and electrical properties. Here we present a
class of topological defects in graphene composed of a rotating sequence of dislocations that close on themselves,
forming grain boundary loops that either conserve the number of atoms in the hexagonal lattice or accommodate
vacancy or interstitial reconstruction, while leaving no unsatisfied bonds. One grain boundary loop is observed as
a “flower” pattern in scanning tunneling microscopy studies of epitaxial graphene grown on SiC(0001). We show
that the flower defect has the lowest energy per dislocation core of any known topological defect in graphene,
providing a natural explanation for its growth via the coalescence of mobile dislocations.
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I. INTRODUCTION

The symmetry of the graphene honeycomb lattice is a key
element for determining many of graphene’s unique electronic
properties. The sublattice symmetry of graphene gives rise to
its low-energy electronic structure, which is characterized by
linear energy-momentum dispersion.1 The spinorlike eigen-
states of graphene lead to one of its celebrated properties,
reduced backscattering (i.e., high carrier mobility), which
results from pseudospin conservation in scattering within a
smooth disorder potential.2,3 Topological lattice defects break
the sublattice symmetry, allowing insight into the fundamental
quantum properties of graphene. For example, defects allow a
detailed study of how symmetry breaking relates to pseudospin
(non)conservation, as shown in scanning tunneling microscopy
studies of inter- and intravalley scattering in graphene in the
presence of local defects.4–7 Defects have profound effects
on the chemical, mechanical, and electronic properties of
graphene.8,9 Atomistic calculations indicate that graphene with
large-angle tilt-grain boundaries composed of an array of
defects is as strong as pristine material, and much stronger than
graphene with low-angle boundaries.10 Recent measurements
and analysis suggest that some of these one-dimensional
extended defects can have unique electronic properties, such
as a one-dimensional conductivity.11

While point defects such as vacancies12 and single
impurity atoms13 have been studied in the graphene lat-
tice, extended topological defects have only recently been
investigated.10,14–17 Extended topological defects in the hexag-
onal lattice can form from networks of five- and seven-
membered rings, which, individually, are disclinations in the
hexagonal lattice that preserve threefold bonding.15,18 The
energetics of extended topological defects are of interest
in creating two-dimensional defect patterns,19 which may
be useful in chemical sensing or mechanical and electronic
applications.

In this paper we show that nonlinear topological defects
are formed by incorporating five- and seven-membered rings
into the pristine graphene lattice in closed loops, resulting in
closed grain boundary loops. We outline the construction of the
grain boundary loops in terms of the primitive five- and seven-

membered rings. Our focus is on closed grain boundary loops
that are equivalent to cutting out a portion of the hexagonal
lattice and rotating it relative to the pristine graphene lattice,
and hence we also refer to these defects as rotational grain
boundaries. Density functional theory (DFT) calculations are
used to examine the energetics of rotational grain boundaries.
Remarkably, the construction consisting of close-packed five-
and seven-membered rings with hexagonal symmetry (the
“flower” defect described below) is predicted to have the
lowest energy per dislocation core of any known topological
defect in graphene. Therefore the formation of rotational
grain boundaries might be favorable under certain growth
conditions. Previous STM measurements of epitaxial graphene
on SiC(0001) (Refs. 4 and 20) observed a unique defect with
sixfold symmetry, which was not identified. Our present study
reveals that this structure is a low-energy rotational grain
boundary formed in the high-temperature growth, identical
to the flower defect discovered by transmission electron
microscopy on graphene deposited by chemical vapor depo-
sition (CVD).21,22 Simulated scanning tunneling microscopy
(STM) topographs of this rotational grain boundary are in
excellent agreement with experimental STM images. Scanning
tunneling spectroscopy (STS) measurements show that this
defect has an electronic state at 0.5 eV above the charge
neutrality point (Dirac point) and DFT calculations of the
density of electron states show a localized resonance in the
same energy range.

II. EXPERIMENTAL AND COMPUTATIONAL METHODS

The epitaxial graphene samples studied here were grown
on SiC wafers in ultrahigh vacuum (UHV), which typically
produces more defects than growth by the induction furnace
method.23 Two groups of SiC(0001) (silicon face) epitaxial
graphene samples were measured in two custom STM systems
at NIST. The first group of samples was grown at Georgia Tech
on H2-etched surfaces of high-purity semi-insulating 4H-SiC
by thermal desorption of silicon in UHV. After transport in
atmosphere and transfer of the samples into the UHV system
at NIST, the samples were outgassed at 800 ◦C and STM
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FIG. 1. (Color online) Schematic of defects constructed from positive and negative 60 ◦ disclinations. (a) A positive 60 ◦ disclination with
a five-membered ring (blue) in the hexagonal lattice. (b) A negative 60 ◦ disclination with a seven-membered ring (pink). (c) A dislocation is
produced by joining the complementary disclinations in (a) and (b) with Burgers vector b(0,1). (d) Close packing of (0,1) dislocations creates
a large-angle linear grain boundary with angle θ = 21.8 ◦. (e) A large-angle linear grain boundary with θ = 32.2 ◦ produced by combining
(0,1) + (1,0) dislocations. (f) Two dislocations from (c) rotated by 60 ◦ relative to one another. Topologically closed structures can be formed
by rotating a sequence of dislocations, as shown in Fig. 2. Seven- and fivefold rings are colored pink and blue, respectively.

measurements were made at 4.2 K. This treatment produced
a number of defects with different symmetries,4 including the
flower defect discussed in this paper. A second set of samples
was grown on 6H-SiC(0001) by resistively heating as-received
SiC wafers in UHV, followed by STM measurements at
295 K without exposure to atmosphere. The second set of
samples contained far more flower defects, including regions
with networks of them.20 Further details of these samples are
described in previous publications.4,20

The computational studies were performed using the
density functional theory code Vienna Ab initio Simulation
Package (VASP).24 Ultrasoft pseudopotentials25 for the carbon

core electrons, together with the local density approximation
for the exchange-correlation functional, were used throughout.
A rather small plane-wave cutoff of 211 eV was used due to
large supercell sizes; studies with larger cutoffs showed that
the features of the electronic density become sharper, but that
there is no significant change in the calculated density of states
(DOS). Brillouin-zone integration for relaxation was effected
using k-point grids with approximately 5000/NC k points in
the full Brillouin zone (NC is the number of carbons in the
calculation); for DOS calculations, approximately 200 000/NC

k points were used. Various periodic graphene monolayer and
multilayer supercells containing one rotational defect were

(a) (b) (c)

FIG. 2. (Color online) Schematic structures of the low-energy rotational grain boundaries identified in this work. (a) Stone-Wales defect
with a C2 symmetry axis. (b) Rotational grain boundary with a C3 symmetry axis. (c) Flower defect, with C6 symmetry axis. Seven- and fivefold
rings are colored pink and blue, respectively.
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FIG. 3. (Color online) Examples of low-energy grain boundary
loops that do not conserve the number of carbon atoms. (a) 555-
777 defect29 which removes two atoms from the lattice. (b) H5,6,7

defect27 which incorporates two extra atoms into the lattice. Seven-
and fivefold rings are colored pink and blue, respectively.

investigated. In each case, the supercell height was set to
1.34 nm to avoid spurious interactions between image layers.
Cell parameters were relaxed such that the in-plane Pulay
stress was equal to the stress of graphite at the experimental
lattice parameters under the same computational parameters.
After relaxation of the atomic structure, electronic densities
of states calculations were performed. Images of the projected
density of states as a function of spatial position are used to
simulate STS dI/dV maps. STM topographic images were
simulated using the Tersoff and Hamann approximation,26

which relates the STM image to the integrated electronic
density of states between the Fermi level and the bias voltage.

III. GRAIN BOUNDARY DEFECTS

A. Linear grain boundaries

A linear grain boundary in graphene consists of a chain
of dislocations, each of which can be decomposed into a pair
of five- and seven-membered carbon rings.15 The topological
defect comprising a ring of five atoms at the defect core [see
Fig. 1(a)] is equivalent to subtracting an infinite 60 ◦ wedge of
graphene from the unperturbed hexagonal lattice (and is also
called a +60 ◦ disclination). Every carbon atom is bonded to
three others and so there are no unsatisfied bonds. Similarly,
in Fig. 1(b) we show a −60 degree disclination which has

a seven-atom ring at its core. By combining these two types
of topological defects, we can generate more interesting and
extended cases. For example, in Fig. 1(c) we show a dislocation
constructed from a five-atom ring sharing atoms with a
seven-atom ring, at the termination of a semi-infinite strip
of atoms inserted into the lattice. The dislocation is described
by a Burgers vector, b(p,q), where the components (p,q) can
be identified from the lattice translation vectors.15 Aligning
a chain of (0,1) dislocations gives a linear grain boundary.
Distinct dense packing of these (0,1) dislocations creates a
large-angle grain boundary with angle θ = 21.8 ◦ [Fig. 1(d)],
while packing of (0,1) + (1,0) dislocations creates a large-
angle grain boundary with angle θ = 32.2 ◦ [Fig. 1(e)]. These
defects were recently identified as low-energy structures15 and
as ones that can enhance the mechanical strength of graphene
compared to low-angle boundaries with fewer defects.10

B. Grain boundary loops

If sequential dislocations are rotated [Fig. 1(f)] and arranged
in a closed loop, a grain boundary loop is formed (Fig. 2).
Different grain boundary loops differ in the magnitude of the
disclinations involved (i.e., the number of carbon atoms in the
rings), and the geometry of their arrangements around the loop.
An important subset of grain boundary loops, the rotational
grain boundaries, is generated by cutting out a portion of the
graphene lattice, rotating it, and then “gluing” it back in. This
procedure naturally conserves the number of carbon atoms
with respect to ideal graphene.

We have identified several low-energy grain boundary
loops in graphene (Fig. 2–3), as well as one family of
rotational grain boundaries with sixfold symmetry (Fig. 4).
The Stone-Wales defect [Fig. 2(a)] is the smallest rotational
grain boundary in graphene and has a C2 rotational axis. A C3

symmetric structure results if we combine three dislocations
with successive Burgers vectors rotated by 120 ◦ relative to
one another [Fig. 2(b)]. Finally, if we combine six dislocations
with successive Burgers vectors rotated by 60 ◦ increments,
then the two-dimensional defect structure closes on itself
with a C6 symmetry [Fig. 2(c)]. Other topological defects
in graphene with closed loops of dislocation cores have been
reported in the literature27–33 but do not conserve the number
of C atoms (Fig. 3). Such grain boundary loops can be
viewed as a combination of a rotational grain boundary with

(b) (c) (d)(a)

FIG. 4. (Color online) Schematic structures of the rotational grain boundary family C6(m,n) with C6 symmetry. (a) Structure C6(1,1). (b)
Structure C6(2,1). (c) Structure C6(3,1). (d) Structure C6(2,2). The structure in (a) is the flower defect shown in Fig. 2 and discussed in the
main text. Seven- and fivefold rings are colored pink and blue, respectively.
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(a) (b) (c)

FIG. 5. (Color online) A comparison of experimental and simulated STM topographic images of the C6(1,1) rotational grain boundary.
STM topographs of a sixfold defect observed in the growth of epitaxial graphene on SiC at (a) −300 and (c) 300 mV sample bias. Image
size 3.0 × 3.5 nm. The color scale intensity (dark to bright) corresponds to topographic height variations of 150 and 130 pm for (a) and (c),
respectively. The tunneling current set point is 100 pA; T = 4.3 K. (b) Simulated STM image of the C6(1,1) defect using DFT calculations as
detailed in the text. The simulation corresponds to a constant charge-density surface of 0.06 e nm−3 obtained by integrating the DOS from ED

to ED + 0.3 eV (EF − 0.3 eV to EF) to simulate the image in (a). The color scale corresponds to a topographic height variation of 140 pm from
dark to bright. The DFT relaxed atomic structure of the C6(1,1) rotational grain boundary is overlaid onto the STM simulation.

a vacancy/interstitial reconstruction. In Fig. 3(a), the defect
removes two atoms, while in Fig. 3(b), the defect adds two
atoms. To a first approximation, grain boundary loops that
conserve or reduce the number of atoms are expected to remain
flat, while those that increase the number of atoms are expected
to buckle out of the plane to accommodate the stress of the
locally high atom density. Such out-of-plane warping is indeed
found for the defect in Fig. 3(b).27

The rotational grain boundary in Fig. 2(c) is the smallest
member of the family of “C6(m,n)” defects, with m = n =
1. Other members of this family are shown in Fig. 4. We
label the smallest member of this family the flower defect
based on STM observations4,20 and on our demonstration in
this work of its equivalence to the flower defect observed
in CVD grown graphene.21,22 In this family, the central 6
(m + n)2 carbon atoms are rotated by an angle of approximately
[n/(m + n)] 60◦ (exactly 30◦ for m = n). The flower defect has
the lowest energy of the rotational grain boundaries shown
in Fig. 2 with the exception of the Stone-Wales defect in
Fig. 2(a). C-C bond lengths range from 138.5 to 144.3 pm,
as compared to the ideal graphene value of 142 pm. The
C-C-C angles range from 104.5 ◦ to 135.9 ◦ compared with
120 ◦ in ideal graphene, 108 ◦ in a regular pentagon, and
128.6 ◦ in a regular heptagon. The flower rotational grain

boundary is stable with respect to out-of-plane distortions
and is calculated to have an energy of + 7.0 eV above ideal
graphene, higher than the + 4.9 eV calculated energy of a
Stone-Wales defect,27,34 but smaller than the + 8.3 eV energy
of an (unreconstructed) carbon vacancy (see Table I). At 1.2 eV
per dislocation (i.e., per 5-7 pair), the flower defect has a lower
energy per dislocation than the Stone-Wales defect (2.5 eV per
5-7 pair), and indeed, lower than the energy of any other known
topological defect in graphene (see Table I). This suggests a
natural explanation for the growth of the flower defect (and
other low-energy grain boundary loops) via the coalescence
of mobile dislocations or Stone-Wales defects. The C3 defect
shown in Fig. 2(b) has a higher energy, but might be obtained
under certain growth conditions. The similarity in energy per
dislocation core between the flower defect and the large-angle
grain boundary in Fig. 1(e) suggests that arrangements of
dislocation cores in which all five-membered rings share
bonds with two seven-membered rings, and vice versa, may
be particularly stable.

Each rotational grain boundary studied expands the lattice.
The flower defect expands the lattice by 0.022 nm2 with respect
to an ideal graphene lattice with the same number of atoms,
and has the smallest ratio of energy change to expansion area
of all rotational grain boundaries studied. Thus, it would be

TABLE I. The properties of various linear and rotational grain boundaries (GB) in graphene. Rotation of Ncore central atoms by the angle
θ yields the rotational grain boundaries in the indicated figures. Energies are relative to the pristine graphene lattice, as determined by DFT
calculations.

Figure Defect Ncore Angle θ Energy (eV) Energy per dislocation (5-7 pair) (eV)

1(d) Large-angle grain boundary 21.8 ◦ 2.2
1(e) Large-angle grain boundary 32.2 1.3
2(a) Stone-Wales 2 90 ◦ 4.9 2.5
2(b) C3 GB loop 13 ≈ 40 ◦ 9.3 3.1
2(c) C6(1,1) (Flower defect) 24 30 ◦ 7.0 1.2
4(b) C6(2,1) 54 ≈ 20 ◦ 19.9 3.3
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FIG. 6. (Color online) Electronic properties of the flower defect. (a) A series of STS differential conductance (dI/dV) spectra measured
over a flower defect [inset in (b)]. The horizontal axis is the sample bias from −500 to 500 mV, and the vertical axis is the distance across the
defect from 0 to 5 nm. The dI/dV intensity is shown in a color scale from 0 to 0.4 nS. Superimposed on the STS line map is the topographic
profile (white line) taken through the flower defect, showing that the spectral peak observed at 200 mV is localized over the flower defect.
(b) dI/dV spectra averaged over the region of the flower defect (red curve) and in the region outside (blue curve). A minimum in the differential
conductance is observed at the Dirac point at −300 mV, and a localized flower state is observed at + 200 mV (0.5 eV above ED). The Fermi level
is at 0 mV; T = 290 K. (Inset) STM image of the flower defect. The dI/dV measurements in (a) were obtained along the indicated red line, which is
along a pentagon symmetry axis. (c) The calculated projected density of states of the flower rotational grain boundary as a function of spatial
position along a pentagon axis [e.g., along a horizontal line through the center of Fig. 2(d)]. The defect is centered at the position of 2.5 nm.
The data were broadened by Gaussian functions with widths of σ = 50 meV in energy and σ = 0.142 nm spatially. (d) The calculated density
of states in the vicinity of the Dirac point spatially averaged over the defect (red curve) and for pristine graphene (blue curve). Both spectra
were broadened with a Gaussian of width σ = 50 meV. The dashed yellow lines in (c) and (d) indicate the experimental energy range in (b).

interesting to investigate the possible role of this defect in
graphene under tensile strain and in graphene fracture.10

C. STM observations and density of states of the flower defect

Defects have been observed in STM imaging of graphene
and graphite.4,35 Typically, threefold patterns are observed
on the surfaces of graphite and are understood in terms
of scattering involving defects in one of the two threefold
sublattices that make up the honeycomb lattice.35,36 A unique
defect with sixfold symmetry is observed for graphene grown
epitaxially on SiC [Figs. 5(a) and 5(c)], but its origin has
not yet been determined.4,7,20,37 In some cases this defect is

observed to cluster in groups20 and it remains an open question
to account for the appearance of these defects during graphene
growth. To the best of our knowledge this sixfold pattern has
not been observed in STM images of graphite surfaces. It
cannot be explained by a simple lattice defect in one of the
graphene sublattices, as this would give rise to a threefold
pattern in STM images, nor by a Stone-Wales defect, which
gives rise to twofold symmetry in STM topographs.38

DFT simulations of the flower C6(1,1) rotational grain
boundary, as shown in Fig. 5(b), bear a striking resemblance
to the sixfold pattern observed in the STM image of Figs. 5(a)
and 5(c). The simulation reproduces all essential experimental
features such as a dark center, a nearly circular ring of intensity
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FIG. 7. (Color online) Spatially projected density of states at the various peak energies observed in Fig. 5(d). These images simulate
energy-resolved dI/dV maps of the flower defect states. The electron density is calculated at 0.33 nm above the graphene surface using DFT
results, and then convoluted spatially by a Gaussian of width σ = 0.142 nm. Image size is 3 × 3 nm. (a) Peak at ED − 0.4 eV. (b) and (c) Peaks at
ED + 0.2 eV and at ED + 0.4 eV. (d) Peak at ED + 0.6 eV. The peaks at ED + 0.2 eV and ED + 0.4 eV arise from a single localized resonance
at ED + 0.3 eV.

in the central region, and the sixfold symmetric dark spokes
radiating from the center. An examination of the overlaid
lattice structure shows that the intensity of the inner central
region arises from the radial C-C bonds fanning out of the
center hexagon. The second circular high intensity region
arises from the C-C bonds pointing radially outward from
the center that are shared by the pentagons and heptagons.
The

√
3 × √

3 R30 ◦ intensity modulation outside the defect
arises from the scattering between low-lying K and K′ states
in graphene.4 While the creation of the

√
3 × √

3 R30 ◦
modulated features in the electronic structure of graphene due
to defects is well known, the quantum phase factor of the
coupling is sensitive to the nature of the defect; the presence
of circular rings over several tenths of electron volts seems
to be characteristic of the flower defect both experimentally
and computationally. From the above observations, we con-
clude that the previously unidentified STM flower defect in
graphene is the rotational grain boundary shown in Fig. 2(d).
Experimentally observed symmetry breaking from sixfold to
threefold, visible especially in the center of Fig. 5(a), arises
from the weak interaction with a second, subsurface, graphene
layer in the experiment; this effect is reproduced in simulations
of a flower defect in a Bernal-stacked bilayer (not shown).

Topological defects and grain boundaries in graphene
are well known to produce electronic states close to the
charge neutrality (Dirac) point.12,15,39,40 Scanning tunneling
spectroscopy measurements on the flower defect show an
electronic state at 0.5 eV above the Dirac point localized
to the region of the defect [Figs. 6(a) and 6(b)]. A state at
similar energies is observed in the large-angle linear grain
boundaries,15 and in the Stone-Wales defect.28 We would not
expect this state to be the same in the flower defect due to
symmetry considerations. However, the calculated DOS for
this defect [Fig. 6(d)] shows that related peaks do occur at
similar energies. In particular, two peaks are seen at 0.2 and
0.4 eV above the Dirac point, close to the experimental peak.
The appearance of two peaks in this energy range is an artifact
of the finite size of the simulation, and there is, in fact, only
one underlying resonance at about ED + 0.3 eV, as discussed
below. This resonance corresponds to states with intensity
localized on the flower defect, as seen in the spatially projected

density of states in Fig. 6(c), and is largely responsible for
the intensity modulation observed in the STM simulation of
Fig. 5(b). The experimental spectrum in Fig. 6(b) shows only
a single broad feature at 0.5 eV above the Dirac point, which
corresponds well to the calculated resonance at ED + 0.3 eV.

A tight-binding model with bond-length-dependent
couplings41 was fit to the DFT results and then used to
investigate the effect of supercell size on the peak structures
at ED + 0.3 eV. Larger supercells were created by padding
the DFT-relaxed structure of a smaller supercell with ideal
graphene. The results show quite significant finite size effects
even at the size of the largest DFT cell (864 atoms). In
particular, a set of resonances of fixed energy (with respect
to supercell size) is observed inside the flower defect. These
resonances then couple to those external wave functions that
have significant projection onto the boundary of the flower
defect. These external wave functions have energies that vary
as r−1 (r the linear dimension of the supercell), and couple less
strongly to the flower defect as r increases. The tight-binding
model shows that there are actually three resonances near ED,
not four, at energies of ED – 0.4 eV (strongest; E2g symmetry
of point group D6h), ED + 0.3 eV (next strongest; E2g), and
ED + 0.6 eV (weak; B1u). Coincidentally, the 864-atom cell
has an external state very close in energy to ED + 0.3 eV that
couples with the internal resonance and splits it into two peaks.
Further support for this conclusion, based entirely on the DFT
calculations rather than tight-binding models, is given by (1)
the similarity of the wave functions corresponding to peaks
2 and 3 (Figs. 7(b)-7(c)) and (2) the fact that the states that
yield peaks 2 and 3 do not extend throughout the Brillouin
zone, but come from complementary regions. The predicted
weakness of the resonance at ED + 0.6 eV, along with the
resolution limit of the experiment due to thermal broadening,
probably explains why this higher-energy peak is not observed
experimentally.

Figure 7 shows the spatial projected density of states of the
four main peaks in the DOS near ED, as could be measured
by STS dI/dV mapping. Interestingly, the predicted spatial
mapping of these resonant states (Fig. 7) show a variety of
different nodal structures, which can be used to distinguish the
various states based on symmetry and intensity distributions. In
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particular, the map corresponding to the state at ED − 0.4 eV
has a dramatically different structure than the others, with
strong intensity on the pentagons. This energy is outside the
range of the measurements in Fig. 6(b), and awaits future
experimental investigations.

In summary, we have described a type of topological defect
in graphene which consists of a closed loop of disclinations
(grain boundary loops) and an important subset of grain
boundary loops (rotational grain boundaries) that corresponds
to a rotation of the honeycomb lattice within the core of
the defect with respect to the surrounding lattice, preserving
threefold coordination of the carbon atoms. A theoretical study
of the energies of rotational grain boundaries, originating
from paired five- and seven-membered ring disclinations,
shows that the previously unidentified flower defect in STM
topographs is the smallest member of a family of rotational
grain boundary defects with C6 symmetry. The calculated
energy per 5-7 pair (dislocation core) is the smallest for

any known topological defect, suggesting that this defect is
likely to form under conditions where mobile dislocations
exist [during the preparation of this paper, the flower defect
was identified independently in CVD-grown graphene on Ni
(Refs. 21 and 22). Apart from the Stone-Wales defect, other
rotational grain boundaries have yet to be experimentally
observed, but may prove to be very interesting with regard
to their influence on electronic transport16 and mechanical
properties.10
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22H. J. Park, V. Skákalová, J. Meyer, D. S. Lee, T. Iwasaki, C. Bumby,
U. Kaiser, and S. Roth, Phys. Status Solidi B 247, 2915 (2010).

23C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai,
A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer,
J. Phys. Chem. B 108, 19912 (2004).

24G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
25D. Vanderbilt, Phys. Rev. B 41, 7892 (1990).
26J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).
27M. T. Lusk and L. D. Carr, Phys. Rev. Lett. 100, 175503 (2008).
28A. Lherbier, Simon M. Dubois, X. Declerck, S. Roche, Y. M. Niquet,

and J. C. Charlier, Phys. Rev. Lett. 106, 046803 (2011).
29O. Cretu, A. V. Krasheninnikov, J. A. Rodrı́guez-Manzo, L. Sun,

R. M. Nieminen, and F. Banhart, Phys. Rev. Lett. 105, 196102
(2010).

30G. D. Lee, C. Z. Wang, E. Yoon, N. M. Hwang, and K. M. Ho, Phys.
Rev. B 74, 245411 (2006).

31R. G. Amorim, A. Fazzio, A. Antonelli, F. D. Novaes, and A. J. R.
da Silva, Nano Lett. 7, 2459 (2007).

32B. W. Jeong, J. Ihm, and G. D. Lee, Phys. Rev. B 78, 165403 (2008).
33Y. Qi, S. H. Rhim, G. F. Sun, M. Weinert, and L. Li, Phys. Rev.

Lett. 105, 085502 (2010).
34A. Stone and D. Wales, Chem. Phys. Lett. 128, 501 (1986).
35K. F. Kelly and N. J. Halas, Surf. Sci. 416, L1085 (1998).
36H. A. Mizes and J. S. Foster, Science 244, 559 (1989).
37B. An, S. Fukuyama, and K. Yokogawa, Jpn. J. Appl. Phys., Part 1

41, 4890 (2002).
38H. Amara, S. Latil, V. Meunier, P. Lambin, and J. C. Charlier, Phys.

Rev. B 76, 115423 (2007).
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