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Towards a realization of Schwarzschild-(anti-)de Sitter spacetime as a particulate metamaterial
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While metamaterials offer the potential to realize Tamm mediums that are electromagnetically equivalent
to vacuous spacetime subjected to gravitational fields, practical formulations for suitable metamaterials have
not hitherto been developed. This matter was addressed by establishing a metamaterial formulation for the
Tamm medium representing Schwarzschild-(anti-)de Sitter spacetime. Our formulation is remarkably simple and
does not involve a complex nanostructure of the type that is often associated with metamaterials. Instead it is
based on the homogenization of only isotropic dielectric and isotropic magnetic component mediums, which are
distributed randomly as oriented spheroidal particles. Using the inverse Bruggeman homogenization formalism,
we demonstrated that a wide range of constitutive parameter values for the Tamm medium may be accessed
through varying the particle shape, volume fraction, or relative permittivity and relative permeability of the
component mediums. The presented formulation is appropriate for the regions of spacetime that lie outside the
event horizon for Schwarzschild spacetime and inside the cosmological horizon for de Sitter spacetime; there are
no such restrictions for anti–de Sitter spacetime.
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I. INTRODUCTION

Metamaterials constitute a notable class of engineered
materials that offer opportunities for realizing such exotic
phenomenons as negative refraction and cloaking.1 Further-
more, metamaterials offer unique opportunities to investi-
gate the electromagnetic properties of general relativistic
scenarios.2 This arises from the formal analogy that exists
between light propagation in vacuous curved spacetime and
propagation in a certain nonhomogeneous anisotropic or
bianisotropic medium known as a Tamm medium.3–5 Lately,
theoretical metamaterial-based analogs of black holes,6 de
Sitter spacetime,7,8 strings9 (including cosmic strings10), and
wormholes,11 for example, have been proposed. Crucially,
these spacetimes are amenable to representation by metama-
terials because their metrics are time-independent.

While metamaterials may in principle be exploited to con-
struct electromagnetic analogs of curved spacetime, concrete
details of how this can be achieved in practice are conspic-
uously absent from the literature. A noteworthy exception is
a recent description of a metamaterial representation of an
artificial electromagnetic black hole12 based upon the homoge-
nization of simple components. However, the two-dimensional
black hole considered is not astrophysical. In the following
sections we develop a metamaterial formulation for a rather
more complex curved spacetime scenario, which includes
the Schwarzschild black hole and anti–de Sitter spacetime
as specializations. Our formulation—which is remarkable
for its simplicity—relies on the homogenization of isotropic
dielectric and isotropic magnetic component mediums, which
are distributed randomly as oriented spheroidal particles.

A laboratory-based simulation of the optical properties of
vacuum subjected to a gravitational field may enable general
relativistic scenarios to be explored which would otherwise be
impractical or impossible to explore using direct experimental

or theoretical methods. For example, gravitational lensing
studies could be performed for complex arrangements of
matter, perhaps incorporating black holes and white holes,
which may provide insight into the distribution of dark matter
as well as the geometry and origins of the universe.13,14 The
study presented in the following sections represents a step
toward this goal.

As regards notation, 3-vectors are underlined, with the ˆ
symbol denoting a unit vector; whereas 3 × 3 dyadics are
double-underlined, with I being the identity. The speed of
light in vacuum in the absence of a gravitational field is
c0 = 1/

√
ε0μ0, where ε0 = 8.854 × 10−12 F m−1 and μ0 =

4π × 10−12 H m−1. Roman indexes take the values 1, 2, and
3, while Greek indexes take the values 0, 1, 2, and 3.

II. TAMM MEDIUM FOR SCHWARZSCHILD-(ANTI-)DE
SITTER SPACETIME

Static Schwarzschild-(anti-)de Sitter spacetime is conven-
tionally represented by the line element15–17

ds̃2 = (1 − F̃ )dt̃2 − 1

1 − F̃
dr̃2 − r̃2(dθ̃2 + sin2 θ̃ dφ̃2) (1)

expressed in spherical coordinates with the adopted signature
(+,−,−,−). Herein the function

F̃ = 2GM

c2
0 r̃

+ �r̃2

3c2
0

, (2)

with M � 0 being the mass of the corresponding
Schwarzschild black hole, G the gravitational constant,
and � the cosmological constant. The spacetime is called
Schwarzschild–de Sitter spacetime if the cosmological con-
stant � is positive; on the other hand, Schwarzschild-anti-de
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Sitter spacetime is characterized by � < 0.18 There are two
noteworthy specializations:

(a) The � = 0 regime corresponds to Schwarzschild space-
time.

(b) The M = 0 regime corresponds to de Sitter or anti–
de Sitter spacetime, according to whether � is positive or
negative, respectively.

In terms of Cartesian coordinates x̃ = r̃ sin θ̃ cos φ̃, ỹ =
r̃ sin θ̃ sin φ̃, and z̃ = r̃ cos θ̃ , the line element (1) is represented
by the metric g̃αβ as

[ g̃αβ ] =

⎛
⎜⎜⎜⎜⎜⎝

1
γ

0 0 0

0 −1 − γ F̃ x̃2

r̃2 − γ F̃ x̃ỹ

r̃2 − γ F̃ x̃z̃

r̃2

0 − γ F̃ x̃ỹ

r̃2 −1 − γ F̃ ỹ2

r̃2 − γ F̃ ỹz̃

r̃2

0 − γ F̃ x̃z̃

r̃2 − γ F̃ ỹz̃

r̃2 −1 − γ F̃ z̃2

r̃2

⎞
⎟⎟⎟⎟⎟⎠ ,

(3)

where the scalar γ = (1 − F̃ )−1. For our purposes here, it is
more convenient to work with a diagonal metric. Therefore, we
implement the (spatial) coordinate transformation represented
by

(t x y z)T = M · (t̃ x̃ ỹ z̃)T , (4)

with the change-of-basis matrix

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 x̃
r̃

− z̃√
x̃2+z̃2 − x̃ỹ

r̃
√

x̃2+z̃2

0 ỹ

r̃
0

√
x̃2+z̃2

r̃

0 z̃
r̃

x̃√
x̃2+z̃2 − ỹz̃

r̃
√

x̃2+z̃2

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

Since M is an orthogonal matrix, we have r̃ ≡ r =√
x2 + y2 + z2. With respect to this new coordinate system,

the metric has the diagonal form

[gαβ] ≡ MT · [g̃αβ] · M = diag(γ −1,−γ,−1,−1). (6)

Following the noncovariant approach pioneered by
Tamm,3–5 the electromagnetic response of vacuum in curved
spacetime represented by the metric (6) may be described
by the constitutive relations of an equivalent, instantaneously
responding medium (known as a Tamm medium) per21

D = ε0γ · E

B = μ0γ · H

}
, (7)

wherein SI units are implemented. Here, γ is the 3 × 3 dyadic

equivalent of the metric [γab] with components

γab = −gab

g00
. (8)

That is, the dyadic γ has the uniaxial form

γ = diag (1,γ,γ ) . (9)

In view of our quest to construct a Tamm medium with
relative permittivity dyadic γ and relative permeability dyadic

γ , it is of interest to consider the spatial dependency of

M 0,1.3
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FIG. 1. (Color online) The parameter γ plotted vs r for
Schwarzschild (solid, red), de Sitter (dashed, green), and anti–de
Sitter (broken dashed, blue) spacetimes. Here M ∈ {0,1.3}, � ∈
{0,±1.3} with the normalization G = c0 = 1.

the parameter γ . In the case of Schwarzschild spacetime,
γ with respect to r exhibits a singularity at r = 2GM/c2

0 ,
which corresponds to an event horizon. In the case of anti–de
Sitter spacetime, γ with respect to r exhibits singularities
at r = ±c0

√
3/�. Since r � 0, this corresponds to a single

cosmological horizon for de Sitter spacetime at r = c0

√
3/�

and no corresponding horizon for anti–de Sitter spacetime
for finite r . Furthermore, γ > 0 outside the event horizon for
Schwarzschild spacetime but inside the cosmological horizon
for de Sitter spacetime; and γ > 0 everywhere for anti–de
Sitter spacetime. These features are illustrated in Fig. 1,
wherein γ is plotted versus r for Schwarzschild and anti–de
Sitter spacetimes for M = |�| = 1.3 using the normalizations
c0 = G = 1.

The situation for Schwarzschild-(anti-)de Sitter spacetime
is rather more complicated, as is shown in Fig. 2 where
γ is plotted versus r for Schwarzschild-(anti-)de Sitter
spacetimes for M = |�| = 0.3 using the normalizations c0 =
G = 1. Now, for r � 0, γ with respect to r exhibits two
singularities for Schwarzschild–de Sitter spacetime (and a
third one for r < 0), while there is also one singularity for
Schwarzschild-anti-de Sitter spacetime. Also, γ > 0 between
the two singularities for Schwarzschild–de Sitter spacetime
and outside the singularity for Schwarzschild-anti-de Sitter
spacetime.

The distinction between the γ > 0 and γ < 0 regimes
is of relevance when one considers the phenomenon of
electromagnetic plane-wave propagation with negative phase
velocity, which is pertinent to metamaterials that support
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FIG. 2. (Color online) The parameter γ plotted vs r for
Schwarzschild–de Sitter (solid, red) and Schwarzschild-anti-de Sitter
(dashed, green) spacetimes. Here M = 0.3, � = ±0.3 with the
normalization G = c0 = 1.
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negative refraction.19 In fact, negative phase velocity can arise
in the γ < 0 regime but not in the γ > 0 regime.20,21 The
homogenization procedure presented in the next section is
suitable for the γ > 0 regime only.

Finally, in this section, we comment on a practical aspect
of realizing the Tamm medium. In practice, the nonhomoge-
neous nature of the Tamm medium could be catered for by
subdividing the space of interest into local neighborhoods that
are sufficiently small to be considered approximately homoge-
neous. The inverse homogenization procedures developed in
the next section would then be applied locally. This piecewise
homogeneous approach for the Tamm medium is documented
in detail elsewhere.22

III. INVERSE BRUGGEMAN FORMALISM

The Tamm medium described by the constitutive relations
(7) is a uniaxial dielectric-magnetic medium with identical
relative permittivity and relative permeability dyadics. In order
to construct such a medium, we turn to homogenization, using
as our basis the well-established Bruggeman formalism.23,24

Let us consider the homogenization of four component
mediums, labeled a, b, c, and d. Components a and b are
isotropic dielectric mediums with relative permittivities εa and
εb and relative permeabilities μa = μb = 1. Components c and
d are isotropic magnetic mediums with relative permeabilities
μc and μd and relative permittivities εc = εd = 1. The four
component mediums are assumed to be randomly distributed,
with respective volume fractions fa , fb, fc, fd ∈ (0,1) with
fd = 1 − fa − fb − fc. Each component medium is com-
posed of spheroidal particles that are small compared to the
electromagnetic wavelengths under consideration. The axis of
these spheroids for all four component mediums is taken to be
aligned with the symmetry axis of γ , namely, the x̂ axis. Thus,

the surface of each spheroid relative to its center is prescribed
by the vector

r s = ρ� U
�
· r̂ , (10)

where the positive-definite shape dyadic

U
�
= diag(1,U�,U�) (� = a,b,c,d), (11)

the radial unit vector is r̂ , and ρ� is a linear measure of size.
Spheroids characterized by U� > 1 are prolate whereas oblate
spheroids are characterized by U� < 1, and the degenerate
spherical case corresponds to U� = 1.

The Bruggeman formalism provides estimates of the
relative permittivity dyadic ε

Br
= diag(εx

Br,εBr,εBr) and
the relative permeability dyadic μ

Br
= diag(μx

Br,μBr,μBr)

of the homogenized composite medium (HCM), as follows.
Let us introduce the polarizability density dyadics

aε

�
= (ε�I − ε

Br
) · [

I + Dε

�
· (ε�I − ε

Br
)
]−1

aμ

�
= (μ�I − ε

Br
) · [

I + Dμ

�
· (μ�I − μ

Br
)
]−1

⎫⎬
⎭

(� = a,b,c,d) . (12)

The depolarization dyadics Dε,μ

�
herein are given by25,26

Dm

�
= diag(Dmx

� ,Dm
� ,Dm

� ) (� = a,b,c,d; m = ε,μ), (13)

where the components

Dmx
� = 1 − g(σ�)

mBr (σ� − 1)
, (14)

Dm
� = 1

2mBrU
2
�

(
g(σ�) − 1 − g(σ�)

σ� − 1

)
, (15)

with the function

g(σ�) =
{

1√
1−σ�

tanh−1(
√

1 − σ�), 0 < σ� < 1
1√

σ�−1
tan−1(

√
σ� − 1), σ� > 1,

(16)

and the dimensionless parameter σ� = U 2
� mx

Br/mBr. Parenthet-
ically, these depolarization dyadics are only defined for the
σ� > 0 regime,25 which corresponds to the γ > 0 regime for
the Tamm medium. According to the Bruggeman formalism,
the constitutive parameters of the HCM are related to those
of the component mediums by the dyadic equations23,24

Aε = 0

Aμ = 0

}
, (17)

where

Am = fa am

a
+ fb am

b
+ fc am

c
+ fd am

d
(m = ε,μ). (18)

In fact, as the diagonal dyadics Am have the form
diag(Amx,Am,Am) (m = ε,μ), the dyadic equations (17) con-
tain only four independent scalar equations, which are coupled
via the constitutive parameters for the HCM.

Conventionally, homogenization formalisms are applied in
the forward sense, wherein the constitutive parameters of the
HCM are estimated from a knowledge of the constitutive
parameters of the component mediums. However, since our
aim here is to find values of εa,b, μc,d , fa,b,c, and Ua,b,c,d

such that the corresponding HCM coincides with the Tamm
medium specified by the constitutive relations (7), we apply
the Bruggeman formalism in its inverse sense. While formal
expressions of the inverse Bruggeman formalism have been
developed,27 these formal expressions can be ill-defined.28

In practice, it is more convenient to exploit direct numerical
methods in order to implement the inverse formalism.29 Note
that certain constitutive parameter regimes have been found
to be problematic for the inverse Bruggeman homogenization
formalism,30 but these regimes do not overlap with the regimes
considered here.

The following three distinct applications of the inverse
Bruggeman formalism are considered, and illustrated using
numerical examples in the next section. In each application,
there are four scalar parameters to be determined.

(i) Assuming that the relative permittivities εa,b and rela-
tive permeabilities μc,d are known, and that Ua = Ub = Uc =
Ud = U , we determine the common shape parameter U and
the volume fractions fa , fb, and fc.

(ii) Assuming that the relative permittivities εa,b and rel-
ative permeabilities μc,d are known, and that the volume
fractions fa,b,c are fixed, we determine the shape parameters
Ua , Ub, Uc, and Ud .

(iii) Assuming that the shape parameters Ua,b,c,d and the
volume fractions fa,b,c are fixed, we determine the relative
permittivities εa,b and relative permeabilities μc,d .
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As a representative example, let us concentrate on the
numerical implementation of application (i)—the numerical
implementations for applications (ii) and (iii) are analogous.
A modified Newton-Raphson technique31,32 may be imple-
mented to extract the volume fractions fa,b,c and common
shape factor U from Eqs. (17). The solutions at step k + 1,
namely, {U (k+1),f (k+1)

a , f
(k+1)
b , f (k+1)

c }, are derived from those
at step k, namely, {U (k),f (k)

a , f
(k)
b , f (k)

c }, via the recursive
scheme

U (k+1) = U (k) − Aεx (U (k),f
(k)
a , f

(k)
b , f

(k)
c )

∂
∂U

Aεx (U (k),f
(k)
a , f

(k)
b , f

(k)
c )

f (k+1)
a = f (k)

a − Aε (U (k+1),f
(k)
a , f

(k)
b , f

(k)
c )

∂
∂fa

Aε (U (k+1),f
(k)
a , f

(k)
b , f

(k)
c )

f
(k+1)
b = f

(k)
b − Aμx (U (k+1),f

(k+1)
a , f

(k)
b , f

(k)
c )

∂
∂fb

Aμx (U (k+1),f
(k+1)
a , f

(k)
b , f

(k)
c )

f (k+1)
c = f (k)

c − Aμ(U (k+1),f
(k+1)
a , f

(k+1)
b , f

(k)
c )

∂
∂fc

Aμ(U (k+1),f
(k+1)
a , f

(k+1)
b , f

(k)
c )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (19)

wherein the components of the dyadics Aε,μ are expressed as
functions of the unknown parameters {U,fa, fb, fc}.

For convergence of the scheme (19), it is vital that the initial
estimates {U (0),f (0)

a , f
(0)
b , f (0)

c } are chosen to be sufficiently
close to the true solution. The forward Bruggeman formalism
can be utilized in order to generate suitable initial estimates,
as we now outline. Let {ε̆x

Br,ε̆Br,μ̆
x
Br,μ̆Br} denote the forward

Bruggeman estimates of the HCM’s relative permittivity and
relative permeability parameters, computed for physically
reasonable ranges of the parameters U and fa,b,c, namely,
U ∈ (U+,U−) and fa,b,c ∈ (f +

a,b,c,f
−
a,b,c). Then we have the

following :
(1) Fix fa = (f −

a + f +
a )/2, fb = (f −

b + f +
b )/2, and fc =

(f −
c + f +

c )/2. For all values of U ∈ (U−,U+), find the value
U † for which the quantity

� =
[ (

ε̆x
Br − 1

)2 +
(

ε̆Br − γ

γ

)2

+ (
μ̆x

Br − 1
)2 +

(
μ̆Br − γ

γ

)2 ]1/2

(20)

is minimized.
(2) Fix U = U †, fb = (f −

b + f +
b )/2, and fc = (f −

c +
f +

c )/2. For all values of fa ∈ (f −
a ,f +

a ), find the value f
†
a for

which � is minimized.
(3) Fix U = U †, fa = f

†
a , and fc = (f −

c + f +
c )/2. For all

values of fb ∈ (f −
b ,f +

b ), find the value f
†
b for which � is

minimized.
(4) Fix U = U †, fa = f

†
a , and fb = f

†
b . For all values of

fc ∈ (f −
c ,f +

c ), find the value f
†
c for which � is minimized.

Steps (1)–(4) are repeated, using f
†
a , f †

b , and f
†
c as the fixed

values of fa,b,c in step (i), f †
b and f

†
c as the fixed values of fb,c

in step (ii), and f
†
c as the fixed value of fc in step (iii), until �

becomes sufficiently small.
In our numerical studies, we found that when � < 0.01,

the values of U †, f
†
a , f

†
b , and f

†
c provide suitable initial

estimates for the modified Newton-Raphson scheme (19). In
fact, we found that this technique of iteratively scanning the
space of possible solutions could itself be used to find the
inverse Bruggeman solutions, in some cases with a faster rate

εa 2, εb 0.1, μc 1.8, μd 0.2
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0.30
0.35
0.40
0.45
0.50

γ

f a
,b
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0.0
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γ

f a
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U

FIG. 3. (Color online) The common shape parameter U (thick
solid, red) and volume fractions fa (dashed, green), fb (broken
dashed, blue), and fc (thin solid, blue) plotted vs γ . The relative
permittivities εa = 2, εb = 0.1 and relative permeabilities μc = 1.8,
μd = 0.2 for 0.8 < γ < 0.9 (upper); and εa = 8, εb = 0.3, μc = 7.4,
μd = 0.4 for 1 < γ < 2.9 (lower).

of convergence than the Newton-Raphson method and in a
manner that is less sensitive to the initial estimates.

IV. NUMERICAL ILLUSTRATIONS

We present numerical illustrations of the inverse homog-
enization applications (i)–(iii) described in the preceding
section. For each illustration, the parameter estimates for the
component mediums are calculated as functions of γ . The
ranges γ > 1 and 0 < γ < 1 are considered: the γ > 1 range
corresponds to Schwarzschild–de Sitter spacetime whereas the
0 < γ < 1 corresponds to both Schwarzschild–de Sitter and
Schwarzschild-anti-de Sitter spacetime, depending upon the
magnitude of �. For all the numerical results presented in
Figs. 3–5, the degree of convergence of the numerical schemes
was < 1%, and for most of the plotted points this value was
< 0.1%.

Let us begin with application (i). The common shape
parameter U and the volume fractions fa,b,c are plotted vs
γ in Fig. 3. For 0.8 < γ < 0.9 we chose εa = 2, εb = 0.1,
μc = 1.8, and μd = 0.2, while for 1 < γ < 2.9 we chose
εa = 8, εb = 0.3, μc = 7.4, and μd = 0.4. The common
shape parameter increases sharply as γ increases, for both
0.8 < γ < 0.9 and 1 < γ < 2.9 ranges, while no particularly
noteworthy trend is obvious from the volume fraction plots.

In Fig. 4, the shape parameters Ua,b,c,d are presented as
functions of γ for application (ii). For 0.795 < γ < 0.805
we chose εa = 2, εb = 0.1, μc = 1.8, and μd = 0.2 (as we
chose for Fig. 3 for 0.8 < γ < 0.9) and fa,b = 0.21, fc = 0.3,
while for 1.9 < γ < 2.2 we chose εa = 8, εb = 0.3, μc = 7.4,

and μd = 0.4 (as we chose for Fig. 3 for 1 < γ < 2.9) and
fa,b,c = 0.25. We see that Ua,c decrease sharply as γ increases
for 0.795 < γ < 0.805, but increase sharply as γ increases for
1.9 < γ < 2.2; the opposite trend is exhibited by Ub,d .
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εa 2, εb 0.1, μc 1.8, μd 0.2
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FIG. 4. (Color online) The shape parameters Ua (thick solid, red),
Ub (dashed, green), Uc (broken dashed, blue), and Ud (thin solid, blue)
plotted vs γ . The relative permittivities εa = 2, εb = 0.1 and relative
permeabilities μc = 1.8, μd = 0.2 and volume fractions fa = 0.21,
fb = 0.21, and fc = 0.3 for 0.795 < γ < 0.805 (upper); and εa = 8,
εb = 0.3, μc = 7.4, μd = 0.4, and fa,b,c,d = 0.25 for 1.9 < γ < 2.2
(lower).

Finally, for application (iii), plots of the relative permit-
tivities εa,b and relative permeabilities μc,d against γ are
provided in Fig. 5. For 0.7 < γ < 1 we chose the common
shape parameter U ≡ Ua,b,c,d = 0.01 and the common volume
fraction fa,b,c = 0.25, while for 1.1 < γ < 2.9 we chose the
common shape parameter U ≡ Ua,b,c,d = 5 and the common
volume fraction fa,b,c = 0.25. For both 0.7 < γ < 1 and
1.1 < γ < 2.9 we found that the numerical schemes provide
values of εa and μc that are almost the same, and values of εb

and μd that are almost the same.
We close this section by remarking that the relative

permittivities and relative permeabilities featured in Figs. 3–5
are neither unreasonably high nor unreasonably low from a
physical perspective. Indeed, as regards the smallest values of
εa,b,c,d and μa,b,c,d featured in Figs. 3–5, we note that materials
with relative permittivities and relative permeabilities close to
zero are currently subjects of intense investigation.33–35

V. CLOSING REMARKS

By the homogenization of simple arrangements of
four simple component mediums, the Tamm medium for
Schwarzschild-(anti-)de Sitter spacetime may be constructed.
The simplicity of this construction is especially noteworthy in
view of the complex nanostructures that characterize many
metamaterials designed for cloaking or negative refraction
applications,1 for example. A wide range of constitutive
parameter values for the Tamm medium can be accessed
through varying the particle shape, volume fraction, or relative
permittivity and relative permeability of the component medi-
ums. Thus, the inverse homogenization formulation delivers
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FIG. 5. (Color online) The relative permittivities εa (thick solid,
red), εb (dashed, green) and relative permeabilities μc (broken dashed,
blue), μd (thin solid, blue) plotted vs γ . The shape parameter U =
Ua,b,c,d = 0.01 and volume fractions fa,b,c = 0.25 for 0.7 < γ < 1
(upper); and U = Ua,b,c,d = 5 and fa,b,c = 0.25 for 1.1 < γ < 2.9
(lower).

a practical strategy for designing an experimental analog for
Schwarzschild-(anti-)de Sitter spacetime.

While the inverse homogenization scenario chosen for
presentation here was based on four component mediums,
this formulation is not unique. Indeed, fewer component
mediums may be used. For example, the Tamm medium for
Schwarzschild-(anti-)de Sitter spacetime could similarly be
conceptualized as arising from the homogenization of two
component mediums, both being isotropic dielectric-magnetic
mediums distributed as oriented spheroids. Alternatively,
two component mediums that were both uniaxial dielectric-
magnetic mediums (with parallel symmetry axes) distributed
as spherical particles could have been used. However, the
four-component formulation presented herein incorporates
very simple components, and accordingly offers a very large
degree of freedom in choosing constitutive parameters.

Lastly, let us comment on the restriction of the inverse
homogenization approach to those regions of spacetime that
lie outside the event horizon for Schwarzschild spacetime
and inside the cosmological horizon for de Sitter spacetime
(there being no such restrictions for anti–de Sitter spacetime).
Equivalently, only Tamm mediums with positive-definite
relative permittivity and relative permeability dyadics can
be realized using this approach. The constitutive dyadics
for the Tamm medium representing Schwarzschild-(anti-)de
Sitter spacetime cannot possibly be negative definite but,
as illustrated in Figs. 1 and 2, the indefinite scenario can
arise (except in the case of anti–de Sitter spacetime). In
principle, metamaterials with indefinite constitutive dyadics
could be harnessed to construct a Tamm medium for the
γ < 0 regime. Indeed, experimental studies of anisotropic
dielectric36 and anisotropic magnetic37,38 metamaterials with
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indefinite constitutive dyadics have already been reported.
However, there are likely to be major practical difficulties
in using such metamaterials to construct a γ < 0 Tamm
medium: First, not only are the relative permittivity dyadic
and the relative permeability dyadic both required to be
indefinite (since the Tamm medium is an anisotropic dielectric-
magnetic medium), but these two dyadics are also required
to be identical. Second, the metamaterials should be ap-
proximately nondissipative in order to faithfully represent
the Tamm medium, but dissipation has proved to be a se-
vere hindrance for many metamaterials. Finally, conventional
depolarization-dyadic-based homogenization techniques (as
typified by the Bruggeman formalism) cannot be used to

realize such metamaterials as nondissipative HCM’s, since
the indefinite nature of the constitutive dyadics renders the
depolarization dyadics undefined.25 This difficulty could be
sidestepped by the incorporation of a small amount of
dissipation,39 but at the cost of compromising the extent
to which the resulting HCM represents the desired Tamm
medium.
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(1997); 52, 310 (1998).
27W. S. Weiglhofer, Microw. Opt. Technol. Lett. 28, 421 (2001).
28E. Cherkaev, Inverse Probl. 17, 1203 (2001).
29T. G. Mackay and A. Lakhtakia, J. Nanophotonics 4, 041535 (2010).
30S. S. Jamaian and T. G. Mackay, J. Nanophotonics 4, 043510 (2010).
31P. A. Stark, Introduction to Numerical Methods (Macmillan,

New York, 1970).
32R. D. Kampia and A. Lakhtakia, J. Phys. D: Appl. Phys. 25, 1390

(1992).
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