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Inhomogeneous magnetic catalysis on graphene’s honeycomb lattice
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We investigate the ordering instability of interacting (and for simplicity, spinless) fermions on graphene’s
honeycomb lattice by numerically computing the Hartree self-consistent solution for the charge-density-wave
order parameter in the presence of both uniform and nonuniform magnetic fields. For a uniform field the overall
behavior of the order parameter is found to be in accord with the continuum theory. In the inhomogeneous case, the
spatial profile of the order parameter resembles qualitatively the form of the magnetic field itself, at least when the
interaction is not overly strong. We find that right at the zero-field critical point of the infinite system the local order
parameter scales as the square root of the local strength of the magnetic field, apparently independently of the as-
sumed field’s profile. The finite-size effects on various parameters of interest, such as the critical interaction and the
universal amplitude ratio of the interaction-induced gap to the Landau level energy at criticality, are also addressed.
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I. INTRODUCTION

Graphene has since its successful fabrication1 emerged as
the prime electronic system of reduced dimensionality. Its
structure can be described as two interpenetrating triangular
sublattices of carbon atoms, which together form a bipartite
honeycomb lattice. As a consequence of the lack of inversion
symmetry around a site of honeycomb lattice, the valence and
the conduction bands touch each other at the six corners of
the first Brillouin zone. At low energies, one can linearize
the electronic dispersion relation near those “Dirac” points. In
particular, at the filling one-half when the conduction band is
empty and the valence band is filled, gapless quasiparticle exci-
tations live in the vicinity of the Dirac points. In the continuum
limit, such excitations can then be described in terms of pseu-
dorelativistic massless Dirac fermions, with the Fermi velocity
vF (≈c/300) playing the role of the velocity of light (c).2

In its usual state graphene behaves like a semimetal.
A large overlap of the electronic wave functions of the
neighboring carbon atoms (t ∼ 2.5 eV) protects such a phase
against weak electron-electron interactions. In the language
of renormalization group, such a stability corresponds to a
large domain of attraction of the noninteracting Gaussian
fixed point.3 On the other hand, a strong enough interaction
can bring on a Mott-Hubbard transition toward a gapped
insulating phase.4,5 For example, a sufficiently strong on-
site Hubbard interaction (U ) or nearest-neighbor Coulomb
repulsion (V ) would turn the system into an insulator with
the staggered pattern of either average magnetization or
density. For graphene,6 U ∼ 10 eV, V ∼ 2–5 eV, whereas the
critical values for insulation are Uc/t ≈ 4–5,7,8 and Vc/t ≈ 1.9

It appears that graphene lies safely on the semimetallic
side of possible Mott transitions, but with the interactions,
which are nevertheless not too far from their critical values.
Currently, the interaction-to-bandwidth ratios that control the
Mott transitions in graphene are not easily tunable. However,
subjecting the system to a finite magnetic flux quenches the
kinetic energy and collapses the density of states (DOS)
onto a discrete set of Landau levels (LLs), and can this way
“catalyze” the formation of ordered phases.10 In the presence
of a magnetic field even an infinitesimal amount of the on-site
Hubbard U or the nearest-neighbor repulsion V would turn

the system at half filling into an ordered phase with either
finite Néel order or staggered density.11,12 Yet another, and
a qualitatively different, insulator13 may result from a strong
next-nearest-neighbor repulsion, which can induce a gapped
phase with finite circulating currents between the sites on the
same sublattice.14 Such a phase, in the spinless case, violates
the time-reversal symmetry and represents an early example
of a topological insulator. The same topological insulator may
also be possible to catalyze by a fictitious magnetic field15

that would arise from specific deformations of the graphene
sheet,16,17 for example.

The magnetic catalysis in the presence of uniform magnetic
field is by now well understood. It has been proposed as
a mechanism behind the formation of the Hall states in
graphene at filling factors ν = 0 and ν = 1,12,18 which become
discernible at higher magnetic fields.19 Sublinear scaling of the
gap with the magnetic field, for example, strongly suggests that
the electron-electron interactions are the cause of the gap at
ν = 1.20,21 In contrast, the behavior of interacting electrons
in the presence of an inhomogeneous magnetic field has not
been studied much, although the issue of the order parameter’s
dependence on the local value of the magnetic field has
been addressed analytically, for specific spatial profiles of the
field.22,23 In this work we attempt to develop a more detailed
understanding of the spatial variation and the field dependence
of the order parameter when an inhomogeneous magnetic field
penetrates through the system. The motivation for such a study
comes in part from a closely related problem of interacting
electrons in a pseudomagnetic field,15,16 where a field’s profile
is typically nonuniform in space. On a methodological level,
it seems also interesting to inquire how much of the catalysis
mechanism remains in effect when the condition of uniformity
of the magnetic field is relaxed.

A self-consistent profile of the local gap in the insulat-
ing phase is computed therefore numerically on a discrete
lattice and at the level of Hartree approximation, with a
special attention given to its spatial variation. We find
that the system stills suffers a metal-insulator transition at
weak nearest-neighbor interactions even in the presence of
an inhomogeneous magnetic field. In the continuum, this
phenomenon would be attributed to the δ-function density
of states when the Fermi energy is at the Dirac point.24
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Interestingly, we find that the spatial profile of the interaction-
induced gap (order parameter) in the presence of a localized
magnetic flux, although not matching exactly, still mimics
closely the profile of the local strength of the magnetic field.
Moreover, right at the zero-field metal-insulator quantum
criticality, the local order parameter seems to vary very much
like the square root of the local magnetic field. This behavior
is analogous to what we previously found analytically in a
uniform magnetic field,21 and to what we also confirm here
numerically (see below). Away from the critical point, at weak
interactions the expectation value of the local order parameter
reverts to a linear dependence of the local magnetic field, as
one might expect.

For a uniform magnetic field, we in general find a very
good agreement between the previous field-theoretic results
and our numerical calculations. We focus on the finite-ranged
components of the Coulomb repulsion, and choose to keep only
the simplest one, which acts between the nearest neighbors.
The system at the filling one-half and in the magnetic field
then develops a gap in the spectrum, even when the interaction
is weak. Right at the metal-insulator quantum critical point the
gap behaves as

m = E(1)

C
, (1)

where E(n) is the nth LL energy. Here C is the universal
number, found to be 6.1 in the largest system considered here,
within the the Hartree approximation. This is in satisfactory
agreement with the same quantity computed previously in the
field-theoretic description,21 where we found it to be 5.985,
in the limit of infinite number of fermion components. These
two procedures being equivalent, we indeed find that upon
increasing the system’s size the constant C slowly approaches
its value in the continuum.

The rest of the discussion is organized as follows. The
system of free electrons on honeycomb lattice in the presence
of magnetic field is introduced in Sec. II. The Hartree
mean-field theory of the electrons interacting via the nearest-
neighbor repulsion is outlined in Sec. III. In that section we also
demonstrate the mechanism of magnetic catalysis in a finite-
size system. Section IV focuses on the scaling behavior of
the gap with the strength of the uniform magnetic field and the
interaction. Section V is devoted to the spatial variation of the
gap in the presence of nonuniform magnetic field. In Sec. VI,
we summarize the results and discuss some related issues.

II. FREE FERMIONS

Let us define the system of noninteracting electrons on
honeycomb lattice in the presence of a uniform magnetic
field. The tight-binding model with nearest-neighbor hopping
is defined as

Ht = −t
∑

A,i

c
†
AcA+bi

+ H.c., (2)

where c and c† are the usual fermionic annihilation and creation
operators, respectively. Here we omitted the spin degrees of
freedom, for simplicity. �A denotes the sublattice generated
by the linear combination of basis vectors �a1 = (

√
3, − 1)a

and �a2 = (0,1)a, for example. The second sublattice is then
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FIG. 1. Brickwall realization of honeycomb lattice. Here the
magnetic flux of α�0 pierces through each hexagon, corresponding
to a uniform magnetic field through the system. This particular
choice of gauge is equivalent to the Landau gauge A = (−By,0)
in the continuum description. This construction is straightforward to
generalize to an inhomogeneous magnetic field.

at �B = �A + �b, with �b being either �b1 = (1/
√

3,1)a/2,�b2

= (1/
√

3, − 1)a/2, or �b3 = (−1/
√

3,0)a, where a is the
lattice spacing. The magnetic field may be introduced through
the Peierls substitution t → te(i2πe/h)

∫ �A·d�l , where h/e = �0 is
the usual flux quantum, and (1/�0)

∫ �A · d�l = �/�0

counts the magnetic flux through each plaquette
of the honeycomb lattice. In the case of graphene,
�0 corresponds to a magnetic field ∼104 T, with
commonly assumed lattice constant, a ≈ 3 Å.
Such a high magnetic field corresponds to the magnetic
length close to the lattice scale, B0 ∼ 1/a2. Therefore �/�0

is equivalent to B/B0, where B/B0 = 0.05 corresponds to
B = 500 T. In Fig. 1 we have shown one way to introduce
a uniform magnetic field on honeycomb lattice. By solving
numerically the tight-binding model on a 80 × 65 lattice with
periodic boundary in the x direction and the field B = 160 T,
we clearly see the first few (5) LLs as the well-separated
energies where the DOS is sharply peaked (black curve in
Fig. 2). The energy spectrum is symmetric about zero and
the spacing among the LLs decreases with the LL index. The
energy of the LLs varies as the square root of the magnetic
field, due to the relativistic nature of the quasiparticles (top
curve in Fig. 3). We also found that the maximum energy of
the free electron system is 2.97t(< 3t), in agreement with
the previous results.25 It may be worth mentioning that in the
presence of the periodic boundary conditions the choice of
gauge requires some care, and A(�r) is chosen here so that only
one out of the three bonds emanating from a site contributes
to it. Such a choice is then equivalent to the Landau gauge in
the continuum description.

Next, we consider still noninteracting electrons on the
honeycomb lattice, but now subject to an inhomogeneous
magnetic field. Numerically diagonalizing the free-electron
Hamiltonian, the DOS is found to be a smooth function of
energy, and peaked only at the zero energy (red curve in Fig. 2).
There we considered a 70 × 55 lattice, with an open boundary
and total flux �total = 4.59�0. We assumed the field to be
uniform in the x direction, and bell-shaped in the y direction,
with the maximum at the center. The number of near zero
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FIG. 2. (Color online) DOS as a function of energy in presence
of uniform (black) and nonuniform [red (gray)] magnetic field. First
five LLs are well formed in the case of a uniform magnetic field. In
contrast, the DOS is sharply peaked only at zero energy in presence
of an inhomogeneous magnetic field.

energy states is proportional to the total flux of the magnetic
field enclosed by the system.24 The maximum energy in the
free-electron spectrum is found to be 2.93t(<3t).

III. INTERACTIONS AND MAGNETIC CATALYSIS

Next, we turn on the short-range electron-electron inter-
action. The Hamiltonian in the presence of only the nearest-
neighbor Coulomb repulsion (V ) is given by

H = Ht + V

2

∑

〈i,j〉
ninj − μN, (3)

where 〈i,j 〉 stands for the summation over the nearest-neighbor
sites, N is the total number of electrons, and μ is the chemical
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FIG. 3. (Color online) Top curve corresponds to the first LL
energies at various magnetic fields B (measured in the unit of B0)
in a finite lattice. The energy spectrum is computed in a system of
40 × 31 points with a periodic boundary in x direction. The bottom
one shows the interaction induced gap, as a function of magnetic
field at the zero-field metal-insulator critical point V/t = 0.75, in the
same system. The red dots correspond to the OPs for the uniform field,
whereas the blue ones correspond to that in an inhomogeneous field,
at different regions in the bulk of the system. Inset shows the variation
of the universal ratio (C) relative to its field-theoretic value (5.985)
with the system size. Here L corresponds to the ratio of system size
to the maximum one. The largest lattice considered here has 40 × 31
lattice points.

potential. After the usual Hartree decomposition the effective
single-particle Hamiltonian for interacting electrons becomes

HHF = Ht + V
∑

〈i,j〉
(〈nB,j 〉nA,i + 〈nA,j 〉nB,i) − μN, (4)

where 〈nB(A)〉 counts the self-consistent site-dependent aver-
age electron density on sub-lattice B (A). Let us measure these
relative to the uniform density at half filling by defining

〈nA,i〉 = 1
2 + δA,i, 〈nB,i〉 = 1

2 − δB,i . (5)

The positive quantities δA,δB determine the local charge-
density-wave order parameter (OP). Both δA and δB will be
functions of position with the constraint that the system is
precisely at half filling,

∑

i

δA,i −
∑

i

δB,i = 0. (6)

We also choose the value of μ = V/2.
We have computed the (Hartree) self-consistent solutions

for the OPs, for different values of the flux and for a variety of
interaction strengths (V/t), at T = 0. Consider a lattice with
a periodic boundary in the x direction and let us conveniently
define the local OP as

δR = 1
2 (δA + δB), (7)

where B is either one of the two nearest neighbors to site A,
on the same row in the x direction. δR this way measures the
order parameter in a unit cell. On the other hand, the OP will be
averaged over the points connected by the C6 symmetry, when
we considered a quasicircular system with an open boundary.
In the presence of a uniform magnetic field, δR is found to
be uniform in the bulk of the system. However, δR becomes
position dependent and proportional to the local field when the
system is subject to an inhomogeneous field.

Before we proceed, it is worth pausing to establish a
practical definition of the “critical interaction” associated with
the metal-insulator transition in the finite-size system like ours.
For a sufficiently strong nearest-neighbor interaction, fermions
reside only on one sublattice, with the other one completely
empty. The system is then deep in the insulating phase. As
the interaction is weakened, the size of the order parameter
decreases and we numerically find the system to go through a
well-defined transition into the semimetallic phase, where the
order parameters δA,δB are zero in the entire system. Right
above that particular interaction (V/t) which we call critical,
there is a finite, but slightly inhomogeneous, staggered density
everywhere in the system. We will designate that value as
the critical interaction (V/t)C corresponding to the metal-
insulator transition. The described scenario is quite generic
and occurs both in the absence and presence of magnetic fields,
which also may be either uniform or nonuniform. The observed
nonanalytic behavior in a finite system, however, is clearly an
artifact of the Hartree approximation, i.e., of the requirement
of the self-consistency of the solution.

We computed the variation of the critical interaction
defined this way with the lattice size and the geometry, for
a particular magnetic flux �/�0 = 0.05 (B = 500 T) through
each plaquette of the lattice. As may be seen from Fig. 4,
for a small system size the critical interaction is large even
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FIG. 4. The variation of finite-size “critical interaction” (V/t)C
(see the text) as a function of the lattice size. 	 and � stand for
(V/t)C in a cylindrical lattice with open boundary in different gauges
A = (0,Bx) and A = (−By,0), respectively. © stands for (V/t)C
in a lattice with open boundary, preserving the C6 symmetry of the
honeycomb lattice, with A = (0,Bx). Here the critical interactions
are computed for �/�0 = 0.05. Inset shows the variation of the size
of the order parameter (δR) as a function of V/t , in the entire system,
computed on a 36 × 25 lattice. V/t reads as 0.5,0.4,0.3,0.2,0.1,0.05
from top to bottom.

in the presence of a magnetic field, and also depends on
the geometry of the lattice, as well as on the choice of the
gauge. Upon increasing the size of the system, the value of the
critical interaction decreases and appears to approach zero
in the thermodynamic limit, in agreement with the results
obtained in the continuum theory. A typical distribution of the
OP in a lattice with periodic boundary is shown in the inset of
Fig. 4. From that one can conclude that upon decreasing (V/t),
the size of the order parameter decreases in the entire system,
both in the bulk and at the edge. However, a finite gap in the
spectrum exists even at a rather weak interaction, V/t = 0.05
(bottom curve). Hence in the presence of a uniform magnetic
field, we expect that a large system would find itself in a gapped
insulating phase even at an infinitesimal interaction, as found
in the continuum theory.

On the other hand, when the system is exposed to a localized
flux of magnetic field the OP develops a local expectation
value (see Fig. 5). The local OP is found to be proportional to
the local magnetic field. As one enters the regime of weaker
interaction the OP decreases both in the bulk and the edge of the
system. Yet we managed to observe a finite expectation value
of the OP in the entire system even at the smallest interaction
considered here, V/t = 0.01. Therefore the system can also
find itself in an ordered phase at weak interaction when an
inhomogeneous flux of the magnetic field pierces through it.
This phenomenon can be attributed to the finite density of
states at zero energy, where the chemical potential lies at the
filling one-half.

Besides the condensation in the bulk of the system, the OP
acquires spikes near the edges of the system, in the presence
of both uniform (inset of Fig. 4) and nonuniform (Fig. 5)
field. The spikes in the OP near the edge of the system
arise from the finite-size effect. Such edge effects die out as
one increases the system size. Moreover, with the increasing
magnetic field, those spikes also dissolve and give rise to a
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FIG. 5. Spatial distribution of the order parameter in the presence
of a localized flux of magnetic field, with total flux �total = 5.6�0.
The top curve corresponds to V/t = 0.76 and the rest read as V/t =
0.65,0.55,0.5,0.4,0.3,0.2,0.1,0.05,0.01 from top to bottom.

uniform condensation throughout the system, at sufficiently
large magnetic field. These effects on the OP are demonstrated
in Fig. 6. We exhibited the finite-size effects in the presence
of a uniform flux only, but the result is qualitatively the same
in the presence of a localized flux as well.

IV. SCALING IN UNIFORM MAGNETIC FIELD

We now investigate the dependence of the gap on the
magnetic field (B) and the interaction (V/t). First we take
the field to be uniform, and still consider the lattice with
the periodic boundary in the x direction. The functional
dependence of δR , defined in Eq. (7), on the magnetic fields
and interactions is shown in Fig. 7. Here, δR is computed on
a 36 × 25 lattice and we considered OP only in the bulk of
the system. With the parametrization as in Sec. II, the lowest
value of the magnetic field (160 T), considered here, is about
four times larger than the current highest constant laboratory
magnetic field. However, upon using a larger system one can
get down to a more realistic strength of the field.

For sufficiently small interactions, the order parameter (δR

or m) varies almost linearly with B/B0 (bottom curve in
Fig. 7). As one increases the strength of interaction, there is a
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FIG. 6. (Color online) Difference of the masses at the edge (mE)
and in the bulk (mB ) as a function of the magnetic field (B/Bmax) in
a 36 × 25 lattice, at V/t = 0.5. Inset: same quantity as a function of
system size (L), at fixed magnetic field B/B0 = 0.028, at V/t = 0.76.
Here Bmax = 490T and Lmax = 40 × 31.
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FIG. 7. (Color online) OP (δR or m) as a function of �/�0 or
B/B0 at different V/t . The top points corresponds to V/t = 0.8
and the remaining ones to V/t = 0.78,0.76,0.75,0.74,0.72,0.7,0.6,

0.55,0.5,0.4,0.3,0.2,0.1 from top to bottom. For V/t = 0.75 we
found the best

√
B fit of the mass with magnetic field.

crossover to a sublinear dependence of the mass (m) on B.21

In particular, right at V/t = 0.75, we find the best overall
√

B

fit of the mass to the magnetic field. We therefore designate
that interaction to be the critical interaction (V/t)C at B = 0.
When we computed the ratio of the first LL energy to the
interaction induced gap (m) at V/t = 0.75, it came out to be
a universal number (C) ≈ 6.21, independent of the magnetic
field B (inset Fig. 3). The value of the number is in satisfactory
agreement with the same quantity previously calculated in
the continuum description and in the large-N limit.21 There
we obtained C = 5.985, with the difference between the two
values that can be attributed to the finite size (inset of Fig. 3).

We also found a similar dependence of the mass on
interactions and magnetic fields, computed on a quasicircular
lattice with open boundary, preserving the C6 symmetry of a
hexagon. A spatial variation of the interaction induced gap in
the presence of a uniform magnetic field is shown in Fig. 8
(black curves). In that case, we found the ratio of the first LL
energy to the interaction induced gap (C) to be 6.29, in a system
of 384 lattice points. Such a particular choice of lattice turns
out to be useful when one imposes rotationally symmetric
inhomogeneous magnetic field. By considering a graphene
sheet with open boundary, we computed the OP in two different
gauges, equivalent to A = (0,Bx) and A = (−By,0), and it
turned out to be gauge independent, as expected.

V. INTERACTING FERMIONS IN INHOMOGENEOUS
FIELD

Next, we consider spinless interacting fermions on a
honeycomb lattice subject to an inhomogeneous magnetic field
in more detail. It was previously shown that, for a specific
realization of the inhomogeneous magnetic field and in the
limit of a large magnetic flux, the order parameter in the
insulating phase computed within the zero-energy manifold
matches exactly the local profile of the magnetic field.22 Here
we determine the order parameter self-consistently (at T = 0)
and on the honeycomb lattice, and include the contributions
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FIG. 8. (Color online) Normalized OP in presence of a uniform
(black) and a non-uniform (red) magnetic field for different values
of V/t . From top to bottom V/t reads 0.6,0.5,0.4,0.3. For the
inhomogeneous field the total flux through the system is �total =
7.1�0. The blue dots corresponds to the local strength of the
inhomogeneous magnetic field.

from all the states into account. We will consider two specific
configurations of spatially modulated magnetic field. (a)
Localized field in one direction, y in our case, but extended
in the orthogonal direction, and (b) rotationally symmetric
localized field with the maximum strength at the center. We
imposed the field of type (a) on a lattice with periodic boundary
in the x direction. On the other hand, a quasicircular lattice
with open boundary, preserving the C6 symmetry of a hexagon,
is exposed to a localized field of type (b). As mentioned
previously, even in the presence of a nonuniform field, there is a
large (and in the continuum limit, infinite) DOS at zero energy.
Therefore right at the filling one-half, one expects that even a
weak interaction can place the system into an insulating phase.

In the presence of a nonuniform field, but with a finite
total magnetic flux, the system develops a gap in the spectrum
even at subcritical interactions (V/t � (V/t)c) (Fig. 5). The
spatial variation of the order parameter (δR) in the presence
of an inhomogeneous magnetic field of type (a) is depicted
in Fig. 9. We considered the OP only far from the edges of
the system, and normalized the OP as well as the magnetic
fields with respect to their maximum values at the center of
the system. The order parameter appears to follow the spatial
profile of the magnetic field, and to depend on its local strength
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FIG. 9. (Color online) Normalized OP in presence of in-
homogeneous magnetic field at �total = 9.86�0. Average mag-
netic field at different rows is denoted by the dots. V/t reads
0.75,0.65,0.55,0.5,0.4,0.3,0.2,0.1,0.05,0.01 from top to bottom.
The blue dots corresponds to the local strength of the inhomogeneous
magnetic field.
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FIG. 10. (Color online) The scaling of the local OP with local
magnetic field (measured in the unit of B0) at V/t = 0.05 at various
values of the total flux. Red, black, and blue dots correspond to
�total = 5.86�0,10.14�0, and 14.6�0, respectively. Different dots
of the same color signify local OP at various position in the bulk.

for V/t < (V/t)c. Near the zero-field criticality the profile
of the OP follows the magnetic fields more closely, whereas
at large interactions the effect of inhomogeneous magnetic
field becomes irrelevant, leading to uniform condensation. In
Fig. 8 (red curves), we exhibited the spatial distribution of the
OP in presence of a nonuniform magnetic field, applied on
a lattice that preserves the C6 symmetry of a hexagon. Our
computation yields an interaction induced OP as a function
of space qualitatively similar to the assumed profile of the
magnetic field itself.

Let us now turn to functional dependence of the OP on
the magnetic field and interaction, when the former is space
dependent. At sufficiently weak interactions, the size of the
gap at different regions of the bulk of the system varies almost
precisely linearly with the local strength of magnetic field. The
linear dependence of the local OP at V/t = 0.05(� (V/t)c)
with the local magnetic field is shown in Fig. 10. As the
interaction is increased there is a crossover to a sublinear
dependence of the mass on the local magnetic field. The
situation is quite similar to the one in the presence of a uniform
field. Right at the zero-field criticality (V/t = 0.75), the local
OPs in the entire bulk of the system varies as

√
B, independent

of the position (blue dots in Fig. 3). This suggests that the OP
in the insulating phase may be a universal function of the local
magnetic field, independent of its spatial distribution.

VI. SUMMARY AND DISCUSSION

In the present work we systematically studied magnetic
catalysis for the spinless interacting electrons on a honeycomb
lattice of finite extension, both for uniform and spatially

modulated magnetic fields. In the presence of the magnetic
field, either uniform or nonuniform, the semimetal-insulator
transition takes place at weak interaction in a large system. We
here considered only the nearest-neighbor component (V ) of
the Coulomb interaction, and omitted its long-ranged (∼1/r)
tail4,26 for simplicity. We computed the self-consistent Hartree
solution of the interaction-induced gap while keeping the
system at the filling one-half and presented a scaling behavior
of the interaction-induced order parameter [or a gap (m)]
with the magnetic field and interaction, at T = 0. At weak
interaction we observed a linear variation of the interaction
induced local OP with the local magnetic field. With increase
in the strength of the interaction we find a crossover from linear
to a sublinear dependence of the mass on the local magnetic
field. A perfect

√
B dependence of the OP emerges when the

system is tuned to be precisely at the zero-field criticality,
which we identified to be at V/t = 0.75. This is close to the
value found analytically.9

In our analysis we have considered only the nearest-
neighbor hopping amplitude t , while neglecting the next-
nearest-neighbor hopping t ′, which in graphene, for example,
is finite but rather small. The main effect of a finite t ′ is
the violation of the perfect particle-hole symmetry of the
free-electron spectrum. On the basis of continuum theory we
expect, however, that the inclusion of t ′ would not change
our results in a significant way, once the chemical potential is
adjusted so that the central (formerly zero-energy) LL is half
filled. A more detailed analysis is left for future study.

If we were to restore the spin of electrons, we would need
to include a finite on-site Hubbard interaction as well. In the
absence of a magnetic field, the antiferromagnetic (AF) ground
state is energetically favored for a large on-site Hubbard inter-
action when the chemical potential is at the Dirac point.5 The
presence of a magnetic field stabilizes such ground state even
at an infinitesimal on-site interaction (U ).12,27 We therefore
expect that the system would develop a local expectation
value of the Néel order parameter when in an inhomogeneous
magnetic field, if U  V . If V  U , on the other hand,
the system would decrease the energy more by forming a
charge-density-wave order of the type we considered here. At
zero magnetic field the two quantum phase transitions belong
to distinct Gross-Neveu universality classes.28,29 A scaling
behavior in a similar model has also been studied recently
in the presence of both real and pseudomagnetic fields.30
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