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Low-temperature thermal conductances of amorphous dielectric microbridges in the diffusive
to ballistic transition
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Through a lossy acoustic-wave model we explore the effect of inelastic scattering on the low-temperature
thermal conductances of amorphous dielectric microbridges in the diffusive to ballistic transition. The model
gives not only the thermal flux as a function of geometry and temperature, but also the temperature distribution
of the internal degrees of freedom that constitute the loss, which in turn can be used for calculating noise. The
approach leads to powerful conceptual insights and provides a numerical framework for analyzing experimental
data. SixNy tends to behave ballistically at low frequencies and diffusively at high frequencies, and when
integrated over all frequency, the diffusive to ballistic transition becomes apparent at lengths of around a few
hundred microns. It is possible to include flux-dependent acoustic loss, which leads to counterintuitive thermal
behavior. A sample can behave diffusively when measured using a small temperature difference, but ballistically
when measured using a large temperature difference. There is compelling circumstantial evidence that the effects
of acoustic saturation have been seen, but not explicitly recognized, on many occasions.
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I. INTRODUCTION

The ability to micromachine amorphous dielectric materials
into components having scale sizes ranging from hundreds of
nanometers to hundreds of microns has led to a wealth of
new physics and a host of new technological opportunities.
For example, silicon nitride membranes and microbridges
are used in applications as diverse as far-infrared and x-ray
detectors for astronomy, particle detectors for dark-matter
searches, and calorimeters for low-energy surface physics.
When designing components for these applications, it is
necessary to understand how low-dimensional structures store
heat and exchange heat with their surroundings, and more
problematically the physical processes that give rise to noise.1

The aim of this paper is to consider how acoustic loss
influences the low-temperature thermal conductances of amor-
phous dielectric microbridges, in particular, to study the way
in which the thermal conductance G of a sample changes as
its length l approaches and becomes smaller than the phonon
scattering length. This range is sometimes referred to as the
diffusive to ballistic transition. The key point is that a long
sample has a conductance that scales as 1/l, whereas a short
sample has a conductance that tends to the quantum limit.2

Often, however, it is necessary to understand the behavior of
structures that are intermediate between these two extremes.
In fact, a conductor may behave diffusively over one range of
phonon energies, but ballistically over another; or diffusively
over one part of its length, but ballistically over another. A
further issue is that it is sometimes necessary to calculate
the thermal noise generated by a microbridge, which in turn
requires the temperature to be known as a function of position.
These issues become acute when developing ultra-low-noise
transition edge sensors for far-infrared space telescopes, where
conductances of less than 0.1 pW K−1 must be achieved,
and where thermal fluctuation noise determines the ultimate
sensitivity.3

Although there are many publications on the low-
temperature thermal properties of low-dimensional structures,

they concentrate on samples that are either very long or
very short compared with the scattering length.4 They also
assume that the scattering is elastic, and usually attribute it
to surface roughness.5 This approach is valid for crystalline
and polycrystalline materials, but it has been known since
the 1970s that the low-temperature bulk thermal behavior of
amorphous material is very different from that of ordered
dielectrics.6 The thermal and acoustic behavior of amorphous
materials is strongly affected by the excitation of low-energy
configurational states.7 More recently it has been observed
that the Q factors of micromechanical resonators are strongly
influenced by low-energy dissipative mechanisms, some of
which may be related to surface contamination and relaxation
processes.8 It seems inevitable, therefore, that the conduc-
tances of long amorphous microbridges must be strongly
affected, perhaps even dominated, by inelastic scattering even
when surface or grain-boundary scattering is present. Despite
the likely role of inelastic scattering we are not aware of any
publication that discusses, explicitly, the effect of acoustic
loss on the heat transport properties of low-dimensional
microbridges.

In this paper, we describe a technique for calculating
the thermal conductances of structures having significant
bulk inelastic scattering. The scattering is introduced as an
acoustic loss that can have any functional dependence on
temperature and frequency. The model gives not only the
heat flux as a function of geometry and temperature, but
also the temperature distribution of the internal degrees of
freedom that constitute the loss, which in turn can be used for
calculating noise. The model reproduces the principal features
of heat transport in low-dimensional low-temperature systems,
and provides a conceptual framework for understanding the
range of behavior seen. It is shown that the saturation of
the scattering mechanism, which is a well-known feature of
acoustic propagation in amorphous dielectrics,9 can give rise to
counterintuitive thermal behavior. Indeed, there is compelling
circumstantial evidence that the effects of saturation have been
seen, but not explicitly recognized, on many occasions.
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II. BACKGROUND CONSIDERATIONS

Heat is transported in low-dimensional insulating structures
at cryogenic temperatures by low-order vibrational modes. In
the case of amorphous dielectrics, such as low-stress SixNy ,
it is beneficial to determine the vibrational behavior through
continuum mechanics, because the acoustic phonon modes are
well defined even though the material is disordered. Usually it
is assumed that the material is perfectly elastic, and the disper-
sion relationships are found, for a structure of any shape and
composition, by solving the wave equation using a generalized
eigenvalue routine.10 Knowledge of the modal forms alone,
however, does not allow thermal conductance to be determined
apart from in the extreme ballistic limit. To determine thermal
conductance, scattering must be introduced, which can be
elastic or inelastic. In low-noise applications it is important
to distinguish between elastic and inelastic scattering, because
elastic scattering does not contribute thermal noise of its
own, whereas inelastic scattering does. For example, it would
be possible to calculate the harmonic modes of a sample
with frozen-in density and edge-profile perturbations, and
the high-order eigenvalues would be reduced compared with
the defect-free case, indicating a reduced number of effective
modes, but the structure would not radiate thermal noise.

In the case of elastic scattering, various models have
been proposed to take into account surface roughness,11

inhomogeneities, and step discontinuities.12 The influence of
surface roughness is usually calculated by scattering plane-
wave basis functions, but for low-dimensional structures it
is more properly described as a longitudinal spatial variation
of the dispersion relationships. Santamore and Cross11 have
calculated the effect of surface roughness on the conductivity
of low-dimensional bars, and by assuming a certain spectral
form for the roughness correlation function were able to model
the results of Schwab.13 Schwab’s measurements were made
on a short (<1 μm) length of SixNy , and so the sample should
have been operating in the ballistic regime, where surface
roughness is likely to be dominant. It is of concern, however,
that Santamore and Cross had to invoke a certain periodicity
in the roughness correlation function in order to describe
what was seen. In a recent paper,14 the scattering problem
is approached in a different way: defects scatter energy into
acoustic modes that are cut off by the large-scale dimensions
of the sample. The resulting evanescent modes store energy
and therefore contribute to the heat capacity. This mechanism
must take place at every defect site but still constitutes an
elastic process.

In the case of inelastic scattering, the situation is more com-
plicated. Many components are fabricated using amorphous
materials such as Si, SixNy , SiO, and SiO2, which are known
to exhibit extreme non-Debye-like thermal behavior.6,15 The
observed anomalies are intimately related to the existence of
defects, such as voids, and the stoichiometry of the material,
with the incorporation of excess Si or O, or trapped hydrogen
left over from the deposition process, being significant.
Although the composition and microstructure vary markedly
from one material to another, the bulk thermal properties of
all glassy materials are remarkably similar. In particular, the
heat capacity varies approximately as T , which is believed
to indicate the excitation of low-energy configurational states,

called two level systems (TLSs).7 The dielectric properties
of amorphous materials are also influenced by the existence
of TLSs, with the relationship between the acoustic and
dielectric behaviors being dependent on the ionic content
of the material.16,17 Recent theoretical work addresses the
problem of how long-wavelength elastic modes interact with
TLSs.18,19 The low-temperature acoustic behavior of amor-
phous materials has been studied experimentally, and it is
known that amorphous materials are highly lossy at ultrasonic
and hypersonic frequencies.20 Moreover, the losses have char-
acteristics indicative of resonant absorption by configuration
states.21,22 Given that the specific heat behaves in an extreme
non-Debye-like manner, and that amorphous materials are
acoustically lossy, there is no reason to believe that the thermal
conductances of long microbridges can be described by a
lossless acoustic-wave model with elastic surface scattering. It
may be said that when the attenuation length is several times
larger than the cross-sectional dimensions, surface scattering
becomes the dominant mechanism, but there is a problem
because when the sample is much longer than the attenuation
length, acoustic loss must still play a key role, even if surface
scattering is present.

In recent years, we have measured the conductances of
hundreds of SixNy microbridges having different geometries,
at different temperatures and in different ways.23–26 Other
groups have carried out similar work.27–30 The heat flux I

through a sample having end temperatures Tc and Th can
be described to high accuracy, over restricted temperature
ranges, through an expression of the form I = k[T n

h − T n
c ],

where k and n are numerically derived parameters. It is very
difficult, however, to come up with a single physical model
that can account for all of the results across a wide range of
temperatures and geometries, because each time some aspect
of an experiment is changed, the derived parameters imply a
different regime of operation. Here are some examples:

(i) We have measured many SixNy microbridges, on
transition edge sensors, having widths in the range of 3–30 μm,
lengths in the range 100–400 μm, and thicknesses of 0.5
μm. All of the exponents are in the range n = 2.8–3.1 at
temperatures from 300 to 800 mK.23 Many of the devices
should be operating as three-dimensional (3D) conductors,
and yet the exponent is always significantly smaller than 3D
ballistic transport would suggest. The results are, however,
characteristic of the bulk behavior of amorphous materials.

(ii) Early low-temperature measurements made by a num-
ber of groups31 on SixNy show n ≈ 3.6, which is not consistent
with the expected properties of amorphous materials.

(iii) We have measured the specific heat of the SixNy used
for our own devices, and it scales linearly with temperature,24

which is characteristic of the resonant excitation of TLSs and
not at all characteristic of Debye-like behavior.

(iv) When measuring samples having widths in the range
1–4 μm, lengths in the range 150–950 μm, and thicknesses
of 0.2 μm, operating at temperatures of around 100 mK,
we find that the exponent is in the range n = 1.2–2.4,
which is characteristic of highly scattered low-dimensional
transport.26 Similar structures, however, made from the same
material, show n > 3.5 at temperatures above 1 K, implying
near-ballistic 3D transport.32
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(v) An elastic scattering mechanism having a scale length
that can cause appreciable scattering at low temperatures,
<0.1 K, can only become more significant at high temper-
atures, >0.8 K, which is similar to the problem of Santamore
and Cross.11

(vi) Using atomic force microscopy, we have measured the
surface roughnesses of samples (<10 nm) and cannot account
for the level of low-temperature scattering seen.

(vii) Notionally identical samples having a thickness of
0.5 μm show thermal conductance variations of around ±5%,
which cannot be accounted for by the variation in measured
surface roughness. Samples having a thickness of 0.2 μm show
thermal conductance variations of around ±10%, which might
suggest that surface scattering or bulk defects are influencing
behavior.

(viii) We have measured, using a differential technique, the
conductance of a sample measuring 10 μm wide, 500 μm
long, and 0.5 μm thick, and find that n = 1.8 at 270 mK,
changing smoothly to n = 3.6 at 1.5 K.32 Higher-conductance
structures on the same chip, measured using a nondifferential
technique, give n = 2.2 at 270 mK, and n = 3.6 at 1.5 K. At
low temperatures, the exponent seems to depend on the way
in which the measurement is performed.

(ix) The conductances of some samples show a reciprocal
dependence on length; but at higher temperatures, seemingly
identical structures have a different dependency. Overall, these
observations strike an accord with the comments of Cross
and Lifshitz12 who point out that the vibrational modes of
mesoscopic systems have anomalously low Q values compared
with larger systems of the same material. They also remark that
unexpected dependencies on temperature and magnetic field
have been observed and remain unexplained.

Taken together these observations suggest that heat is
transported in low-dimensional amorphous structures in more
complicated ways than models based on the surface elastic
scattering of low-order phonon modes would suggest.

III. INFINITELY LONG CONDUCTORS

To begin, it is beneficial to emphasize the relationship be-
tween the acoustic properties of a microbridge and its thermal
behavior. At low temperature, 100 mK, and high frequency,
1 GHz, the acoustic attenuation in amorphous dielectrics is
around 10 dB mm−1, rising steeply with frequency.33,34 The
width of a typical microbridge, <100 μm, is smaller then the
attenuation length, which shows that, at low frequencies, there
must be a high degree of coherence across the sample. At
high frequencies, say 100 GHz, this condition is only satisfied
for narrow bridges, <1 μm. Moreover, for a wave model to
be applicable, the attenuation length must be larger than the
wavelength. Assuming a maximum sound speed of 10 km s−1,
the attenuation per wavelength is 0.1 dB, which means that at
low frequencies phonons travel on average 100 wavelengths
before being absorbed. This rough calculation suggests that
a damped acoustic-wave model is appropriate for describing
the thermal behavior of SixNy microbridges, but it should be
recognized that a sample may behave ballistically over one
range of phonon energies, but diffusively over another.

The simplest analysis of conductance is based on a model
where wave packets travel ballistically between regions where

complete thermalization takes place, but in reality the transfer
of energy to internal degrees of freedom is a distributed
process. Represent a thermal conductor as an infinitely
long acoustic transmission line, comprising a chain of lossy
elements each of which has a power transmission factor of α,
and a length �x. The lossy elements reradiate energy in each
direction at a rate of (1 − α)Fj , where Fj is the spectral density
of the thermal flux associated with a source having temperature
Tj . It can be shown, through an iterative process, that the net
flux spectral density traveling to the right at reference plane j

is given by

qj = −(1 − α)
∞∑

k=0

αk[Fj+k+1 − Fj−k], (1)

where the first and second terms come from sources to the
left and right of plane j , respectively. Assuming that we are
only interested in the behavior of a small part of the sample,
which is how conductance is defined, then the source flux can
be expanded linearly with position, and

Fj+k+1 = F0 + (j + k + 1)�x
∂F

∂x
,

(2)

Fj−k = F0 + (j − k)�x
∂F

∂x
.

Using Eqs. (1) and (2),

q = −(1 − α)
∞∑

k=0

αk(1 + 2k)�x
∂F

∂x
. (3)

As would be expected for an infinitely long sample with
sources that depend linearly on position, the flux is independent
of position, which is a requirement of thermal equilibrium.

D’Alembert’s ratio test shows that the series converges for
α < 1. Also,

(1 − α)
∞∑

k=0

αk(1 + 2k) = (1 − α)

[ ∞∑
k=0

αk + 2
∞∑

k=0

kαk

]
.

(4)

The first term on the right-hand side (RHS) is the sum of a
geometric progression, and therefore Eq. (4) can be written

(1 − α)

[
1

1 − α
+ 2

∞∑
k=0

kαk

]
=

[
1 + α

1 − α

]
. (5)

The flux becomes

q = −
[

1 + α

1 − α

]
�x

∂F

∂x
, (6)

but this flux corresponds to a quasimonochromatic traveling
wave. Introducing the Planck function U (T ) for the thermal
sources,

U (T ) = 1

eh̄ω/kBT − 1
, (7)

and integrating over all frequencies leads to

I = − 1

2π

∫ ∞

�

h̄ω
∂U

∂x

[
1 + α

1 − α

]
�x dω, (8)

195418-3



S. WITHINGTON, D. J. GOLDIE, AND A. V. VELICHKO PHYSICAL REVIEW B 83, 195418 (2011)

where � is the cutoff frequency of the mode. Finally, for a
number of modes, and introducing the temperature gradient,

I = 1

2π

∑
m

∫ ∞

�m

h̄ω
∂U

∂T

[
1 + α

1 − α

]
�x dω

︸ ︷︷ ︸
G

(
− ∂T

∂x

)
. (9)

where α is generally a function of frequency, and depends on
mode number. We are assuming that the overall conductance
is given by the parallel combination of the conductances of
the individual modes, which need not be true. Also, we are
assuming that the reradiation is thermal, but the thermalizing
mechanism is not known. The coupling of TLSs by localized
phonon modes35 is a strong possibility.

Equation (9) is identical to the usual expression for thermal
conductance G, but with the actual scattering length replaced
by an effective scattering length

leff =
[

1 + α

1 − α

]
�x. (10)

Equation (10) takes into account that although the absorption
of power is associated with some scattering length, a fraction α

of the phonons remains unscattered after propagating through
a distance �x.

For lossy material, the power in a mode decays as η =
α(l/�x), where η is the total power transmission efficiency
of a sample of length l, and therefore l = [ln(η)/ ln(α)]�x.
For α > 0.3, to an exceedingly good approximation, which
improves as α approaches unity,[

1 + α

1 − α

]
�x ≈ −2

ln(α)
�x = −2l

ln(η)
= γ ; (11)

in the last step we have assumed that the power in a mode
decays according to η = exp(−2 l/γ ), where γ is the acoustic
attenuation length. It is clear that the scattering length that
appears in the usual expression for thermal conductance is the
distance over which the amplitude of the acoustic wave decays
to 1/e of its original value, which is reasonable because the
parameter of most physical significance is the phase coherence
length, rather than the scattering length itself. Using Eq. (11)
in Eq. (9) gives

I = 1

2π

∑
m

∫ ∞

�m

h̄ω
∂U

∂T
γ dω

︸ ︷︷ ︸
G

(
−∂T

∂x

)
. (12)

Thus, a simple lossy acoustic transmission-line model repro-
duces the classical expression for thermal conductance.

IV. FINITE-LENGTH CONDUCTORS

To understand how conductance approaches the quantum
limit, we must consider finite-length conductors. It is possible
to extend the scheme described in Sec. III to take into account
the terminations, but in this case the resulting system of linear
equations must be solved through matrix inversion. All of our
early simulations were carried out in this way. This linear
approach does not, however, allow the attenuation to be a
function of temperature, and therefore, initially, an unknown
function of position. To allow general functional dependencies,
we adopt a nonlinear approach.

Tc Th

Δx

In

α

α

Tn

0 n N + 1

FIG. 1. (Color online) Divide the conductor into N cells of length
�x: {n ∈ 1, . . . ,N}. The terminations have cold and hot temperatures
Tc and Th, corresponding to n = 0 and n = N + 1, respectively. Each
cell has a power transmission efficiency of α, which is generally a
function of temperature and frequency, α(Tn,ω), and reradiates power
with an efficiency (1 − α). The net thermal flux passing to the right
through reference plane n is In.

Divide the structure, Fig. 1, into cells of length �x, and label
the cells 1 to N. The two heat baths, 0 and N + 1, are perfectly
absorptive, and they are held at known, fixed temperatures
T0 = Tc and TN+1 = Th. At each cell, an incident acoustic
wave is transmitted with a power transmission factor of α,
and absorbed with a factor 1 − α. Each cell reradiates acoustic
energy, and the radiated wave is phase incoherent with respect
to the incoming wave. According to this model, the total flux In

traveling to the right across reference plane n is given by

In =
n∑

j=1

∑
m

1

2π

∫ ∞

�m

h̄ω U (Tj )[1 − αm(Tj ,ω)]βm
jn(ω) dω

−
N∑

j=n+1

∑
m

1

2π

∫ ∞

�m

h̄ω U (Tj )[1 − αm(Tj ,ω)]βm
n,j−1(ω) dω

+
∑
m

1

2π

∫ ∞

�m

h̄ω U (T0)βm
0n(ω) dω

−
∑
m

1

2π

∫ ∞

�m

h̄ω U (TN+1)βm
nN (ω) dω, (13)

where αm(Tj ,ω) is the acoustic power transmission factor of
cell j in mode m, which may be a function of frequency
ω, and βm

rs(ω) is the total acoustic transmission of mode m

between reference planes r and s. It is also possible to make
the acoustic loss a direct function of position, αm(Tj ,ω,x),
but we shall not do so here. The first term on the RHS of
Eq. (13) is the flux traveling to the right from all internal
sources to the left of reference plane n, and the second term is
the total flux traveling to the left from all internal sources to
the right of reference plane n; the third and and fourth terms
correspond to the fluxes radiated by the terminations. The
first term makes no contribution when n = 0, and the second
term makes no contribution when n = N . The flux includes all
modes and has been integrated over all frequency, taking into
account the mode cutoff frequencies �m. The system comes
into equilibrium when the net fluxes into and out of every cell
are equal, I = In ∀ n.

In situations where the loss is temperature independent,
such that it does not depend on position either,

βm
rs(ω) = e−2(s−r)�x/γm . (14)
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Frequency dependence of γm is allowed, but not shown
explicitly. Substituting Eq. (14) into Eq. (13) gives

I =
n∑

j=1

∑
m

1

2π

∫ ∞

�m

h̄ω U (Tj )(1 − e−2�x/γm ) e−2(n−j )�x/γmdω

−
N∑

j=n+1

∑
m

1

2π

∫ ∞

�m

h̄ω U (Tj )(1 − e−2�x/γm )

× e−2(j−n−1)�x/γmdω

+
∑
m

1

2π

∫ ∞

�m

h̄ω U (T0)e−2n�x/γmdω

−
∑
m

1

2π

∫ ∞

�m

h̄ω U (TN+1)e−2(N−n)�x/γmdω. (15)

If the loss is, additionally, independent of frequency, the
temperature can be found as a function of position by
evaluating the integrals analytically, and using matrix inversion
to solve the resulting system of equations. For a 50-cell system,
50 integral equations having the form of Eq. (15) have to be
solved simultaneously.

The functional forms of certain loss mechanisms are
known. For example, it is widely believed that acoustic loss
in amorphous materials at low temperatures is caused by
resonant absorption by TLSs. In this case, the inverse acoustic
attenuation length 1/γm(Tk,ω) is given by21

1

γm(Tk,ω)
= πSM2

ρv3
ω tanh

[
h̄ω

2kBTk

]
, (16)

where S is the number density of interacting two-level systems,
M is the linear coupling between a tunneling state and
the strain field, ρ is the mass density, and v is the sound
phase velocity. Converting decay length to attenuation using
ηm(Tk,ω) = 8.68/γm(Tk,ω), we can write

ηm(Tk,ω) = ξω tanh

[
h̄ω

2kBTk

]
, (17)

where ξ is the intrinsic attenuation in dB m−1 GHz−1 at low
temperature, T → 0. It has a typical value of 104 dB m−1

GHz−1. For phonon energies small compared with kT , a few
GHz at 200 mK,

ηm(Tk,ω) ≈ ξh̄ω2

2kBTk

. (18)

At any given temperature, therefore, the loss increases initially
as ω2 and then as ω. Resonant absorption by TLSs also has
the feature that the acoustic loss decreases as the amplitude
of the wave increases. Similar behavior is seen in the electric
properties of amorphous materials, where the dielectric loss
decreases as the electric field increases. Indeed, there seems to
be an intimate relationship between the saturation of acoustic
loss and dielectric loss.36,37 Saturation of the loss mechanism
can be described by including an additional factor in Eq. (16)

1

γm(Tk,ω)
= πSM2

ρv3
ω tanh

[
h̄ω

2kBTk

]
1

[1 + (J/Js)]
(19)

where J is the intensity of the acoustic field, in W m−2, and
Js the value at which saturation occurs.

The actual properties of materials are generally more
complicated than Eq. (19) implies, and therefore it is desirable
to have a parametric form that can represent measured
dependencies. To this end, the power attenuation factor of
cell j , at temperature Tj , can be written

ηm(Tj ,ω,I ) = ηm(Tc,ωc)

(
Tj

Tc

)a (
ω

ωc

)b 1

[1 + (I/Is) c]
,

(20)

where a and b are parameters of the model. The last factor in
Eq. (20) allows for saturation, where I is the thermal flux,
Is the flux at which saturation occurs, and c a parameter
that controls the rate of saturation. ηm(Tc,ωc) is, therefore,
the loss in dB m−1 of mode m, at reference temperature
Tc, reference frequency ωc, and low flux levels I � Is . In
contrast to Eq. (19), the saturation process has been described
in terms of thermal flux, in W, rather than acoustic intensity,
in W m−2. Although the relationship between the two is
not straightforward for low-dimensional systems, Eq. (20) is
sufficient for our purposes. c = 1 is found to fit measurements
of acoustic loss in amorphous dielectrics particularly well: see
Fig. 1 of Golding.33

Knowing the attenuation factor it is possible to calculate the
total transmission, βm

rs(ω) between any two reference planes,
s � r:

βm
rs(ω) =

{
1 for r = s

10− �x
10

∑s
k=r+1 ηm(Tk,ω) for r �= s

. (21)

Equations (13) and (15) are based on a model where the
cut-off frequencies of the individual modes are known. In the
case of structures having cross-sectional dimensions that are
comparable with the dominant wavelengths, the detailed forms
of the modes can be calculated, and Eq. (13) can be used to
great effect. For large structures, it is beneficial to represent the
number of propagating modes as a continuous distribution. If
the loss is the same for all modes, βm

rs(ω) = βrs(ω),∀ m, and
N (ω) is the number of modes that can propagate at frequency
ω, then Eq. (13) becomes

I =
n∑

j=1

1

2π

∫ ∞

0
h̄ω U (Tj )[1 − α(Tj ,ω)]βjn(ω)N (ω) dω

−
N∑

j=n+1

1

2π

∫ ∞

0
h̄ω U (Tj )[1 − α(Tj ,ω)]βn,j−1(ω)N (ω) dω

+ 1

2π

∫ ∞

0
h̄ω U (T0)β0n(ω)N (ω) dω

− 1

2π

∫ ∞

0
h̄ω U (TN+1)βnN (ω)N (ω) dω. (22)

For later use we need to define what is meant by the
dimensionality of a microbridge. For a rectangular bar where
both cross-sectional dimensions are large compared with the
wavelengths of significance, we shall say that the conduction
is 3D. In this case, it is convenient to use

N (ω) = wt

4π

(
2

c2
t

+ 1

c2
l

)
ω2 + 4, (23)
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where w and t are the width and thickness of the bar, and ct

and cl are the transverse and longitudinal sound speeds, which
for SixNy are taken to be 6.2 and 10.3 km s−1, respectively.
The additional four modes correspond to those that are not cut
off at zero frequency. For a rectangular bar where one cross-
sectional dimension is large compared with the wavelengths
of significance, and the other smaller, we shall say that the
conduction is two dimensional (2D). In this case,

N (ω) = w

π

(
2

ct

+ 1

cl

)
ω + 4. (24)

Finally, for a rectangular bar where both cross-sectional
dimensions are small compared with the wavelengths of sig-
nificance, we shall say that the conduction is one dimensional
(1D), and in this case, N (ω) = 4. It is possible to gain a
rough understanding of the temperatures at which the transport
changes dimensionality by calculating the temperatures at
which the shortest wavelengths present in the Planck spectrum
become comparable to the dimensions of the cross section. In
other words, none of the wavelengths present in the Planck
spectrum are able to propagate. We shall use

T3D−2D = hct

πkBt
, T2D−1D = hct

πkBw
, (25)

where kB is Boltzmann’s constant. For a microbridge having
w = 1.0 μm and t = 0.2 μm, we find T3D−2D = 470 mK
and T2D−1D = 95 mK. It is apparent that when frequency-
dependent acoustic loss is present, the excitation spectrum
will change, and the threshold temperatures will be pushed to
higher values.

Equations (13), (15), and (22) are all systems of N + 1
equations (one for each plane, n ∈ 0 · · · N ) in N + 1 unknowns
(I and the Tj ’s). The challenge is to find I and the Tj ’s knowing
the properties of the structure, and the temperatures of the
terminations. One is left with having to find the solution of
a large set of simultaneous nonlinear equations. To this end,
note that any one of Eqs. (13), (15), and (22) can be written in
the form

s0(I ) − s1(t) + s2(t) = s3(To) − s4(TN+1), (26)

where the terms in Eq. (26) correspond directly to the terms
in the system of equations to be solved. s0 is an (N + 1)-
dimensional column vector having equal entries of I , because
in the steady state the flux at every plane is the same. t is a
column vector containing the N unknown cell temperatures,
and s3 and s4 combine to form a single vector describing the
terminations. For any general I and t, the two sides of Eq. (26)
will not equate, and we should write

�(x) = s0(I ) − s1(t) + s2(t) − s3(To) + s4(TN+1), (27)

where �(x) is an error vector, which is a function of the
unknown state vector x. We have included I and t into a single
vector called x. �(x) is a vector of dimension N + 1, where
each entry is a nonlinear function of the (N + 1)-dimensional
state vector x. This function has the same number of equations
as unknowns, and thus in principle can be solved, although its
conditioning is not known. It is necessary to search for the x

that reduces the error vector to zero, which can be achieved
through the iterative procedure

xk+1 = xk − χ
[
J(xk)

]−1
�(xk), (28)

where χ is a convergence parameter between zero and unity,
typically 0.8; although its actual value does not change
the result, just the speed and stability of convergence. The
elements of the Jacobian J(x) are the rates of change of the
elements of the error vector �(x) with respect to the elements
of the state vector x. The sequence (28) has a quadratic rate of
convergence near solution, and is highly efficient. The only
remaining question is what temperature distribution t, and
what flux I , should be used as the starting guess? Often it
is sufficient to start by assuming that all quantities are zero, or
that the temperatures are distributed linearly between the two
end temperatures. When calculating a series of simulations,
say when sweeping one of the end temperatures, it is beneficial
to use the solution of the previous calculation as the starting
point of the next calculation. In all of the simulations carried
out, high accuracy was achieved in 5–10 iterations.

V. SIMULATIONS OF HEAT TRANSPORT

Simulations were carried out using the nonlinear theory
described in Sec. IV, and compared, where possible, with the
linearized scheme based on matrix inversion. The two agreed
precisely in the appropriate limits, and so here we only present
results of the nonlinear model.

Using Eqs. (20)–(22), temperature distributions were cal-
culated for a 50-cell, single-mode N (ω) = 1 system. The
attenuation factor η(Tk,ω) was made temperature and fre-
quency independent, a = 0 and b = 0, and Is was set to an
artificially high value to eliminate saturation. The terminations
were held at Th = 400 mK and Tc = 100 mK. The iteration
sequence of Eq. (28) was initiated by assuming zero flux,
and cell temperatures equal to the average of the two end
temperatures, (Th + Tc)/2. In every case studied, the algorithm
achieved the target errors of 1 fW and 1 mK in fewer than 10
iterations, usually only 5. The results are shown in Fig. 2, where
attenuation factors of η = 6.02, 0.97, 0.46, 0.22, and 4.3×10−6

dB per cell were used. The length of a sample measured in
acoustic attenuation lengths is Lγ = L/γ = Nη/8.68, where
η is the power loss in dB per cell. For the curves shown
in Fig. 2, Lγ ≈ 35, 6, 3, 1, and 0, and therefore, at one
extreme, the structure is acoustically opaque, Nη = 301 dB,
whereas at the other it is acoustically transparent, Nη = 2 ×
10−4 dB. In the opaque case, energy is only exchanged directly
between nearest neighbors, but nevertheless significant flux
flows through a diffusive process. In the transparent case,
acoustic waves travel unimpeded along the whole length of
the structure, and energy flows through a ballistic process.
A number of features can be seen in Fig. 2. In the ballistic
case, η = 4.3 × 10−6 dB, the temperature is independent of
position because the internal degrees of freedom are only
lightly coupled to the counterpropagating acoustic waves.
Moreover, the equilibrium temperature is not the average of the
two end temperatures because the total powers radiated by the
terminations are not linearly proportional to temperature. In
general, it is necessary to distinguish between the temperature
of the loss at some position, and the effective temperatures
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FIG. 2. (Color online) Temperature distributions of single-mode
bars terminated at 0.1 and 0.4 K (shown dashed). The power
attenuation factors (top to bottom on the RHS) are 6.02, 0.97, 0.46,
0.22, and 4.3×10−6 dB per cell. The corresponding heat fluxes were
found to be 2, 9, 16, 26, and 58 fW, respectively.

of the two counterpropagating acoustic radiation fields at
the same position; in the ballistic case, these are the three
horizontal lines shown in Fig. 2. In the diffusive cases,
say η = 6.02 dB, the temperature varies, essentially, as the
square root of position, because the source fluxes radiated by
the individual cells are linearly dependent on position, but
quadratically dependent on temperature.

In all cases, there is a temperature discontinuity at each end,
because the terminations are perfectly acoustically opaque, and
the temperature has to change infinitely fast in accordance with
the infinitely high thermal impedance. Jumps in temperature
at boundaries are also seen in electromagnetic calculations
of radiative heat transfer through absorbing material between
black parallel plates,38 and in Monte Carlo simulations39 of
phonon radiative heat transfer in crystalline dielectrics at low
temperatures. In real structures, the acoustic transmission of
the terminations is finite, the thermal impedance is finite, and
the temperature changes over some finite distance. The model
indicates correctly that there is always some ambiguity as to
what is meant by the length of a structure and the temperatures
of the terminations. Some distance is needed over which the
radiation field comes into equilibrium with the internal degrees
of freedom that constitute the source and sink. It would be
possible to incorporate this effect into the model by distributing
the terminations across a number of cells, but we shall not do
so here. Many of the features seen in our simulations are
also seen when the Boltzmann transport equation is applied to
phonon radiative transfer in ballistic and diffusive systems,40,41

and it is pleasing that the model described here reproduces
the behavior of more complex calculations in a way that is
straightforward and conceptually appealing. In fact, it seems
that our technique, where the overall flux is divided into
ballistic and scattered parts, is in close correspondence with
the ballistic-diffusive heat transport equations presented by
Chen42,43 for general three-dimensional problems, where the
discontinuity is discussed in terms of the injected flux being a
boundary condition.
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FIG. 3. (Color online) Solid lines show the heat flux as a function
of hot temperature Th for the case where the sample is nearly perfectly
acoustically transmissive. Tc = 0.1 K. The plots, from top to bottom,
correspond to 3D, 2D, and 1D transport, respectively. The filled
circles show simulated points, and the solid lines the power-law model
described in the text. Dashed lines show the same simulations, but
including TLSs having an attenuation factor of ξ = 6.02 dB GHz−1

per cell.

Now consider how the heat flux changes as one of the
termination temperatures is varied. Figure 3 shows, as solid
lines, the calculated flux for a sample having w = 2 μm and
t = 0.5 μm as a function of Th when Tc was held constant at
0.1 K. Fifty cells were used, and the attenuation factor was set
to 4.3 × 10−6 dB per cell to ensure acoustic transparency at all
temperatures and frequencies. The top three plots correspond
to perfect 3D, 2D, and 1D heat transport as described by
Eqs. (23) and (24). If it is assumed that SixNy has an attenuation
factor of typically 10 dB mm−1, then l = 21.5 nm, which is
unrealistically short, but ensures that the sample is operating
in the extreme ballistic limit.

In experimental work, it is common to characterize the
heat flux I and differential thermal conductance G through
I = k(T n

h − T n
c ) and G = knT n−1

h , respectively. For each of
the cases shown in Fig. 3, we derived fits to the simulated data.
Only five points were used in each case, because the parameters
change very little even when many more points are used.
For the ballistic cases we found (3D) k = 151.0, n = 3.87;
(2D) k = 25.0, n = 2.85; (1D) k = 1.85, n = 2.05; where k is
measured in pW K−n. The 3D case effectively corresponds to
ballistic heat transport between two semi-infinite transverse
planes, or equivalently ballistic transport along a sample
having specularly reflecting surfaces. In this case, the radiated
power per unit area is given by Prad = σ (T 4

h − T 4
c ), where

σ = 157 W m−2 K−4 is the Stefan Boltzmann constant for
one longitudinal and two transverse modes.31 On the basis
of the dimensions, we would expect k = 157 and n = 4,
which are close to the observed values. The quantum-limited
conductance of a single mode is given by Gq = π2k2

BT /(3h),
and therefore for a four-mode sample we would expect k =
1.89 and n = 2, which agrees with the 1D parameters derived.
The slight difference is due to the fact that our simulations
were not differential calculations as a function of temperature,
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but based on the heat flux when one termination was held
constant at 0.1 K.

The simple numerical transmission line model correctly
reproduces the 3D and 1D ballistic limits, and therefore it
is reasonable to expect that it can give a good account of
behavior when loss is present. The dashed lines in Fig. 3
show the same simulations as the solid lines but when TLSs
having an attenuation factor of ξ = 6.02 dB GHz−1 per cell
were included; Eq. (17) was used to calculate the loss. Once
again, the three plots correspond to 3D, 2D, and 1D heat
transport, giving (3D) k = 2.840, n = 3.78; (2D) k = 0.518,
n = 2.8; (1D) k = 0.053, n = 2.1. Notice that the exponents
are essentially unchanged, but the fluxes are reduced by a
factor of about 100. It seems that the exponent alone cannot
be used to indicate unambiguously whether heat is transported
ballistically or diffusively. There can be a significant amount of
inelastic scattering, which reduces the flux without changing
the exponent.

Figure 4 shows the temperature distributions of 1D mi-
crobridges when Eq. (17) was used to include the effects of
TLSs, and ξ = 6.02, 0.1, 0.01, and 4.3 × 10−6 dB GHz−1.
The resulting fluxes were 30 fW, 199 fW, 787 fW, and
1.49 pW, respectively. From a numerical point of view, Fig. 4
demonstrates that the algorithm is quite able to calculate
behavior even when the loss is a function of frequency and
temperature, and therefore, at the outset, an unknown function
of position. From a physical point of view, Fig. 4 has a
number of features. For the nearly lossless case, the TLSs
are largely decoupled from the counterpropagating radiation
fields, but because there are now four modes lightly coupling
the losses to the terminations, the internal degrees of freedom
come into equilibrium at a slightly higher temperature than
those of Fig. 2. Also, when considered along side Fig. 3, it
is seen that the temperature distributions associated with 1D
ballistic and 1D diffusive behavior are fundamentally different,
even though the derived exponents n are very similar. In
reality a structure will tend to behave ballistically at long
wavelengths and diffusively at short wavelengths, and in some
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FIG. 4. (Color online) Temperature distributions of 1D micro-
bridges terminated at Th = 0.4 K and Tc = 0.1 K (shown dashed).
The attenuation is that of two level systems. The power attenuation
factors (top to bottom on the RHS) are 6.02, 0.1, 0.01, and 4.3 ×
10−6 dB GHz−1 per cell.

TABLE I. Simulated heat flow parameters k, in pW K−n, and
n, for 3D, 2D, and 1D transport, of three devices having width w,
thickness t , and length l. T3D-T2D and T2D-T1D are the calculated
transition temperatures based on Eq. (25). Typical values measured
at 120 mK are also listed.23–26,32

Device 1 Device 2 Device 3

w (μm) 2.0 2.0 1.0
t (μm) 0.5 0.2 0.2
l (μm) 500 500 500
T3D-T2D (K) 0.19 0.47 0.47
T2D-T1D (K) 0.047 0.047 0.095
k (3D) 4.9 1.9 0.6
n (3D) 2.9 2.5 1.8
k (2D) 1.5 1.5 0.7
n (2D) 2.0 2.0 1.8
k (1D) 0.3 0.3 0.3
n (1D) 1.6 1.6 1.6
k (measured) 2.0 0.75 0.25
n (measured) 3.0 1.80 1.60

cases ballistically over certain parts of its length and diffusively
over others.

As discussed in Sec. II, measurements on very thin
microbridges, t = 0.2 μm, show exponents much smaller than
n = 2 at low temperatures. After many simulations, we have
concluded that this behavior can be most easily achieved
by having an acoustic loss that increases with frequency,
and that is either independent or increases with temperature,
which is consistent with the known acoustic properties of
amorphous dielectrics. To investigate the trends, we performed
simulations using the parametric expression (20), with a = 0.0
and b = 1.0, a loss of 0.1 dB per cell at the reference frequency
fc = 1.0 GHz, and the saturation term suppressed. For each of
three geometries a simulation was carried out for perfect 3D,
2D, and 1D transport, as defined by Eqs. (23) and (24). Values
of k and n derived from fits to the simulated data are listed
in Table I. The sample length l given in Table I is based on
assuming that the loss in SixNy at 1 GHz, and low temperature,
is approximately 10 dB mm−1.

Table I also lists the expected T3D-T2D and T2D-T1D

transition temperatures based on Eq. (25). Looking at the
column labeled Device 1, the 3D simulation is in pleasing
agreement with the values of both k and n, even though generic
material parameters were used, and no attempt was made to
calculate the cutoff frequencies of the modes accurately. n = 3
is actually the universal result discovered by Zeller and Pohl6

for the bulk conductivity of glassy materials. Looking at the
column labeled Device 2, which is for a thinner bridge, the
measured values are broadly in agreement with 2D transport.
Finally, looking at the Device 3 column, which is for a narrower
bridge, the typical experimental values are consistent with 1D
transport. It is pleasing that in each case the measured values
of k are within a factor of 2 of those simulated despite the
simplicity of the model. Although it is important not to over
interpret these results, it is clear that for narrow thin bridges
the model predicts exponents well below the 1D ballistic limit,
n < 2.0, as seen experimentally.
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A key feature of the model is that we can explore
the diffusive to ballistic transition. Figure 5(a) shows the
conductance of a 1D microbridge as a function of length,
with a = 0.0 and b = 1.0. The length is normalized to the
attenuation length at 1 GHz, which for SixNy is around
800 μm. The cold temperature was held at Tc = 100 mK,
and the hot temperature was stepped between Th = 400 and
Th = 420 mK for the purpose of determining the differential
thermal conductance. The simulations are shown as filled
circles. At one extreme, the propagation is ballistic, and the
conductance tends to the quantum limit associated with four
modes, calculated using the hot temperature. The black line
assumes a 1/l dependence, which accurately describes the
behavior when the sample is many attenuation lengths long,
and operating in the diffusive limit. Deviations from the 1/l

dependence appear when the sample becomes shorter than
about 0.5 attenuation lengths at the 1-GHz reference frequency.
The change from diffusive to ballistic transport is governed
by the attenuation length at low frequencies, because, as has
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FIG. 5. (Color online) (a) 1D and (b) 2D thermal conductance
as a function of sample length. The length is given in terms of the
number of attenuation lengths at 1 GHz. The points show simulated
results, the dashed line is the quantum limit at 0.4 K, and the solid line
shows how the conductance would vary if it had a 1/l dependence.
The dashed-dotted lines and the solid lines that pass through all of
the points are the approximations described in the text.

been seen, ballistic transport is associated with a much higher
flux than diffusive transport, and the low-frequency ballistic
behavior dominates as soon as an appreciable number of
low-frequency phonons remain unscattered.

Figure 5(b) shows the conductance of a 2D microbridge
as a function of length. In this case, w = 2 μm, with all
other parameters being the same. Assuming an acoustic
attenuation factor of 10 dB mm−1, the effects of ballistic
transport start to become apparent for physical lengths of about
400 μm. The microbridges used for transition edge sensors
are typically 100–500 μm long, and therefore they seem to be
operating in the diffusive to ballistic transition. Interestingly,
this observation suggests that the thermal conductance of a
typical SixNy microbridge could be reduced by using patterned
phononic filters, even though some fraction of the transport is
diffusive.

For a single-mode system, at a single frequency, in the
high-occupancy limit, it can be shown analytically that the
quantum-limiting behavior can be described by including a
single quantum conductance in series with the conductance
that would be derived on the basis of an infinitely long sample
operating in the diffusive limit. In other words,

1

G
= 1

Gq

+ 1

Gs/l
, (29)

where G is the overall conductance, Gq is the quantum
limit, and Gs is the conductance of a unit-length section of
an infinitely long sample. This behavior occurs because the
overall system can be regarded as comprising a number of
distinct cells, each an attenuation length long, exchanging
power locally in a ballistic manner. As the physical length
is reduced well below the acoustic attenuation length, the only
cells remaining are the hot and cold terminations. This same
model is shown in Figs. 5(a) and 5(b) as a dashed-dotted line,
even though, now, a number of frequencies, having different
attenuation lengths, and modes are involved. In this case it is
necessary to replace Gq with the multimode quantum limit
Gql of the particular sample. This simple model is reasonable,
but for general microbridges we find that

G =
[

1

Go

+
(

α

l

)−β]−1

, (30)

where α and β are parameters, and β ∼ 0.8, provides a
better description of behavior over the diffusive to ballistic
transition, even for wide, thick samples. The solid lines that
pass through the points in Figs. 5(a) and 5(b) show Eq. (30)
with α = 0.12 and α = 0.9, respectively, and β = 0.8 in both
cases. Interestingly, from the intercept on the l = 0 axis,
we can derive an effective number of modes. Looking at
Fig. 5(b), taking the intercept to be 14 pW K−1, and dividing
by the quantum conductance of a single mode, we find that
approximately 37 modes are involved in the transport. It is
apparent that it would be possible to determine the effective
attenuation length experimentally by measuring the thermal
conductance as a function of length. An important question
is whether the model can describe, with a single set of
parameters, the complete range of behavior seen. To make
progress we must introduce modal spectra, which could be
achieved by using the elastic wave equation to calculate the
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cutoff frequencies of the compression, torsion, shear, and
flexure waves. In a later paper we will carry out this analysis,
and provide a detailed comparison with experimental data. The
purpose of this paper, however, is to demonstrate how inelastic
scattering can be introduced into an acoustic-wave model, and
therefore we simply add up the number of cells in k space
numerically. We took the size of the cells in the two Cartesian
directions to be π/t and π/w, and calculated separately
the number of propagating transverse nt and longitudinal
modes nl for a given frequency using the transverse and
longitudinal sound speeds. The total number of modes was
then determined by N (ω) = 2nt + nl + 1, where the factor of
2 comes from the degeneracy of the transverse modes, and the
addition of 1 is needed to make up the four modes that can
propagate as the frequency tends to zero. This approach is only
approximate, but is in close agreement with full calculations,
and matches well the 2D and 3D forms of Eqs. (23) and
(24). It ignores out-of-plane flexure, because it incorrectly
predicts a loss of one polarization when the corresponding
bridge dimension becomes smaller than half a wavelength.
An excellent description of the various modes is given by
Cross and Lifshitz.12 Here, the Debye approach is convenient
and adequate because it provides a simple parametrization of
when the dimensionality changes, an effect that is seen in
experimental data. Also, because other numerical aspects of
the model, such as the magnitude, frequency dependence, and
saturation of the acoustic loss are poorly known, it provides
an adequate starting point. Also, in a real experiment, issues
arise as to what temperature one is actually measuring.43

Figure 6 shows the number of propagating modes N (ω)
as a function of frequency for three different microbridge
geometries: (a) w = 4 μm, t = 0.5 μm; (b) w = 4 μm,
t = 0.2 μm; (c) w = 1 μm, t = 0.2 μm. In each case, there
is an initial region where only four modes propagate (1D)
(the very bottom of the curves), then there is a linear region
corresponding to an increase in modes along the largest
dimension (2D), and then the overall quadratic behavior,
made up of near-piecewise linear sections, characteristic of
3D transport dominates. Certain features, for example, the
discontinuity in curve (b) at 26 GHz, mark the onset of
longitudinal modes, which have a different phase velocity than
the transverse modes. Note that the width of the membrane
determines the transition from 1D to 2D transport, whereas
the thickness of the membrane determines the transition from
2D to 3D transport. Crucially, the rate of increase of the number
of modes in the 2D region is determined by the width. Curves
(b) and (c) show 2D behavior at frequencies of up to 15 GHz,
but the rate of increase in the first linear region of (b) is much
greater than that of (c). In fact, we would expect the differences
in behavior between the 2D and 1D cases of (c) to be small.

The black lines in Fig. 6 show the power spectra of heat
baths at 100, 200, 300, and 400 mK (left to right). Each unit
of the scale corresponds to 10 aW GHz−1. For curve (c), true
1D transport only takes place at frequencies below 3 GHz,
corresponding to temperatures below 50 mK. For temperatures
of up to 200 mK, however, the transport is nearly 1D, with
the number of available modes increasing only slowly with
temperature. Beyond 200 mK, the overall quadratic form
dominates on the scale size of the Plank curves. In the case of
curve (c), the transitions from 1D-2D-3D are more clear, but
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FIG. 6. (Color online) The stepped solid lines show the number of
propagating modes N (ω) as a function of frequency for microbridges
having dimensions (a) 4 μm wide and 0.5 μm thick, (b) 4 μm wide
and 0.2 μm thick, and (c) 1 μm wide and 0.2 μm thick. The smooth
solid lines show the power spectral densities, in units of 10 aW GHz−1,
of heat baths having temperatures (left to right) of 0.1, 0.2, 0.3, 0.4 K.
The smooth dotted lines show the same power spectral densities, but
with an acoustic attenuation of 0.1 dB, at the reference frequency of
1 GHz, which increases linearly with frequency.

the rate of increase of modes in the 2D region is high. Finally,
in case (a), quadratic behavior becomes significant at 100 mK.
The actual behavior is a smooth, weighted average over the
Planck curve and the number of modes propagating at each
frequency.

Figure 7 shows the heat flux as a function of temperature Th

with Tc = 100 mK, for a microbridge measuring 1 μm wide
and 0.2 μm thick, which corresponds to curve (c) in Fig. 6.
The attenuation factor was set to η = 4.3 × 10−6 dB per cell
at 1 GHz to ensure ballistic transport. The dashed lines in
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FIG. 7. (Color online) Heat flux as a function of hot temperature
for a microbridge measuring 1 μm wide and 0.2 μm thick. Tc was
held constant at 0.01 K, and Th was swept over the range shown. The
attenuation factor was set to a low value, η = 4.3 × 10−6 dB per cell
at 1 GHz, to ensure ballistic transport. The dashed lines correspond
to fits to the expression k(T n

h − T n
c ), and the vertical lines mark the

expected T3D-T2D and T2D-T1D transition temperatures.
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Fig. 7 correspond to power-law fits to the regions where 3D,
2D, and 1D transport might be expected to dominate. For
each of the regions we find (3D) k = 37.0, n = 3.9; (2D)
k = 20.0, n = 3.0; and (1D) k = 4.9, n = 2.3. On inspection
of Fig. 6, it can be seen that perfect 1D behavior is never
realized even at 20 mK because the Planck spectrum smears
the 1D-2D transition. A key point about Fig. 7 is that the
change in slope seems to indicate 1D to 3D behavior, with
the 2D behavior being almost lost in the general curvature of
the transition. This feature is characteristic of experimental
data. The vertical black lines, however, show the expected
transition temperatures calculated on the basis of Eq. (25), and
they correspond to the intercepts of the power-law fits.

Figure 6 also shows, as dashed lines, the Planck curves
attenuated by a loss having ηm(Tc,ωc) = 0.1 dB, a = 0,
b = 1.0, and ωc = 1 GHz. Figure 8 shows the corresponding
flux as a function of temperature for a microbridge having
w = 1 μm and t = 0.2 μm. Figure 8 should be compared
with the equivalent lossless case of Fig. 7. Notice that the
dimensionality of the transport changes at higher temperatures
compared with the ballistic case, as would be expected on
the basis of Fig. 6, and the transitions from 1D to 2D and
2D to 3D transport are less well defined. In the lossy case,
the low-temperature exponent is reduced to n = 1.8, and the
high-temperature exponent to n = 2.9, shown as dashed lines.
The low-temperature exponent is fully consistent with typical
values measured, the intermediate-temperature exponent is
characteristic of the bulk behavior of amorphous materials, but
the high-temperature exponent is much too small. In addition,
using the same loss, we modeled a sample having w = 10 μm
and t = 0.5 μm, and found the low- and high-temperature
exponents to be n = 2.4 and n = 2.9, respectively. These con-
trast with experimental values of n = 1.8 at 0.27 K changing
smoothly to n = 3.6 at 1.5 K. The simulated low-temperature
exponent could be reduced further, but only at the expense of
reducing the high-temperature exponent. We performed many
simulations, using the parametric expression for the losses
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FIG. 8. (Color online) Heat flux as a function of hot temperature
Th for a bridge measuring 1 μm wide and 0.2 μm thick. Tc was
held constant at 0.01 K. The attenuation factor was set to η = 0.1 dB
per cell at 1 GHz, and increased linearly with ω. The dashed lines
correspond to fits to the expression k(T n

h − T n
c ).

[Eq. (20)] and the form appropriate for TLSs [Eq. (17)], and
were always left with the problem that the low-temperature
exponent n could not be reduced to the range of values
measured without reducing the high-temperature exponent
significantly below the range of values measured. The dis-
crepancy is very marked, and is an inevitable consequence of
having an acoustic attenuation that increases with frequency,
whatever the precise physical origin. A similar problem occurs
with elastic scattering, as commented on by other authors, but
in the case of inelastic scattering there is a possible explanation.

It is well known that acoustic loss in amorphous dielectrics
at low temperatures decreases as the wave amplitude exceeds
some critical value, Eq. (20); a process known as saturation.
Because the acoustic loss is a function of both flux and
temperature, the root finding algorithm must find the flux that
not only leads to thermal equilibrium but also gives the correct
loss at each position. We have found that Eq. (28) converges
satisfactorily as long as the solution of the last calculation
is used as the starting guess of the next calculation as the
temperature of the hot termination is varied.

Figure 9 shows the flux as a function of temperature for
a microbridge having w = 1 μm and t = 0.2 μm. The loss
was made dependent on the square of the frequency, b = 2.0,
having a value of 0.2 dB per cell at the reference frequency
1 GHz. The lower curve corresponds to the case where there
is no saturation, and the top curve to the case where the loss
saturates at a heat flux of Is = 6 fW, which is characteristic
of glassy materials.33,36. For the lower curve, n = 1.5 at
low temperatures and n = 2.8 at high temperatures. Thus, as
already described, a reduction in n below the 1D ballistic
value can only be achieved at the expense of reducing n at
high temperatures. The top curve, however, has n = 1.7 at low
temperatures, and n = 4.0 at high temperatures. Therefore,
the low-temperature exponent can be suppressed significantly
without reducing the high-temperature value. A series of
simulations were carried out using saturation fluxes over the
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FIG. 9. (Color online) Heat flux as a function of hot temperature
Th for a bridge measuring 1 μm wide and 0.2 μm thick. Tc was held
constant at 0.01 K. In this case the loss increased as ω2, and had a
value of 0.2 dB per cell at the reference frequency of 1 GHz. The top
curve shows the behavior without saturation, and the bottom curve
shows the behavior with a saturation flux of Is = 6 fW. The dashed
lines correspond to fits to the expression k(T n

h − T n
c ).
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FIG. 10. (Color online) Conductance as a function of normalized
length for a bridge measuring 1 μm wide and 0.2 μm thick. The
squares corresponds to Tc = 70 and Th = 130 mK, and the circles to
Tc = 70 and Th = 340 mK. The conductances of the low-temperature
curve have been scaled by a factor of 12 to allow comparison.

range Is = 0 to Is = 6 fW, and they spanned the behavior seen
in Fig. 9. Crucially, the simulations show that a sample may
behave diffusively at low temperatures, but near-ballistically at
high temperatures, which is counterintuitive but, qualitatively
at least, in accordance with measurements.

The inclusion of saturation gives rise to a variety of
unexpected phenomena, and may shed light on the peculiarities
listed in Sec. II. For example, Fig. 10 shows the conductance
of a sample as a function of length. The same microbridge
was chosen as for Fig. 9, but in one case the simulation was
carried out with Tc = 70 and Th = 130 mK (squares), and in
the other case with Tc = 70 and Th = 340 mK (circles). The
low-temperature curve has been scaled by a factor of 12 to
allow it to be plotted on the same graph as the high-temperature
curve. For SixNy , a normalized length of 1.0 corresponds
to about 800 μm. Notice that with a small temperature
difference, the sample behaves in a diffusive manner, showing
a near-1/l dependence over the range of lengths typically
used, 200–1200 μm, but with a high temperature difference,
the same sample behaves in a ballistic manner, showing strong
evidence for a finite intercept at l = 0. We have seen this
behavior in measurements on samples of this size, and it is
highly suggestive of a saturating inelastic scattering process.
Finally, using the single-mode quantum conductance, and the
intercepts, we can calculate the effective number of modes
for the two curves shown in Fig. 10; we find n = 19 for
the high-temperature measurement, and n = 8 for the low-
temperature measurement. Using the same analysis method
on experimental data from a bridge having these dimen-
sions, we find n = 19 for the high-temperature measurement,
which is in pleasing agreement given the simplicity of the
model.

VI. CONCLUSIONS

We have discussed, and emphasized, the role of acoustic
loss in influencing the low-temperature thermal conductance

of amorphous dielectric microbridges. A model has been
devised that allows behavior to be simulated in the diffusive to
ballistic transition. Transport will tend to be ballistic at long
wavelengths, but diffusive at short wavelengths, with ballistic
transport becoming increasingly apparent as the length of a
sample is made sufficiently small that an appreciable number of
low-energy phonons remain unscattered. In SixNy , deviations
should start to appear at about 400 μm, which is typical
of the lengths used for micromachined components, such
as transition edge sensors. The model can accommodate a
wide range of functional forms for acoustic loss, and it
gives not only the thermal flux as a function of geometry
and temperature but also the temperature distribution of the
internal degrees of freedom that constitute the loss, which in
turn can be used for calculating noise. The model reproduces
all of the features characteristic of low-temperature thermal
transport, and provides a conceptually appealing numerical
framework for interpreting experimental data. Although no
attempt has been made to fit experimental data precisely,
which will be the subject of a later paper, the model gives
fluxes and conductances that are within of a few of those
measured, and produces temperature dependencies typical of
those seen.

It is possible to include flux-dependent acoustic loss, and
thereby model saturation, which has been shown to lead to
counterintuitive thermal behavior. Crucially, a sample can
behave diffusively when measured using a small temperature
difference, but ballistically when measured using a large
temperature difference. There is much circumstantial evidence
that the effects of saturation have been seen, but not explicitly
recognized, on many occasions; and if confirmed, this obser-
vation would have significant implications for the design of
ultra-low-noise TESs. For example, it may be beneficial, from
the point of view of both small signal and noise behavior, to
operate TESs with the largest possible temperature differences
(by keeping the bath temperature low) to ensure that the
losses are saturated. A particularly revealing experiment would
be to measure the thermal conductance of a TES while
applying a variable-frequency microwave electromagnetic
field to the legs, perhaps by making the legs the dielectric of a
superconducting microstrip transmission line. The relationship
between the acoustic and electric properties of the material36

would suggest that the behavior of the TES could be influenced
by passing low levels (< 80 dBm) of microwave power through
the transmission line.

The opportunities for further study are considerable. For
example, it would be straightforward to allow heat flow
in a plane, and to include inelastic scattering, representing,
say, surface roughness. Our ambition is to set up a general
model based on mode matching at discontinuities, cascaded
scattering matrices, and the power-balance method described
here, to allow patterned microbridges, having, say, stepped
widths, to be simulated. We would then be in a position to
model the behavior of phononic thermal filters operating in
the ballistic to diffusive transition, opening up a range of
new design opportunities. Such an extension would show the
smooth way in which a filter changes from displaying strong
interference effects to behaving in a simple diffusive manner
as the key longitudinal dimensions are made larger than the
low-frequency scattering length.
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