
PHYSICAL REVIEW B 83, 195412 (2011)

Carbon nanotube cantilevers for next-generation sensors
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Researchers continue to make smaller force sensors and mechanical resonators in an effort to enhance force
sensitivity and achieve higher resonant frequencies. We explore the single wall carbon nanotube cantilever as the
ultimate limit of this trend. Using molecular dynamics simulations to calculate the thermal vibrational spectrum
of tip displacements, we find that the quality factor of the cantilever is independent of its length. This leads to the
surprising result that the intrinsic signal-to-noise ratio for a carbon nanotube cantilever improves with increased
length. We discuss qualitative reasons why this result will also hold in a real carbon nanotube device.
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I. INTRODUCTION

With the development of the atomic force microscope
(AFM),1 we have looked at individual atoms via the vibrations
of cantilevered structures. Even though these first structures
were cut by hand and were in the millimeter range, they
provided the key sensing component in the revolutionary
AFM. Cantilevers and other types of beams also play
a crucial role in micromechanical resonators that employ
vibrations to perform tasks such as mass sensing. These
devices work because an attached mass causes a frequency
shift in the fundamental mode of vibration.2,3 For both force
sensors and resonators, the vibrating beams have become
progressively smaller.4–9 Smaller devices vibrate faster and
hence allow for faster measurements. Here, we explore the
single wall carbon nanotube (CNT) as the ultimate limit for
vibrating cantilevers.

Building on earlier work,10 we use molecular dynamics
(MD) simulations to study the signal-to-noise ratio (SNR)
of a CNT cantilever. This sensing device is small enough
to perform these simulations with full atomic resolution. At
constant temperature, we first calculate the thermal vibrational
spectrum of the tip displacements with MD.11–14 Rescaling
this spectrum for many lengths leads to a single master curve
which implies that the quality factor is independent of length.
This leads to the surprising result that the SNR increases with
increasing CNT length. These MD simulations account for the
intrinsic dissipation from anharmonic phonon interactions15–19

but ignore other factors such as a gas atmosphere, surface
contaminates, and realistic clamping to a substrate. This clean
separation of intrinsic noise from external factors is very
difficult in experiments.20 Moreover, we argue that these other
contributions do not change the primary conclusion that the
SNR increases for longer CNT cantilevers.

The rest of the paper is organized in the following manner.
Section II describes the beam theory employed as a coarse
grain model for the CNT vibrations and clearly defines what
we mean by anharmonic phonon interactions. Moreover, this
section also describes the damped harmonic oscillator used to
describe the thermal vibrational spectrum. In Sec. III, we define
the tip vibrational spectrum and how we calculate it with MD
simulations. Section IV details our results and how the SNR
ratio gets better for longer CNT devices. Finally, we discuss
other sources of dissipation and their effect on experiments
in Sec. V.

II. THEORY

First, we consider the application of continuum beam theory
and equilibrium statistical mechanics to the thermal vibrations
of beams, an idea pioneered by Treacy and co-workers.21

While we have previously discussed this theory in detail,10

we summarize the results here for clarity and completeness.
The Timoshenko beam can accurately describe the transverse
vibrations of thin beams. It generalizes the Euler-Bernoulli
theory that considers only normal, bending forces along the
axis of the beam by also accounting for shear forces and
rotational inertia. To understand the thermal vibrations of the
CNT tip, we solve the governing equations in the Timoshenko
theory to derive results for the tip displacement.10

First, using the time-independent solution, the tip of the
cantilever acts as if it experiences a harmonic potential

U = 1
2Ku2, (1)

in which u is the displacement of the cantilever tip from
mechanical equilibrium in a transverse direction and

K = 3EI

L3

1

1 + 3κ/ε2
(2)

is an effective spring constant. Here, L is the length of
the beam, the flexural rigidity EI is the product of the
Young’s modulus E and the area moment of inertia I of the
beam, κ is a dimensionless parameter that gives the normal
stiffness relative to the shear stiffness, and ε = L/

√
I/A is a

dimensionless aspect ratio in which A is the cross-sectional
area of the CNT. In Eq. (2), the second term in the product
is the Timoshenko correction to Euler-Bernoulli theory, and
one recovers Euler-Bernoulli when ε → ∞. We use Eq. (1)
as the potential energy in the Gibbs-Boltzmann distribu-
tion, which implies that the ensemble average width of tip
displacements is

〈u2〉 = kBT

K
, (3)

in which T is temperature and kB represents Boltzmann’s
constant.
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To explore the vibrational dynamics of a nanoscale CNT,
one can perform a normal mode analysis of the Timoshenko
beam equations10,22 and show the potential energy

U = 1

2

∑
n

Knu
2
n

is a sum over modes in which un is the tip displacement of the
nth mode. Here, the mode-dependent spring constants are

Kn = mNnω
2
n, (4)

in which m is the mass of the beam, Nn is a scalar coefficient,
and the frequencies

ωn = �n

√
EI

m

1

L3/2
(5)

are proportional to �n, a solution to a characteristic equation
derived from the boundary condition on the beam. While Nn

is calculated numerically10 for the Timoshenko beam theory,
Nn = 1/4 for all n in the Euler-Bernoulli theory. The quantity
Mn ≡ mNn is an effective mass for each mode of the beam. For
an atomistic model of a CNT, a normal mode analysis is quite
complex. Here, we use the beam theory as a coarse-grained
model for the transverse vibrational modes of the beam. In
our previous work,10 we compared the ensemble average
displacement of each mode

〈
u2

n

〉 = kBT

Kn

with MD simulation results. While this expression accurately
described the location and total intensity of each mode, the
beam theory model could not describe the shape of the resonant
peaks in the spectrum.10 In particular, the shape of the primary
mode deviated significantly from the impulse predicted from
the beam theory and equilibrium statistical mechanics, a theory
with no friction forces. This deviation implies that the modes
cannot interact through a potential proportional to the squares
of the atomic displacements (or the modes un), since this type
of linear theory also gives impulse shapes for each resonance.
Hence, there must be anharmonic interactions between these
transverse phonon modes in which the potential consists of
higher-order terms in un.

Since our calculations show that 97% of the intensity resides
in the primary mode, it is reasonable to model this mode as a
damped harmonic oscillator with a random force that results
from interactions with all higher modes,

M
d2x(t)

dt2
+ Mγ

dx(t)

dt
+ K0x(t) = F (t). (6)

Here, M , γ , and F (t) are an effective mass of the oscillator,
a friction coefficient, and a random force, respectively. Often
times, Mγ is called the coefficient of viscous damping.

We will use the Fourier transform of Eq. (6) to describe the
shape of the primary mode in the thermal vibrational spectrum.
For simplicity, we suppose that functions of time such as x(t)
and R(t) are periodically replicated over an interval τ . For a
given time interval �τ , the functions are sampled at uniform
points in time tj = j�τ for j = 0,1, . . . ,Nτ − 1 for an even

integer Nτ such that τ = Nτ�τ . The Fourier coefficients for
a function z(t) are

ẑn = 1

τ

∫ τ

0
z(t)e−iωnt dt ≈ 1

Nτ

Nτ −1∑
j=0

zj e
−iωntj

for the discrete set of frequencies ωn = 2πn/τ for integers
n such that Nτ/2 < n � Nτ/2. For the damped harmonic
oscillator in Eq. (6), one can take the Fourier transform
and show that the spectrum |x̂n|2 in the limit as τ → ∞ is
proportional to the continuous response function

g(ω) = ω4
0(

ω2
0 − ω2

)2 + ω2ω2
0Q

−2
, (7)

in which ω0 = √
K0/M denotes the fundamental frequency of

the oscillator and Q = ω0/γ is the quality factor. The constant
ω4

0 appears in the numerator so that g(0) = 1. It is useful to
approximate23 this function near its peak by using ω2

0 − ω2 =
(ω0 + ω)(ω0 − ω) and setting ω = ω0 in Eq. (7) except for the
term ω0 − ω. This approximate response function

ga(ω) = ω2
0

4 (ω0 − ω)2 + ω2
0Q

−2
(8)

reaches half its peak value at ω = ω0 ± (�ω/2) when the
width has a value �ω = ω0/Q. This is not true for the full
response function in Eq. (7). Moreover, ga(ω) becomes a better
approximation for g(ω) near ω0 for larger Q. Hence, the often
cited definition Q = ω0/�ω only applies to the full response
function in Eq. (7) when Q is large.

In the Fourier domain, the fluctuation-dissipation theorem
gives the ensemble average properties of the force

〈|F̂n|2〉 = MγkBT B

π
,

in which B = 2π/τ is sometimes called the bandwidth.2,24

This implies the ensemble average spectrum is

〈|x̂n|2〉 = 2kBT B

K2
0

Mγ

2π
g(ωn).

The coefficient of viscous damping Mγ is not directly
measurable in an experiment. However, using M = K0/ω

2
0 and

γ = ω0/Q, one can write the coefficient of viscous dissipation

R ≡ Mγ

2π
= K0

2πω0Q
(9)

in terms of the experimentally measurable quantities K0, ω0,
and Q.24 We show that R can be measured in our MD
simulations in the same manner as Viani et al.24 did for their
experiments.

The frequency-dependent SNR is the ratio of the tip
displacement and the error induced by thermal and detector
noise

SNR =
F (ω)
K0

g(ω)√
4kBTRB

K2
0

g2(ω) + (detector noise)2
. (10)

Here, an extra factor of 2 arises in the thermal noise due to the
equal contribution from positive and negative frequencies to
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the spectrum. For an ideal sensor with no detector noise, the
SNR scales as

SNR ∼ (kBTR)−1/2 .

For certain measurements taken at a fixed temperature, the
only way to enhance the SNR is to decrease the coefficient of
viscous damping R.

III. COMPUTATIONAL METHODS

To understand the SNR of a CNT device, we define the
thermal vibrational spectrum. If u(tj ) is the displacement from
mechanical equilibrium of the tip of a CNT cantilever in one
of two transverse dimensions, then the thermal vibrational
spectrum is

h(ωk) = 〈|û(ωk)|2〉NV T ,

in which the angular brackets denote an average over the
canonical ensemble at constant number of particles N , volume
V , and temperature T . To evaluate this statistical mechanical
average, we first sample the canonical ensemble with MD
and the Andersen thermostat25 to obtain a set of states from
the canonical ensemble. Then, these states provide initial
conditions for the calculation of trajectories at constant energy
with no thermostat. This method for probing the dynamics of
a system at constant temperature is standard in the study of
liquids.26

In this work, we study (10,10) CNTs of length L = 10,
20, 50, and 100 nm at temperature T = 300 K. The carbon
atoms interact through a multibody Tersoff potential.27,28 We
make the CNT a cantilever by fixing the positions of carbon
atoms at one end of the tube. This zero-temperature substrate
represents ideal clamping because the CNT does not exchange
energy with the substrate atoms. Moreover, our simulations do
not contain free gas molecules or attached contaminants on
the surface of the defect-free tube. Additional details about the
construction of a CNT cantilever and the sampling methods can
be found in a previous work.10 For all tube lengths, we obtain
30 samples from the canonical ensemble, run trajectories of
10 ns and use �τ = 10 fs to calculate the thermal vibrational
spectrum.

IV. RESULTS

First, we check the equilibrium properties of the CNT as a
function of length. In Fig. 1, we show the equilibrium squared
tip displacement 〈u2〉 ≡ 〈u2(tj = 0)〉 for MD and beam theory
as a function of length L at T = 300 K. In showing the
predictions of Timoshenko and Euler-Bernoulli theory, we
approximate the CNT as an infinitely thin shell which implies
ε = √

2L/R with radius R = 0.7 nm. Moreover, we use the
estimate EI = 4.0806 × 10−25 N m2 obtained by analyzing
〈u2〉 as a function of temperature T in previous work.10

These quantities are substituted into the expression for 〈u2〉
in Eq. (3), which requires the spring constant in Eq. (2). Both
the Timoshenko and Euler-Bernoulli predictions agree well
with the equilibrium MD simulations at various lengths in
Fig. 1. The two beam theories differ only slightly for small L,
high aspect-ratio tubes since the inclusion of shear stress and
rotational inertia in the Timoshenko theory has the greatest
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FIG. 1. (Color online) The equilibrium squared tip displacement
〈u2〉 as a function of length L at a temperature T = 300 K.
Equations (3) and (2) provide theoretical results for the Timoshenko
and Euler-Bernoulli (ε → ∞) beam theories.

effect for low aspect-ratio beams. Figure 1 not only supports
our use of continuum beam theory to describe a CNT, but also
suggests that the flexural rigidity is independent of tube length
in our simulations using the Tersoff potential.

After examining the equilibrium properties of the CNT,
we now consider the thermal vibrational spectrum. Figure 2
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FIG. 2. (Color online) The amplitude of the vibrational spectrum
as a function of frequency for four different CNT lengths. The discrete
data points included both transverse dimensions which can display
small differences due to thermal fluctuations. For each spectrum, we
rescale the amplitude by the zero frequency amplitude and frequency
by the Timoshenko result for fundamental frequency given in Eq. (5).
We fit the response function for a damped harmonic oscillator to the
data for points above the horizontal dashed-dotted line and obtain
a quality factor Q = 684. The inset illustrates the sensitivity of the
fit to data near the peak. By removing one of the L = 20 nm data
(circled), the fit reaches the maximum of the L = 10 nm data and the
estimated Q increases to 826.
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shows that the spectrum hL(ωk) for various lengths L can be
expressed as

hL (ωk) = hL(0) h̄

(
ωk

ω0(L)

)

in terms of a scaling function h̄[ωk/ω0(L)]. We show this
by rescaling the amplitude of hL(ωk) by its zero frequency
value and ωk by the fundamental frequency from Timoshenko
beam theory ω0 in Eq. (5). For frequencies near the fun-
damental mode, the thermal vibrational spectrum from four
different lengths spanning an order of magnitude collapse
onto h̄[ωk/ω0(L)]. The collapse of the data is particularly
remarkable for values larger than 1000.

To understand this scaling function, we consider the
response function of a damped harmonic oscillator in Eq. (7)
and fit

G(ω : A,ω0,Q) = Ag(ω : ω0,Q)

for parameters A, ω0, and Q to data near the peak h̄(ωk/ω0) >

100. The fit is relatively insensitive to this lower bound. In
Fig. 2, we show the agreement of both the full and approximate
response functions, Eqs. (7) and (8), respectively, using the
fitted value Q = 684 ± 103 with the data, which validates
the use of only points near the peak. This value for Q

is consistent with previous MD simulations12 at T = 300.
Moreover, Q = 684 is in the high end of the range of
experimental measurements,5,29,30 an expected result since our
simulations do not consider sources of dissipation that could
potentially lower Q. The fit is most sensitive to data near the
peak. Unfortunately, this data is difficult to obtain because the
difference between adjacent frequencies scales inversely with
trajectory length. To illustrate this sensitivity, we removed one
data point (circled in the inset of Fig. 2) from the fitted data
and the estimated quality factor changes to Q = 826 ± 128
without significantly changing the other fitted parameters.
Moreover, there are uncertainties in ω since calculating the
frequencies requires the flexural rigidity EI estimated from
equilibrium simulations. The 2% errors in frequencies could
cause relative misalignment of the data sets for the various
lengths. Lastly, the fitted value ω0 = 1.001 ± 0.006 is very
close to the value ω0 = 1 one would expect if the Timoshenko
beam theory accurately describes the fundamental frequency
of the CNT.

The collapse of the thermal vibrational spectrum for many
CNT lengths in Fig. 2 implies a scaling of quality factor with
length

Q ∼ L−α.

If we rescale the frequency of the response function in Eq. (7)
by ω0 with ω̄ = ω/ω0, then the function

g(ω̄) = 1

(1 − ω̄2) + ω̄2Q−2

can only describe the collapse of the vibrational spectrum if
Q is independent of length, or α ≈ 0.

With this new result for the quality factor, we now analyze
the SNR in Eq. (10) for a CNT sensor. For an ideal sensor
with no detector noise, SNR ∼ (kBTR)−1/2 so higher fidelity
measurements can result from lower temperatures T or a lower
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FIG. 3. (Color online) The coefficient of viscous damping R as a
function of length L for a CNT based on beam theory and the quality
factor obtained in MD simulations. The SNR for an ideal CNT sensor
scales with R−1/2. The Timoshenko and Euler-Bernoulli theory are
almost identical for all length displayed and both give R ∼ L−1.

coefficient of damping. Since it is not possible to measure the
coefficient of viscous damping directly in MD simulations,
the expression R = K0/(2πω0Q) allows us to estimate this
quantity through K0, ω0, and Q. The fundamental frequency
ω0 is given in Eq. (5) and requires an estimate of the flexural
rigidity EI obtained from previous work.10 Moreover, K0 in
Eq. (4) needs a numerical calculation to determine the scalar
N0 as a function of length. Lastly, we use Q = 684 independent
of length. Figure 3 shows how R decreases with increasing
length for both Timoshenko and Euler-Bernoulli beam theory.
Even for small L, the Timoshenko result is almost identical
to the Euler-Bernoulli theory since both K0 and ω0 decrease
with the added effects of rotational inertia and shear stress in
the Timoshenko theory.

To understand how the coefficient of viscous damping
and SNR scale with length, we require a few results from
beam theory. Equations (4) and (5) imply that K0 ∼ L−3 and
ω0 ∼ L−2, so the coefficient of viscous damping scales with
length asR ∼ (K0/ω0) ∼ L−1. This is contrary to experiments
on silicon-based AFM cantilevers,24 a discrepancy we discuss
in the next section. Here, SNR ∼ R−1/2 ∼ L1/2 implies the
SNR increases with increasing length for an ideal CNT
sensor. Lastly, we emphasize the term “coefficient of viscous
damping” in this context arises from the intrinsic anharmonic
phonon interactions discussed in Sec. II for the CNT, not from
interactions with an external viscous medium such as a gas or
liquid.

V. DISCUSSION

As we discussed in the theory section, the MD results
for a CNT cantilever capture the effect of anharmonic
phonon interactions on the fluctuations and dissipation of the
fundamental mode. However, these simulations do not account
for other sources of dissipation in real systems.19,20,30,31

The first important source arises from gas friction. In our
simulations, there are no gas molecules that collide with the
beam and reduce Q through the momentum transfer between
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CNT and gas molecules. Previous theoretical work2 gives this
dissipation

Q−1
gas = pAsurf

Mω0v

in terms of an effective mass for the beam M , the frequency
of the resonator which we take to be the fundamental ω0,
the thermal velocity of the gas v, the ambient pressure p,
and the surface area of the resonator Asurf. This expression
comes from the kinetic theory result that the drag force on
body moving through a dilute gas is (pAsurf/v)V , in which V

is the velocity of the body. The effective mass is determined
by beam theory so that ω0 = √

K0/M . As mentioned earlier,
the Euler-Bernoulli theory gives M = m/4 in which m is the
mass of the CNT cantilever, whereas the effective mass in the
Timoshenko theory is mN0 in which the numerical factor N0

in Eq. (4) depends on the aspect ratio of the beam.10

In our CNT simulations, the cross-sectional area remains
the same while the length of the beam changes. This implies

Q−1
gas ∼ L2 (11)

so the dissipation increases for longer CNTs. Physically, the
longer tubes provides more surface area for collisions with
gas molecules. Substituting this result into Eq. (9) gives
R ∼ L for the coefficient of viscous dissipation. This implies
that SNR ∼ L−1/2 would decrease with increasing length.
However, we now consider the magnitude of this effect by
comparing Q−1

gas for a 100-nm CNT with a microscale silicon
cantilever of length 10 μm, a size on the small end of devices
studied by Hansma and co-workers.24,32 Assuming the MD
and experimental silicon cantilevers have approximately the
same aspect ratio, the microscale cantilever is bigger than the
CNT in all three dimensions by a factor � = 100. Note that
the analysis that led to Eq. (11) assumes only one-dimensional
changes. This implies

Q−1
gas,CNT

Q−1
gas,Si

∼ �−1,

so the dissipation decreases by two orders of magnitude for
the CNT cantilever. From previous experiments on silicon
cantilevers in air, Walters et al.32 obtain QSi ≈ 130. Let
us assume that the dissipation in the silicon cantilevers is
dominated by gas friction Qgas,Si ≈ QSi. If different sources
of damping act independently, the total dissipation is Q−1 =
Q−1

beam + Q−1
gas. For the CNT, this changes Q from 684 to 649

so the gas friction does not change the order of magnitude of
the quality factor. This gas friction can be made much smaller
by reducing the air pressure in the system.

A second commonly cited source of dissipation in vibrating
beams is surface contamination from absorbed gas molecules,
structural defects in the crystal structure of the tube, or broken
carbon-carbon bonds.8,19,30 To estimate its magnitude, recall
that the quality factor Q is the ratio of the elastic energy
initially stored in the resonator to the energy dissipated per
cycle. Since the initial energy is proportional to volume while
the energy dissipated due to surface contaminants must scale
as surface area,

Q−1
surface ∼ L−1.

This simple scaling argument has been proposed to explain the
linear scaling of Q with linear dimension over many orders of
magnitude.30 Absorption of gas molecules will be minimal in
low-pressure operating environments. Moreover, advances in
synthetic methods for making single wall CNTs will reduce
defects, broken bonds, and external surface contamination due
to the fabrication environment. While surface contaminants
might reduce the overall quality factor, the scaling Q ∼ L

implies that R ∼ L−2 instead of R ∼ L−1. This implies
SNR ∼ L instead of SNR ∼ L1/2 for the SNR, so longer CNTs
still make better sensors in this case.

A third source of dissipation in cantilevered beams arises
from clamping to the substrate. Photiadis and Judge developed
an elegant theory for clamping loss in rectangular cantilevers
using Euler-Bernoulli theory.33,34 It is straightforward to
generalize their scaling result to a beam of arbitrary cross
section

Q−1
clamp = c

L5

I
√

I/A
. (12)

Here, I and A are the area moment of inertia and cross-
sectional area, respectively, while c is a numerical coefficient.
For a cylindrical beam of radius R, this clamping loss scales
Q−1 ∼ (L/R)5. The smaller fraction of surface area consumed
by clamping for large aspect-ratio beams results in smaller
dissipation. The coefficient c in Eq. (12) is order unity for
a rectangular beam.33 If this factor is the same order for a
cylindrical structure, the clamping dissipation is negligible for
CNTs. For a hollow cylinder, the dissipation is even smaller
than for a solid cylinder since I/A ∼ R2 for both structures,
but the area moment of inertia is much smaller for a hollow
structure.

We now compare our MD results on dissipation and Q

with the experiments of Hansma and co-workers.24,32 They
looked at the thermal vibrations in air of a set of silicon
nitride cantilevers with the same rectangular cross sections
and lengths ranging from 15 to 55 μm. From Fig. 3(c)
of their results,32 we estimate a dissipation Q−1 ∼ Lα with
α ≈ 1.46. We believe this scaling results from a combination
of gas friction and surface effects. With a reduced pressure
atmosphere and defect-free synthetic procedures, these two
factors might not affect a CNT cantilever.

In addition, the work of Jensen, Zettl and co-workers29 on
doubly clamped CNTs demonstrates that quality factors of
Q ≈ 1000 are achievable in real devices. Although Fig. 3 in
that reference shows a correlation of Q with length, there are
numerous instances over the CNT lengths studied of devices
with Q ≈ 1000. This is despite potentially underestimating the
quality factors by up to 10% and having approximately twice
the dissipation due to clamping loss of a cantilever. (Although
not explicitly stated, it is assumed that the measurements were
taken in vacuum and thus also missing the effects of gas
friction.)

VI. CONCLUSION

To understand the signal-to-noise ratio of a carbon nanotube
sensor, we studied the thermal vibrational spectrum of tip dis-
placements with molecular dynamics. Our results showed that
the intrinsic quality factor Q ≈ 700 was length independent.

195412-5



EDWARD H. FENG AND REESE E. JONES PHYSICAL REVIEW B 83, 195412 (2011)

This also led to the surprising conclusion that the signal-to-
noise ratio of an ideal CNT sensor SNR ∼ L1/2 increased with
increasing length. Using displacement detection techniques
with low detector noise and high accuracy, such as those
stemming from the field emission properties of a CNT,3

experiments could directly measure the thermal vibrational
spectrum and potentially confirm that Q ≈ 700 independent
of length. Moreover, high-quality synthetic methods and a low
pressure environment would minimize the dissipative effects
from surface defects and gas friction, allowing one to measure

the intrinsic dissipation from anharmonic interaction between
vibrational modes.
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