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Controllable Goos-Hänchen shifts and spin beam splitter for ballistic electrons in a parabolic
quantum well under a uniform magnetic field
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The quantum Goos-Hänchen shift for ballistic electrons is investigated in a parabolic potential well under a
uniform vertical magnetic field. It is found that the Goos-Hänchen shift can be negative as well as positive, and
becomes zero at transmission resonances. The beam shift depends not only on the incident energy and incidence
angle, but also on the magnetic field and Landau quantum number. Based on these phenomena, we propose an
alternative way to realize the spin beam splitter in the proposed spintronic device, which can completely separate
spin-up and spin-down electron beams by negative and positive Goos-Hänchen shifts.
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I. INTRODUCTION

The longitudinal Goos-Hänchen shift is well known for a
light beam totally reflected from an interface between two
dielectric media.1 This phenomenon, suggested by Sir Isaac
Newton, was observed first in a microwave experiment by
Goos and Hänchen2 and theoretically explained by Artmann
in terms of a stationary phase method.3 Up till now, the
investigations of the Goos-Hänchen shift have been extended
to different areas of physics,1 such as quantum mechanics,4,5

acoustics,6 neutron physics,7,8 spintronics,9 atom optics,10 and
graphene,11–13 based on the particle-wave duality in quantum
mechanics.

Historically, the quantum Goos-Hänchen shifts and relevant
transverse Imbert-Fedorov shifts were studied for relativistic
Dirac electrons in the 1970’s.14,15 With the development
of semiconductor technology, the Goos-Hänchen shift for
ballistic electrons in two-dimensional electron gas (2DEG)
systems became one of the important subjects in the study
of ballistic electron wave optics.16–19 It was found that the
lateral shifts of ballistic electrons transmitted through a
semiconductor quantum barrier or well can be enhanced by
transmission resonances, and the lateral shifts can become
negative as well as positive.19 The interesting Goos-Hänchen
shift, depending on the spin polarization, could also provide an
alternative way to realize the spin filter and spin beam splitter in
spintronics9 in the same way as other optical-like phenomena,
including double refraction20 and negative refraction21 in
spintronics optics.22

In this paper, we will investigate the Goos-Hänchen shifts
for ballistic electrons in a parabolic quantum well under a
uniform magnetic field, in which the high spin polarization
and electron transmission probability can be achieved.23 It
is shown that the lateral shift can be negative as well
as positive. As a matter of fact, the Goos-Hänchen shift
discussed here is different from that in a magnetic-electric
nanostructure,9 where the δ magnetic field is considered. In
such a quantum well, the uniform magnetic field continuously
bends the trajectory of the electron, so that the electrons
exhibit cyclotron motion. Then this implies that the behavior
of electrons in such a system has no direct analogy with the
linear propagation of light.13 Meanwhile, it is also suggested

that the Landau quantum number will have a great effect on
the Goos-Hänchen shift. We consider the Goos-Hänchen shift
for ballistic electrons in a parabolic quantum well under a
uniform magnetic field and its dependence on the magnetic
field and Landau energy level, which, to the best of our
knowledge, has not been investigated so far. More importantly,
the Goos-Hänchen shift for ballistic electrons depends on the
spin polarization by Zeeman interaction, which is similar to
that for neutrons.8 The realization of the negative and positive
Goos-Hänchen shifts corresponding to spin-up and spin-down
polarized electrons may have future applications in proposed
spintronic devices, such as spin filters and spin beam splitters.

II. THEORETICAL MODEL

We consider a 2DEG structure, with a confining potential
in the central region, as shown in Fig. 1(a). The confine-
ment potential is assumed to be parabolic in the transverse
y direction, and the electron transports in the 2DEG occur in
the x-y plane. A uniform magnetic B field is applied along the
perpendicular z direction and limited to within the parabolic
confinement region. In practice, such a B-field configuration
can be achieved by means of a ferromagnetic gate stripe on
top of the 2DEG heterostructure.23 The Hamiltonian within
the parabolic quantum well is then given by

H = (1/2m)(p − A)2 + Hconf + Hz, (1)

where m is the effective mass of the electron and p is the
momentum of the electron. The Landau gauge is chosen for
the magnetic vector potential, i.e., A = (By,0,0), where B is
the magnetic field strength. The parabolic confinement energy
can be expressed as Hconf = 1

2mω2
0y

2, while the Zeeman
interaction term is given by Hz = 1

2μBgσB, so μB is the Bohr
magneton, g is the Landé factor, and σ = ±1 denotes the spin
orientation parallel or antiparallel to the reference z axis. In
this system, the wave functions of a plane wave for electrons
in three regions can be expressed as

�I(x,y) = (eikxx + Ae−ikxx)eikyy, x < 0, (2)

�II(x,y) = (Beik′
xx + Ce−ik′

xx)ψ2(y), 0 < x < d, (3)

�III(x,y) = Deikx (x−d)eikyy, x > d, (4)
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where kx = √
2mE/h̄2−k2

y is the traveling wave vector in 2DEG.
The Schrödinger equation in the parabolic potential region can
be written in the form of a harmonic oscillator centered at Ỹ

with angular frequency ω̃c,[
mω̃2

c

2
(y−Ỹ )2+mω2

0ω
2
c

2ω̃2
c

Y 2+μBgσ

2
B− h̄2

2m

d2

dy2

]
�II=E�II,

(5)

with Ỹ = (ωc/ω̃c)2Y , ω̃2
c = ω2

0 + ω2
c , ωc = eB/m, Y =

h̄k′
x/eB, and ωc is the cyclotron frequency. So the solution

is given by a linear combination of Hermite polynomials as
follows:

ψ2(y) =
(

1

2nn!γ
√

π

)1/2

e−[(y−Ỹ )2/2γ 2]Hn

(
y − Ỹ

γ

)
, (6)

where γ 2 = h̄/
√

e2B2+m2ω2
0. The corresponding eigenenergy is

En =
(

n + 1

2

)
h̄ω̃c + mω2

0ω
2
c

2ω̃2
c

Y 2 + 1

2
μBgσB. (7)

The eigenstates of the system form a set of Landau-like states
with energy splitting proportional to B. Within the central
potential region, the longitudinal wave vector k′

x is given by

k′
x =

√
2mω̃2

c [En − (n + 1
2 )h̄ω̃c − 1

2μBgσB]

h̄2ω2
0

, (8)

which is spin dependent due to the Zeeman interaction.
Interestingly, when only the plane wave is considered, the
spatial location of the eigenstates inside the region of
the potential well is around Y = h̄k′

x/eB, which can be
rewritten by

Y = ν(n,k′
x)

ω2
0 + ω2

c

ωcω
2
0

, (9)

with a velocity

ν(n,k′
x) = 1

h̄

∂En

∂k′
x

= ω2
0

ω̃2
c

h̄k′
x

m
. (10)

The transverse location for each plane-wave eigenstate is pro-
portional to the velocity and magnetic field. From a classical
viewpoint, the spatial shift can be reasonably explained by
the Lorentz force.24 As a consequence, the transverse shifts
for the forward and backward propagating states inside the
central region are positive and negative, since the Lorentz force
is opposite for electrons moving in the opposite direction.
However, the lateral shift predicted by the Goos-Hänchen
effects will be completely different. In what follows, we will
discuss the spin-dependent Goos-Hänchen shift of electron
beams, instead of the plane wave, in such a configuration.

III. GOOS-HÄNCHEN SHIFTS AND SPIN BEAM SPLITTER

A. Stationary phase method

When the finite-sized incident electron beam is considered,
the wave function of the incident beam can be assumed to be

�in(x,y) = 1√
2π

∫
A(ky − ky0)ei(kxx+kyy) dky, (11)

with the angular spectrum distribution A(ky − ky0) around the
central wave vector ky0, then the transmitted beam can be
expressed by

�tr(x,y) = 1√
2π

∫
DA(ky − ky0)ei[kx (x−d)+kyy] dky, (12)

where the transmission coefficient D = exp (iφ)/g is deter-
mined by the boundary conditions at x = 0 and x = d with

g exp (iφ) = cos (k′
xd) + i

(
k2
x + k

′2
x

2kxk′
x

)
sin (k′

xd), (13)

which leads to the phase shift φ in terms of

tan φ = k2
x + k

′2
x

2kxk′
x

tan(k
′
xd). (14)

To find the position where �tr(x,y) is maximum, that is,
the lateral shift of the transmitted beam, we look for the place
where the phase of the transmitted beam, � = kx(x − d) +
kyy + φ, has an extremum when differentiated with respect to
ky , i.e., ∂�/∂ky = 0.25 So, according to the stationary phase
approximation, the Goos-Hänchen shift for ballistic electrons
at x = d is defined as9

s = − dφ

dky0
. (15)

It is noted that the subscript 0 denotes the value at ky = ky0,
namely, θ = θ0. Thus, the Goos-Hänchen shift, as described
in Fig. 1(b), can be obtained by

s = d tan θ0

2g2
0

(
1 − k

′2
x0

k2
x0

)
sin (2k′

x0d)

2k′
x0d

, (16)

where θ0 is the incidence angle and tan θ0 = ky0/kx0. Obvi-
ously, it is clearly seen from Eq. (16) that the Goos-Hänchen
shifts are negative as well as positive, depending on k

′2
x0/k2

x0
and sin (2k′

x0d).
In the propagating case, when the transmission resonances

k′
x0d = mπ (m = 1,2,3, . . .) or antiresonances k′

x0d = (m +
1/2)π (m = 1,2,3, . . .) occur, the Goos-Hänchen shift is zero,
which means the positions in the y direction are the same for
both incident and transmitted electrons. As a matter of fact,
when measured with reference to the geometrical prediction
from electron optics, the “zero” lateral shifts will become

FIG. 1. (a) Schematic diagram for a 2DEG with a parabolic
quantum well under a uniform magnetic field. (b) Negative and
positive Goos-Hänchen shifts of ballistic electrons are presented in
this configuration.
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essentially negative values, whereas when the incident energy
is less than the critical energy,

E < Ec = (
n + 1

2

)
h̄w̃c + 1

2μBgσB, (17)

k′
x0 becomes imaginary, thereby k

′2
x0/k2

x0 < 0. Substituting
k′
x0 = iκ0 into Eq. (16), we end up with the following

expression:

s = d tan θ0

2g′2
0

(
1 + κ2

0

k2
x0

)
sinh (2κ0d)

2κ0d
, (18)

with

g
′2
0 = cosh2 (κ0d) +

(
k2
x − κ2

0

2kxκ0

)2

sinh2 (κ0d). (19)

In the evanescent case, the Goos-Hänchen shifts are always
positive, which seems similar to the Goos-Hänchen shifts in a
single semiconductor barrier.18 In the opaque limit, κ0d � 1,
the lateral shift saturates to

s = 2κ0 tan θ0

k2
x0 + κ2

0

� 2 tan θ0

κ0
, (20)

which is independent of the width d of the potential well. In
the following discussions, we will study the Goos-Hänchen
shifts for different polarized electrons and their modulation by
the magnetic field.

First of all, an example of the Goos-Hänchen shifts (in units
of λe = 2πh̄/

√
2meE) for ballistic electrons as functions of

incident energy E/E0 in the quantum well under a uniform
vertical magnetic field is displayed in Fig. 2(a), where the
quantum well is made from an InSb semiconductor, the
physical parameters are, respectively, m = 0.013me, me is
the bare electron mass, g = 51, the length of potential well
is d = 50 nm, with a parabolic well of depth h̄ω0 = 2 meV,
an applied magnetic field of B = 0.5 T, n = 5, and E0 =
h̄ωc = 4.45 meV. It is clearly seen from condition (17) that
the critical energies are different for spin-up and spin-down
polarized electrons, which correspond to E+

c = 26.11 meV
and E−

c = 27.58 meV, respectively, for the parameters used
here. As shown in Fig. 2 (a), the behavior of the Goos-Hänchen
shifts coincides with the theoretical analysis mentioned above,
that is to say, the Goos-Hänchen shifts are always positive
when the incident energy is less than the critical energy Ec,
while the lateral shifts become negative as well as positive
periodically as related to the transmission resonances. In
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FIG. 2. (Color online) Dependence of the Goos-Hänchen shift
(a) and transmission probability (b) on the incident energy E/E0,
where θ0 = 70◦ and the other physical parameters are, respectively,
m = 0.013me, g = 51, d = 50 nm, B = 0.5 T, and n = 5. Solid
(red) and dashed (blue) lines correspond to spin-up and spin-down
polarized electrons.

addition, Fig. 2(b) also shows the dependence of transmission
probability T = |D|2 on the incident energy. This quantity
can be connected with the measurable ballistic conductance
G, according to the well-known Landauer-Büttiker formula at
zero or nonzero temperature.24,26

More interestingly, the spin-up and spin-down polarized
electron beams can be separated by spatial shifts, due to
their energy dispersion relation depending on the polarization.
Based on the properties of the Goos-Hänchen shifts, the
simplest way to realize the energy filter by the Goos-Hänchen
shifts is as follows. We can choose the incident energy within
the range of E+

c < E < E−
c . This suggests that the spin-down

polarized electrons for E > E−
c can traverse through the

structure in a propagating mode with a high transmission
probability, while the spin-up polarized electrons for E < E+

c

tunnel through it in the evanescent mode with a very low
transmission probability, as described in Fig. 2(b). So this
provides an alternative way to design a spin spatial filter with
an energy width �E = μBgB = 1.46 meV for the parameters
in Fig. 2.

Next, we will discuss the influence of magnetic field and
Landau energy level on the Goos-Hänchen shifts in such a
semiconductor device. Figure 3 illustrates the dependence
of the Goos-Hänchen shifts on the strength of magnetic
field B with different Landau quantum numbers n, where
n = 0 (a), n = 1 (b), n = 3 (c), n = 5 (d), θ0 = 70◦, E =
17.81 meV, and the other physical parameters are the same as
those in Fig. 2. Solid (red) and dashed (blue) lines correspond
to spin-up and spin-down polarized electrons. Basically, the
behavior of the Goos-Hänchen shifts is different from that
of transverse shifts for the plane wave, as described in
Sec. II. According to the definition of critical energy Ec,
under the low strength of magnetic field, the incident energy
will be larger than the critical energy, thus the electron can
propagate though the quantum well with negative and positive
Goos-Hänchen shifts, which can be adjusted by the conditions

(a)

0.0 0.2 0.4 0.6 0.8 1.0

4
2
0
2
4

B T

s
λ

e

(b)

0.0 0.2 0.4 0.6 0.8 1.0

4
2
0

2
4

B T

s
λ

e

(c)

0.0 0.2 0.4 0.6 0.8 1.0
4
2
0
2
4
6
8

10

B T

s
λ

e

(d)

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

10

B T

s
λ

e

FIG. 3. (Color online) Dependence of the Goos-Hänchen shift on
the strength of magnetic field B with different Landau quantum num-
bers n = 0 (a), n = 1 (b), n = 3 (c), n = 5 (d), where θ0 = 70◦, E =
17.81 meV, and the other physical parameters are the same as those
in Fig. 2. Solid (red) and dashed (blue) lines correspond to spin-up
and spin-down polarized electrons.
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for transmission resonances with changing magnetic fields. In
other words, in the propagating case, the Goos-Hänchen shifts
can be changed from negative to positive by controlling the
strength of the magnetic field, and vice versa. However, the
Goos-Hänchen shifts finally become positive with increasing
the strength of the magnetic field, due to the fact that the critical
energy becomes larger than the incident energy with a enough
large magnetic field Bc, and the propagation of electrons
is actually evanescent in this case. To better understand
the dependence of shifts on the magnetic field, we have to
calculate the critical magnetic field Bc from Eq. (17) by solving
the following equation, (n + 1/2)h̄e2B2

c /m2 + μBgσBc/2 +
(n + 1/2)h̄ω2

0 − E = 0, for the fixed incident energy E. For
example, the critical magnetic fields for spin-up and spin-down
polarized electrons can be numerically obtained as follows:
B+

c = 1.02 T and B−
c = 1.48 T for n = 1, B+

c = 0.49 T
and B−

c = 0.55 T for n = 3, and B+
c = 0.28 T and B−

c =
0.30 T for n = 5. So these results can be applicable to
explain the most striking effect around the critical magnetic
field Bc in Figs. 3(b)–3(d), while a similar behavior is not
shown in Fig. 3(a), because the critical magnetic fields, B+

c =
3.00 T and B−

c = 5.98 T for n = 0, are too large, and we
just show the range of magnetic field from 0 to 1 T due
to the physical restriction to applied magnetic field in the
laboratory. In addition, another observation from Fig. 3 is
that, with increasing Landau quantum number n, the curves
of the Goos-Hänchen shifts move leftward. That is to say, for
the given incident energy, the Landau energy level leads to the
fact that the resonant peak or the critical strength of magnetic
field Bc shifts toward the low magnetic field strength region
with increasing Landau quantum number n. Compared to
the previous results in the magnetic-electric nanostructure,9

the magnetic field and Landau quantum number provide
more freedom to control the quantum Goos-Hänchen shift
for ballistic electrons, which is useful to their application in
semiconductor devices.

Now, we will discuss the spin beam splitting by the spin-
dependent Goos-Hänchen shifts at various incidence angles. In
general, the Goos-Hänchen shifts can be modulated also by the
incidence angles, due to the energy dispersion (8). In Fig. 4(a),
we would like to emphasize that the spin-up and spin-down
polarized electrons can be spatially separated by the spin-
dependent Goos-Hänchen shifts at large incidence angles, for
example, θ0 = 80◦, where incident energy E/E0 = 7.8, and
the other physical parameters are the same as those in Fig. 2.
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FIG. 4. (Color online) Spin-dependent Goos-Hänchen shifts
(a) and corresponding phase shifts (b) as the function of incidence
angle, where E/E0 = 7.8 and the other physical parameters are the
same as those in Fig. 2. Solid (red) and dashed (blue) lines represent
spin-up and spin-down polarized electrons, respectively.

To confirm this intriguing result, the phase shifts of transmitted
electrons have been investigated also in Fig. 4(b). In detail, the
negative slope of the phase shift with respect to the incidence
angle will result in a positive Goos-Hänchen shift, whereas
the positive slope will lead to a negative Goos-Hänchen shift,
which is in agreement with theoretical predictions made by the
stationary phase method. Thus, the Goos-Hänchen shifts can
be explained by the reshaping process of the transmitted beam,
since each plane-wave component undergoes a different phase
shift due to multiple reflections inside the quantum well.18

The negative and positive beam shifts are usually considered
as consequences of constructive and destructive interferences
between the plane-wave components of the electron beam.

B. Numerical simulation

In this section, we proceed further to make numerical
simulations of the incident Gaussian-shaped beam, �in(x =
0,y) = exp(−y2/2w2

y + iky0y), where wy = w sec θ0, and w

is the width of the beam. According to the Fourier integral,
using Eqs. (11) and (12), we can obtain the wave function of
the transmitted beam as follows,

�tr (x,y) = 1√
2π

∫ k

−k

DA(ky − ky0)ei[kx (x−d)+kyy)] dky, (21)

where A(ky − ky0) = wy exp[−(w2
y/2)(ky − ky0)2]. For a

well-collimated beam the range of the above integral can
be ideally extended from −∞ to ∞. Figures 5(a) and 5(b)
illustrate the distribution of the transmitted beam, |�tr(x,y)|2,
for spin-up and spin-down polarized electrons, where θ0 =
80◦, the beam width is w = 5λe, and the other physical
parameters are the same as those in Fig. 2. As demonstrated

(a)

50 60 70 80 90 100
50

0

50

100

150

x nm

y
nm

(b)

50 60 70 80 90 100
100

50

0

50

100

x nm

y
nm

(c)

400 200 0 200 400
0.0

0.2

0.4

0.6

0.8

1.0

y nm

ψ
2

(d)

400 200 0 200 400
0.0

0.2

0.4

0.6

0.8

1.0

y nm

ψ
2

FIG. 5. (Color online) Distribution of the transmitted Gaussian-
shaped beam for spin-up (a) and spin-down (b) polarized electrons,
where θ0 = 80◦, the beam width is w = 5λe, and the other physical
parameters are the same as those in Fig. 2. Dashed lines represent
the loci of maximum values for the eye. Profiles of the normalized
incident and transmitted beams for spin-up (c) and spin-down
(d) polarized electrons are also compared at x = d , where solid (red)
and dashed (blue) lines represent the transmitted beams, and the
dotted (black) line represents the incident beam as reference.
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FIG. 6. (Color online) Influence of beam width on the Goos-
Hänchen shifts, where the physical parameters are the same as those
in Fig. 4. Solid (red) and dashed (blue) lines represent the shifts for
spin-up and spin-down polarized electrons, calculated by stationary
phase method. Lines with symbols � (◦) and � (∗) correspond to the
numerical results for spin-up (spin-down) polarization with w = 10λe

and w = 5λe, respectively.

in Figs. 5(a) and 5(b), dashed lines represent the loci of the
maximum values for distribution of the transmitted beams for
the eye. Evidently, the comparison between the normalized
incident and transmitted beams at x = d in Figs. 5(c) and 5(d)
show that the positive and negative lateral shifts correspond
to different spin polarizations. To find the numerical value of
the beam shifts, we can find that position y corresponds to
a maximum value of |�tr(x,y)|2. For the given parameters in
Fig. 5, y+ = 40.80 nm and y− = −43.21 nm can be achieved
for spin-up and spin-down polarized electrons, which are large
enough to separate the different spin-polarized electrons beam
spatially.

In Fig. 6, the numerical results further show the influence
of beam width on the Goos-Hänchen shifts and spin beam
splitter, where the physical parameters are the same as those
in Fig. 4, and the beam width is chosen to be w = 5λe and
w = 10λe (corresponding to beam divergences of δθ = 4◦ and
δθ = 2◦). It is demonstrated that the wider the local waist
is of the incident beam, the closer the numerical results are
to the theoretical results predicted by the stationary phase
method. It is worthwhile to point out that there is a discrepancy
between the theoretical results predicted by the stationary
phase approximation and the numerical results, resulting from
the distortion of the transmitted electron beam,9,18 especially
when the local beam waist is narrow, which implies a large
beam divergent δθ = λe/(πw). Actually, the stationary phase
approximation is valid only for a well-collimated electron
beam.9,18 In detail, when the incidence angle is small enough,
the Goos-Hänchen shifts predicted by the stationary phase

method are in agreement with the results given by numerical
simulations. But when a large incidence angle is chosen,
δθ 
 90◦ − θ0 is not satisfied, so that the transmitted beam
shape will undergo a severe distortion. It is suggested that
one cannot achieve an arbitrarily large Goos-Hänchen shift
in practice by increasing the incidence angle, taking into
account the influence of the finite beam width. In a word,
the theoretical results of the stationary phase method and
numerical simulations show that the simultaneously large and
opposite beam shifts for spin-up and spin-down polarized
electrons allow this system to realize the spin beam splitter,
which can completely separate the spin-up and spin-down
polarized electrons in such a semiconductor quantum device.

IV. DISCUSSION AND CONCLUSION

We have investigated the Goos-Hänchen shift for ballistic
electrons through a parabolic quantum well under a uniform
magnetic field. Due to the effect of the magnetic field, the
Goos-Hänchen shift for ballistic electrons also becomes spin
dependent, which leads to the unique applications in designing
the spin filter and spin beam splitter. It is found that the
Goos-Hänchen shift can be modulated by the incident energy,
magnetic field, Landau quantum number, and incidence angle.
In addition, we would like to mention that the Goos-Hänchen
shift is also sensitive to the device geometry, since the lateral
shift depends periodically on the width d of the parabolic
quantum well region. The spin-dependent Goos-Hänchen shift
and spin beam splitter presented here can be discussed in
GaAs/AlGaAs-based quantum well structures,23 rather than
InSb semiconductors with a high g factor.

Last but not least, the Goos-Hänchen shift and relevant
transverse Imbert-Fedorov effect in such a quantum well under
the magnetic field may have a close relation to the spin Hall
effect,17,27,28 which deserves further investigation. We hope
all the results presented here will stimulate further theoretical
and experimental research on quantum Goos-Hänchen shifts
for ballistic electrons in semiconductors9,19 and graphene12,29

and their applications in various quantum electronic
devices.
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