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Physisorption of an electron in deep surface potentials off a dielectric surface
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We study phonon-mediated adsorption and desorption of an electron at dielectric surfaces with deep
polarization-induced surface potentials where multiphonon transitions are responsible for electron energy
relaxation. Focusing on multiphonon processes due to the nonlinearity of the coupling between the external
electron and the acoustic bulk phonon triggering the transitions between surface states, we calculate electron
desorption times for graphite, MgO, CaO, Al2O3, and SiO2 and electron sticking coefficients for Al2O3, CaO,
and SiO2. To reveal the kinetic stages of electron physisorption, we moreover study the time evolution of the
image-state occupancy and the energy-resolved desorption flux. Depending on the potential depth and the surface
temperature, we identify two generic scenarios: (i) adsorption via trapping in shallow image states followed by
relaxation to the lowest image state and desorption from that state via a cascade through the second strongly
bound image state in not too deep potentials, and (ii) adsorption via trapping in shallow image states but followed
by a relaxation bottleneck retarding the transition to the lowest image state and desorption from that state via a
one-step process to the continuum in deep potentials.
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I. INTRODUCTION

Image states, arising from the polarization-induced interac-
tion between an electron and a surface, offer the possibility for
electron trapping at a surface. Since their original prediction1

for the surface of liquid and solid He, they have been
extensively studied for metallic surfaces.2–6 However, image
states also exist for dielectric surfaces provided the electron
affinity of the dielectric is negative, that is, the vacuum level
falls inside the gap between the valence and the conduction
band. Image states are then the lowest unoccupied states
and should, hence, allow for temporary trapping of external
electrons. So far, image states at a dielectric surface have been
only observed for graphite,7 but they are expected for other
dielectrics with negative electron affinity as well, for instance,
boron nitride8 and the alkaline earth oxides.9

Based on the idea of a two-dimensional electron surface
plasma,10–13 electron trapping in image states has been
suspected for a long time to be responsible for the buildup of
surface charges at plasma walls. We have recently proposed,
therefore, to consider the charging of a plasma wall as an
electron physisorption process.14,15 Indeed, for plasma walls
with negative electron affinity, image states should contribute
to the very beginning of the charging process when the wall
carries no charges yet and the image states thus fall inside the
energy gap of the wall. Only with increasing surface charge
are image states expected to play a less important role because
the Coulomb barrier due to the electrons already residing on
the wall shifts image states to an energy range where they
are destabilized by unoccupied bulk states. The later stages of
charge collection most probably occur via surface resonances
or empty volume states.16

Regardless of its importance for charge collection at dielec-
tric plasma walls, the electron kinetics in the image states of a
dielectric surface is an interesting phenomenon in its own right.
In addition, it is relevant in other physical contexts as well.
For instance, (i) in electron emitters, such as cesium-doped
silicon oxide films with negative electron affinity, electron
emission via image states reduces the operational voltage

considerably;17 (ii) in gallium-arsenide-based heterostruc-
tures, surface charging can be used for the contactless gating of
field devices;18 and (iii) for the alkaline earth oxides, studied
in the field of heterogeneous catalysis,19–22 the electronic
surface states provide the environment for catalytic reactions.
Some situations encompass electronic transitions from bulk to
surface states, as it is the case for electron emitters, while for
others, the electron does not penetrate into the bulk and the
electron kinetics takes place only in surface states. Interesting
questions in this case are the probability for temporary trapping
in these states, the mechanism of electron energy relaxation
at the surface, and the time after which a trapped electron is
released.

This is the concluding paper out of a series of three
on the phonon-mediated physisorption of an electron in the
image states of a dielectric surface. As in our previous work,
Refs. 23 and 24 (hereafter referred to as I and II), we
investigate adsorption and desorption of an electron at finite
temperatures assuming an acoustic-longitudinal bulk phonon
to control energy relaxation at the surface. For the dielectric
material we are considering, the level spacing of the lowest two
bound states typically exceeds the Debye energy, implying that
multiphonon processes have to be taken into account. In I and
II, we have studied desorption and sticking using an expansion
of the energy-dependent T matrix,25–27 allowing us to calculate
one- and two-phonon transition probabilities. This approach is,
however, limited to very few materials, for instance, graphite
and MgO. In the following, we will adopt a different strategy,
calculating multiphonon transition probabilities due to the
nonlinear electron-phonon coupling nonperturbatively. This
allows us to calculate the desorption time and the sticking
coefficient for the deeper surface potentials of CaO, Al2O3,
and SiO2.

The remainder of this paper is structured as follows.
In Sec. II, we briefly recall the quantum-kinetic approach
to physisorption. In Sec. III, we calculate the multiphonon
state-to-state transition probabilities. In Sec. IV, we present
our results for the desorption time and the prompt and kinetic
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energy-resolved and energy-averaged sticking coefficients. In
this section, we also discuss the time evolution of the bound-
state occupancy and the energy-resolved desorption flux.
Section V is devoted to the analytic treatment of a simplified
two-state model used to identify two generic physisorption
scenarios into which we can classify the results of this paper
as well as our previous results, before we conclude in Sec. VI.

II. ELECTRON KINETICS

As in I (Ref. 23) and II (Ref. 24), we describe the time
evolution of the occupancy of the bound surface states with
a quantum-kinetic rate equation.28,29 It captures all three
characteristic stages of physisorption30,31: initial trapping,
subsequent relaxation, and desorption.

The time dependence of the occupancies of the bound states
is given by28,29

d

dt
nn(t) =

∑
n′

[Wnn′nn′ (t) − Wn′nnn(t)]

−
∑

k

Wknnn(t) +
∑

k

τtWnkjk(t) (1)

=
∑
n′

Tnn′nn′ (t) +
∑

k

τtWnkjk(t), (2)

where Wn′n is the probability per unit time for a transition from
a bound state n to another bound state n′, Wkn and Wnk are the
probabilities per unit time for a transition from the bound state
n to the continuum state k and vice versa, and τt = 2L/vz

is the transit time through the surface potential of width L,
which, in the limit L → ∞, can be absorbed into the transition
probability. The matrix Tnm is defined implicitly by the above
equation. The last term in Eqs. (1) and (2), respectively, gives
the increase in the bound-state occupancy due to trapping of
an electron in bound surface states.

The probability for an approaching electron in the contin-
uum state k to make a transition to any of the bound states is
given by the prompt energy-resolved sticking coefficient

s
prompt
e,k = τt

∑
n

Wnk. (3)

By treating the incident electron flux as an externally
specified parameter, the solution of Eq. (1) describes the
subsequent relaxation and desorption. It is given by

nn(t) =
∑

κ

e−λκ t

∫ t

−∞
dt ′eλκ t ′e(κ)

n

∑
kl

ẽ
(κ)
l τtWlkjk(t ′), (4)

where e(κ)
n and ẽ(κ)

n are the right and left eigenvectors to the
eigenvalue −λκ of the matrix Tnm.

If the modulus of one eigenvalue λ0 is considerably
smaller than the moduli of the other eigenvalues λκ , a unique
desorption time and a unique sticking coefficient can be
identified.29 In this case, λ0 governs the long time behavior of
the equilibrium occupation of the bound states n

eq
q ∼ e−Eq/kBTs

and its inverse can be identified with the desorption time
λ−1

0 = τe. In this case, the bound-state occupancy nn(t) splits
into a slowly varying part n0

n(t) given by the κ = 0 summand

in Eq. (4) and a quickly varying part n
f
n (t) given by the sum

over κ �= 0 in Eq. (4).
The adsorbate, i.e., the fraction of the trapped electron

remaining in the surface states for times on the order of
the desorption time, is given by the slowly varying part only
n0(t) = ∑

n n0
n(t). By differentiating n0(t) with respect to the

time

d

dt
n0(t) =

∑
k

skinetic
e,k jk(t) − λ0n

0(t), (5)

we can, following Brenig,31 identify the kinetic energy-
resolved sticking coefficient

skinetic
e,k = τt

∑
n,n′

e
(0)
n′ ẽ(0)

n Wnk , (6)

giving the probability for both initial trapping and subsequent
relaxation.

If the incident unit electron flux corresponds to an electron
with Boltzmann distributed kinetic energies, the prompt or
kinetic energy-averaged sticking coefficient is given by

s...
e =

∑
k s...

e,kke−βeEk∑
k ke−βeEk

, (7)

where β−1
e = kBTe is the mean electron energy.

The desorption flux, that is, the flux due to an electron that is
not instantly reflected at the boundary but sticks to the surface
for a finite time, can also be calculated from the occupancy
of the bound surface states. From Eq. (1), we infer that the
losses of the bound-state occupancy increase the continuum
state occupancy by

dnk

dt
=

∑
n

Wknnn(t). (8)

As the electron remains in the surface potential for the time
it needs to travel through the surface potential, the occupancy
of the continuum state k is given by nk = τt ṅk . To obtain the
energy-resolved desorption flux, we multiply the occupancy
of the continuum state k with the flux j box

k associated with
the box-normalized state |φk〉.23 Thus, the energy-resolved
desorption flux is given by

jk(t) = τt j
box
k

∑
n

Wknnn(t), (9)

which is well defined in the limit L → ∞.

III. TRANSITION PROBABILITIES

The kinetic equations presented in the last section rely on
the knowledge of the transition probabilities. They have to be
calculated from a microscopic model for the electron-surface
interaction.

For a dielectric surface, the transitions are driven by
phonons, the maximum energy of which is, within the Debye
model, the Debye energy h̄ωD . By measuring energies in
units of the Debye energy, important dimensionless parameters
characterizing the potential depth are

εn = En

h̄ωD

and 	nn′ = En − En′

h̄ωD

, (10)
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where En < 0 is the energy of the nth bound state.
In I, we introduced the following classification for the

potential depth. If −n + 1 > 	12 > −n, we call the potential
n-phonon deep. For the calculations in I and II, we considered
only one- or two-phonon deep potentials, for which one- and
two-phonon transition probabilities are sufficient. Dielectrics
with two-phonon deep potentials such as graphite or MgO
are, however, an exception. Many dielectrics, for instance,
Al2O3, CaO, GaAs, or SiO2, have more than two-phonon deep
potentials. Hence, the more relevant situation is physisorption
in deep surface potentials for which multiphonon transition
probabilities are required.

To calculate multiphonon transition probabilities for the
one-dimensional microscopic model used in I and II, we briefly
recall its main features. In short, for a dielectric surface, the
main source of the attractive static electron-surface potential
is the coupling of the electron to a dipole-active surface
phonon.32 Far from the surface, the surface potential arising
from this coupling merges with the classical image potential
and thus ∼1/z. Close to the surface, however, the surface
potential is strongly modified by the recoil energy resulting
from the momentum transfer parallel to the surface when
the electron absorbs or emits a surface phonon. Taking this
effect into account leads to a recoil-corrected image potential
∼1/(z + zc) with zc a cutoff parameter defined in I.

Transitions between the eigenstates of the recoil-corrected
image potential are due to dynamic perturbations of the
surface potential. The surface potential is very steep near the
surface. A particularly strong perturbation arises, therefore,
from the longitudinal-acoustic bulk phonon perpendicular to
the surface, which causes the surface plane to oscillate.

The Hamiltonian from which we calculate the transition
probabilities was introduced in I, where all quantities entering
the Hamiltonian are explicitly defined. It is given by

H = H static
e + Hph + H

dyn
e−ph, (11)

where

H static
e =

∑
q

Eqc
†
qcq (12)

describes the electron in the recoil-corrected image potential,

Hph =
∑
Q

h̄ωQb
†
QbQ (13)

describes the free dynamics of the bulk longitudinal-acoustic
phonon responsible for transitions between surface states, and

H
dyn
e−ph =

∑
q,q ′

〈q ′|Vp(u,z)|q〉c†q ′cq (14)

denotes the dynamic coupling of the electron to the bulk
phonon.

The perturbation Vp(u,z) can be identified as the difference
between the displaced surface potential and the static surface
potential. It reads, after the transformation z → z − zc, as

Vp(u,z) = − e2
0

z + u
+ e2
0

z
, (15)

where 
0 = (εs − 1)/4(εs + 1) with εs the static dielectric
constant. In general, multiphonon processes can arise both

from the nonlinearity of the electron-phonon coupling H
dyn
e−ph

as well as from the successive actions of H
dyn
e−ph encoded in the

T-matrix equation

T = H
dyn
e−ph + H

dyn
e−phG0T , (16)

where G0 is given by

G0 = (
E − H static

e − Hph + iε
)−1

. (17)

The transition probability per unit time from an electronic
state q to an electronic state q ′ encompassing both types of
processes is given by25

Wq ′q = 2π

h̄

∑
s,s ′

e−βsEs∑
s ′′ e−βsEs′′

|〈s ′,q ′|T |s,q〉|2

× δ(Es − Es ′ + Eq − Eq ′ ), (18)

where βs = (kBTs)−1, with Ts the surface temperature and
|s〉 and |s ′〉 the initial and final phonon states. We are only
interested in the transitions between electronic states. It is thus
natural to average in Eq. (18) over all phonon states. The delta
function guarantees energy conservation.

In our previous work, we have used an expansion of the T
matrix to calculate multiphonon transition rates. In principle,
this ensures that both linear and nonlinear terms in the
interaction as well as successive actions of the perturbation are
taken into account up to a certain order of the phonon process.
However, even for a two-phonon deep potential, taking all
two-phonon processes into account is nearly impossible. The
calculation becomes feasible if two-phonon processes are only
taken into account for transitions not already enabled by a one-
phonon process. This amounts to computing only the lowest
required phonon order for a given transition, neglecting higher-
order corrections to it. For higher-order phonon processes,
even this simplified strategy becomes unfeasible. A different
approach is thus needed.

From I and II, we qualitatively know the relevance of
the different types of multiphonon processes for particular
electronic transitions. For transitions between bound and
continuum states, for instance, one-phonon processes are
sufficient at low electron energies. We will therefore compute
the transition probability between bound and continuum states
in the one-phonon approximation. For transitions between
bound states, we found that multiphonon processes due to the
nonlinearity of the electron-phonon coupling tend to be more
important than the multiphonon processes due to the iteration
of the T matrix, unlike what we found for the two-phonon
bound-state and continuum transitions (see I) or to what Šiber
and Gumhalter33,34 found in the context of atom-surface scat-
tering. Indeed, multiphonon processes from the iteration of the
T matrix give a minor contribution, unless resonances arising
from the T matrix become relevant. This happens whenever
the energy difference between two bound states is a multiple of
the Debye energy. Resonances then smoothen the abrupt steps
in the transition probability at the depth thresholds. Since the
electronic matrix element between the first and the second
bound states is the largest one, this effect is most pronounced
for |	12| = n. Incidentally, bound-state resonances can also
lead to significant corrections in atom-surface scattering as
discussed by Brenig35 and Šiber and Gumhalter.36
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In view of the above discussion, we expect an approx-
imation that takes only the nonlinearity of the electron-
phonon interaction nonperturbatively into account to give an
acceptable first estimate for the multiphonon transition rates.
We denote this approximation as the nonlinear multiphonon
approximation. In particular, it should be sufficient for the
identification of the generic behavior of multiphonon-mediated
adsorption and desorption.

Calculating multiphonon processes due to nonlinear terms
in the interaction potential37 amounts to a distorted-wave Born
approximation with the full interaction potential. Thus, the
transition probability per unit time is given by

Wq ′q = 2π

h̄

∑
s,s ′

e−βsEs∑
s ′′ e−βsEs′′

∣∣〈q,s|H dyn
e−ph|s ′,q ′〉∣∣2

× δ(Es + Eq − Eq ′ − Es ′ ). (19)

To evaluate the multiphonon transition probability, we use
H

dyn
e−ph in the form of Eq. (15). The transition matrix element

in Eq. (19) is then given by

〈q,s|H dyn.

e−ph|q ′,s ′〉 = 〈s|
∫ ∞

zc

dz φ∗
q (z)

× [v(z + u) − v(z)]φq ′(z)|s ′〉, (20)

where v(z) = −(e2
0)/z. By introducing dimensionless vari-
ables x = z/aB , the Fourier transform of the static potential

v(p) =
∫ ∞

xc

dx eipxv(x) (21)

and the state-to-state matrix element

fqq ′ (p) =
∫ ∞

xc

dx φ∗
q (x)e−ipxφq ′ (x), (22)

the transition probability can be rewritten as

Wq ′q = 2π

h̄

∑
s,s ′

e−βsEs∑
s ′′ e−βsEs′′

∫ ∞

−∞

dp

2π

∫ ∞

−∞

dp̃

2π
v(p)v∗(p̃)

× fqq ′ (p)f ∗
qq ′ (p̃)〈s|[e−i

p

aB
u − 1

]|s ′〉
× 〈s ′|[ei

p̃

aB
u − 1

]|s〉δ(Es + Eq − Es ′ − Eq ′). (23)

By using the identity δ(x) = 1/(2π )
∫ ∞
−∞ dt eixt and employ-

ing 〈s|eiEs t/h̄ = 〈s|eiHpht/h̄, the above expression becomes

Wq ′q = 1

h̄2

∫ ∞

−∞

dp

2π

∫ ∞

−∞

dp̃

2π
v(p)v∗(p̃)fqq ′ (p)f ∗

qq ′ (p̃)

×
∫ ∞

−∞
dt ei(Eq−Eq′ )t/h̄〈〈[e−i

p

aB
u(0) − 1

][
e
i

p̃

aB
u(t) − 1

]〉〉
(24)

with〈〈· · ·〉〉 = ∑
s e−βsEs 〈s| · · · |s〉/∑

s ′′ e−βsEs′′ the average
over phonon states. This average can be evaluated for q �= q ′
employing Glauber’s theorem,38 which yields〈〈[

e
−i

p

aB
u(0) − 1

][
e
i

p̃

aB
u(t) − 1

]〉〉
= e

− 1
2a2

B

p2〈〈u(0)2〉〉
e
− 1

2a2
B

p̃2〈〈u(t)2〉〉
e

1
a2
B

pp̃〈〈u(0)u(t)〉〉
(25)

with

〈〈u(0)u(t)〉〉 =
∑
Q

h̄

2μNsωQ

{[1 + nB(h̄ωQ)]e−iωQt

+ nB(h̄ωQ)eiωQt } (26)

the correlation function of the displacement field

u =
∑
Q

√
h̄

2μωQNs

(bQ + b
†
−Q), (27)

where μ is the mass of the unit cell of the lattice and Ns is the
number of unit cells.

As in I and II, we use for calculational convenience a bulk
Debye model for the longitudinal-acoustic phonon, although it
is less justified for the high-energy part of the spectrum, which
also enters our calculation. Sums over phonon momenta are
thus replaced by∑

Q

. . . = 3Ns

ω3
D

∫ ωD

0
dω ω2 . . . . (28)

In terms of the dimensionless variables

x = ω

ωD

, δ = h̄ωD

kBTs

,and τ = ωDt, (29)

the phonon correlation function becomes

〈〈u(0)u(τ )〉〉 = 3h̄

2μωD

∫ 1

0
dx x

[
e−ixτ

1 − e−δx
+ eixτ

eδx − 1

]
.

(30)

Hence, for the transition probability per unit time we obtain

Wq ′q = e4
2
0

h̄2ωDa2
B

∫ ∞

−∞

dp

2π

∫ ∞

−∞

dp̃

2π
v(p)v(p̃)fqq ′ (p)f ∗

qq ′ (p̃)

× e− 1
2 γp2q(0)e− 1

2 γ p̃2q(0)
∫ ∞

−∞
dτ ei	qq′ τ+γpp̃q(τ ), (31)

where

q(τ ) =
∫ 1

0
dx x

[
e−ixτ

1 − e−δx
+ eixτ

eδx − 1

]
and

γ = 3h̄

2μa2
BωD

. (32)

The transition probability (31) contains two Debye-Waller
factors exp[−γp2q(0)/2] and exp[−γ p̃2q(0)/2] governing
the reduction of the transition probability as a function of
the surface temperature. It also contains phonon processes of
all orders as can be most easily seen from the Taylor expansion

eγpp̃q(τ ) = 1 + γpp̃q(τ ) + 1
2 [γpp̃q(τ )]2 + · · · . (33)

Clearly, the second term on the right-hand side represents
the one-phonon and the third term the two-phonon process.
From I, we know that two-phonon processes are much
weaker than one-phonon processes. We expect, therefore,
lower-order phonon processes to dominate their higher-
order corrections, so that the expansion (33) converges
quickly.

As higher-order phonon processes are small compared
to lower-order processes, we take, for a given 	qq ′ , only
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the leading term of exp[γpp̃q(τ )] into account, that is, the
lowest-order phonon process that enables a transition between
the states q and q ′. The Fourier transformation of powers of
q(τ ), however, required when (33) is used in (31), can not be
evaluated in closed form, making it necessary to construct an
approximation for q(τ ).

To derive an approximation for q(τ ) subject to the constraint∫ ∞

−∞
dτ ei	qq′ τ qn(τ ) = 0 for |	qq ′ | > n, (34)

which states that an n-phonon process yields a nonvanishing
transition probability only for −n < 	 < n and vanishes
otherwise, we split q(τ ) = qs(τ ) + qi(τ ) into a contribution
arising from spontaneous phonon emission qs(τ ) and a
contribution from induced phonon emission or absorption
qi(τ ). They are, respectively, given by

qs(τ ) =
∫ 1

0
dx xe−ixτ and qi(τ ) = 2

∫ 1

0
dx x

cos(xτ )

eδx − 1
.

(35)

The former can be evaluated giving

qs(τ ) = cos τ − 1

τ 2
+ i

τ cos τ − sin τ

τ 2
+ sin τ

τ
. (36)

For qi(τ ), we need to find an approximation. For this purpose,
we look at the Fourier transform of qi :∫ ∞

−∞
dτ ei	τ qi(τ ) =

{
2π

|	|
eδ|	|−1 for − 1 < 	 < 1

0 else
. (37)

Expanding the Fourier transform in terms of |	|,

2π
|	|

eδ|	| − 1
≈ 2π

[
1

δ
− 1

2
|	| + 1

12
δ|	|2 + O(δ2)

]
(38)

yields a high-temperature approximation, which converges
quickly for the temperatures we are interested in and guar-
antees at the same time that the one-phonon contribution can
only bridge energy differences up to |	qq ′ | = 1. Applying the
inverse transformation gives

qi(τ ) =
(

2

δ
− 1 + δ

6

)
sin(τ )

τ
+ 1

τ 2

+
(

−1 + δ

3

)
cos(τ )

τ 2
− δ

3

sin(τ )

τ 3
+ O(δ2), (39)

which satisfies Eq. (34). By using this approximation, the
Fourier transform of powers of q(τ ) can be done analytically.

As the n-phonon process gives a vanishing transition
probability at |	| = n, we take the maximum of the n-phonon
and the n + 1-phonon process to obtain a better approximation
in the vicinity of |	| = n. Then, the Fourier transformation of
exp[γpp̃q(τ )] in leading nonvanishing order is given by

∫ ∞

−∞
dτ ei	τ+γpp̃q(τ,δ) ≈

{
max(An,An+1) for n − 1 < 	 < n,

max(Bn,Bn+1) for − n < 	 < −n + 1
, (40)

where

An = −2π
(γpp̃)n

n!

n∑
k=0

(
n

k

) k∑
j=0

(
k

j

)
(−1)n+j

(
1

δ
+ 1

2
+ δ

12

)n−k (
1

2
+ δ

6

)k−j (
− δ

6

)j (	 − n)n+k+j−1

(n + k + j − 1)!
+ O(δ2) (41)

and

Bn = 2π
(γpp̃)n

n!

n∑
k=0

(
n

k

) k∑
j=0

(
k

j

)
(−1)n+j

(
−1

δ
+ 1

2
− δ

12

)n−k (
−1

2
+ δ

6

)k−j (
δ

6

)j (	 + n)n+k+j−1

(n + k + j − 1)!
+ O(δ2). (42)

Using the approximation given by Eq. (40) allows an
efficient numerical evaluation of the transition probabilities
(31). Equations (39)–(42) are first order in δ. For the materials
and temperatures we are interested in, this is sufficient. Note,
however, that the expansion can be continued to higher orders
in δ. The Fourier transformation of exp[γpp̃q(τ )] is then
still a polynomial in 	 and, thus, amenable for numerical
calculations.

IV. Results

We now use the multiphonon transition probability to study
the electron kinetics in front of a CaO, Al2O3, and SiO2 surface.
They all have three-phonon deep surface potentials, that is, the
energy difference of the two lowest image states is between two

and three Debye energies. The material parameters required
for the numerical computation are summarized in Table I.
All numerical results were obtained for these parameters.
Where indicated, we varied the Debye temperature to simulate
different potential depths. Furthermore, the multiphonon cal-
culation for CaO, Al2O3, and SiO2 is compared to the one- and
two-phonon calculations from I and II, which are applicable
to graphite and MgO.

A. Desorption

To judge the quality of the nonlinear multiphonon approx-
imation derived in the previous section, we first compare in
Fig. 1 the inverse desorption time obtained from it with the
inverse desorption time obtained from our previous one- and
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TABLE I. Material parameters for the numerical results.

CaO Al2O3 SiO2

Debye temperature TD 648 K 980 K 470 K
Dielectric constant εs 12.01 9.9 3.78
TO-phonon frequency h̄ωT 41 meV 79 meV 133 meV

two-phonon approximations. Shown is the dependence of τ−1
e

on the Debye temperature TD , which is tuned to vary the
potential depth. The dimensionless inverse temperature δ, as
defined in Eq. (29), is kept constant to keep the level of phonon
excitation the same while the Debye temperature is varied.

The nonlinear multiphonon approximation can be, of
course, only compared with the two-phonon approximation in
the range of Debye temperatures for which the potential is two-
phonon deep. Calculated in the multiphonon approximation,
τ−1
e changes very little over the range of two-phonon depth, but

shows steep jumps at the threshold to one- and three-phonon
depth. For τ−1

e calculated in the two-phonon approximation,
which is based on an iteration of the T matrix with the nonlinear
electron-phonon coupling, these thresholds are washed out by
the resonances. Nevertheless, τ−1

e is on the same order of
magnitude in both approximations. The main effect of the
neglected resonances is the rounding off of the drops at the
thresholds. As the steps, an artifact of taking only nonlinear
multiphonon processes into account, are less steep for deeper
potentials, the nonlinear multiphonon approximation might be
even more appropriate for deeper potentials. The thin dotted
vertical line in Fig. 1 corresponds to Al2O3. Unfortunately,
the potential depth is just below the two-phonon three-phonon
threshold, so the value for τ−1

e is most likely underestimated.
Figure 1 suggests that the nonlinear multiphonon approxi-

mation, that is, the Born approximation with the full nonlinear
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FIG. 1. (Color online) Inverse desorption time τ−1
e as a function of

the Debye temperature TD for δ = 1 (surface temperature Ts = TD/δ)
calculated in the nonlinear multiphonon approximation (solid red
line) and the two-phonon approximation from I for two-phonon depth
(dashed blue line). The surface potential is one-phonon deep for
TD > 2000 K, two-phonon deep for 2000 K > TD > 1000 K, three-
phonon deep for 1000 K > TD > 666 K, and four-phonon deep for
666 K > TD > 500 K. Data for TD = 980 K apply to Al2O3 (thin
vertical line).
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FIG. 2. (Color online) Inverse desorption time τ−1
e as a function

of the surface temperature Ts for graphite, MgO, CaO, Al2O3, and
SiO2.

electron-phonon coupling, should be adequate for identifying
different scenarios of phonon-driven electron physisorption
in deep potentials. Nevertheless, we can not rigorously
assess its range of validity compared, for instance, to an
approximation based on an iteration of the T matrix with
only linear electron-phonon coupling. For transitions between
deep bound states, higher orders in the nonlinear electron-
phonon coupling tend to benefit from the large electronic
matrix elements, while, in particular for low temperatures,
bound-state resonances enhance the relevance of iterations of
lower orders of the nonlinear electron-phonon coupling. For
a better understanding, an expansion of the T matrix with the
full nonlinear electron-phonon coupling would be necessary.
Taking virtual processes involving the Rydberg series of image
states into account would make this an interesting yet strenuous
continuation of this work.

We now move on to the study of the dependence of
τ−1
e on the surface temperature. Figure 2 shows the inverse

desorption time τ−1
e as a function of the surface temperature

for graphite, MgO, Al2O3, CaO, and SiO2. For graphite
and MgO, both two-phonon deep, τ−1

e was calculated in
the two-phonon approximation; for Al2O3, CaO, and SiO2,
all of them three-phonon deep, the nonlinear multiphonon
approximation has been used. For all materials, τ−1

e increases
significantly with the surface temperature.

By comparing, in Fig. 2, τ−1
e for Al2O3, CaO, and

SiO2, we notice that τ−1
e increases with decreasing εs (see

Table I) in accordance with the fact that a smaller εs implies
a less deep surface potential and thus a faster desorption.
From Fig. 2, we also see that, for high surface temperatures,
desorption from the two-phonon deep potentials of graphite
and MgO is quicker than from the three-phonon deep potentials
of Al2O3, CaO, and SiO2 as expected. For low surface
temperature, however, τ−1

e for graphite decreases much steeper
than for the other materials. This might be due to the high
Debye temperature of graphite, so for room temperature, the
dimensionless inverse temperature δ = TD/Ts , which controls
phonon excitation, is already in the low-temperature regime
where downward transitions due to spontaneous phonon
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emission remain constant, while upward transitions are ex-
tremely temperature dependent, causing the desorption time
to be equally temperature dependent. This peculiarity leads to
the surprising fact that, at low temperatures, desorption from
two-phonon deep potentials can be in some cases slower than
desorption from three-phonon deep potentials.

Figure 2 also gives insight into the validity of the high-
temperature expansion (39). Up to first order in δ, it is valid
for δ < 3. This corresponds to a surface temperature of 300 K
for Al2O3 and 225 K for CaO. The small upward bends at these
temperatures indicate that, for lower surface temperatures, the
expansion given by Eq. (39) should be continued to higher
orders in δ.

B. Sticking

In II, we found that one-phonon processes give much
higher contributions to the sticking coefficient than two-
phonon processes. For this reason, we calculate the transition
probabilities for continuum and bound-state transitions only
in the one-phonon approximation. The effect of multiphonon
processes with regard to sticking lies in the relaxation from
the state in which the electron is initially trapped to the lowest
bound state. This is captured by the kinetic sticking coefficient.
Before we address this question in more detail, we take a look
at the prompt sticking coefficient.

The prompt sticking coefficient for Al2O3, CaO, and SiO2

is presented in Fig. 3. First, we consider the prompt energy-
resolved sticking coefficient shown in the inset. Note that the
quadratic phonon dispersion of the Debye model translates
into an energy-resolved sticking coefficient which, apart from
the discontinuities, is proportional to the electron energy. The
steep jumps in the energy-resolved sticking coefficient reflect
level accessibility. When the energy difference between the
approaching electron and a bound state exceeds the Debye
energy, one-phonon processes no longer enable sticking to
this level. Since the lowest two bound states of the image
potential of Al2O3 and SiO2 have energies εn < −1, they can
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FIG. 3. (Color online) Prompt energy-averaged sticking coeffi-
cient for CaO, Al2O3, and SiO2 as a function of the mean energy of
the electron at a surface temperature of Ts = 300 K. Inset: Prompt
energy-resolved sticking coefficient for Al2O3 and SiO2 as a function
of the electron energy for Ts = 300 K.
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FIG. 4. (Color online) Prompt (full line) and kinetic (dashed line)
energy-averaged sticking coefficient for SiO2 as a function of the
mean energy of the electron and the surface temperature Ts .

not be reached by one-phonon processes from the continuum.
Thus, the lowest bound state contributing to prompt sticking
is the third bound state. Due to the differences in the Debye
energy, the energy-resolved sticking coefficient for SiO2 is
larger and increases faster for low electron energies than the
sticking coefficients for Al2O3 and CaO (not explicitly shown).
Compared to Al2O3 and CaO, the energy-resolved sticking
coefficient for SiO2 is thus strongly peaked at low electron
energies. As a result, the energy-averaged sticking coefficient
shown in the main panel of Fig. 3 is much larger for SiO2 than
for Al2O3 and CaO.

Figure 4 shows the prompt and kinetic energy-averaged
sticking coefficient for SiO2 as a function of the mean
electron energy and the surface temperature. The prompt
sticking coefficient increases slightly with temperature due
to the increased contribution of induced phonon emission
responsible for continuum and bound-state transitions. The
kinetic sticking coefficient is smaller than the prompt sticking
coefficient by four to five orders of magnitude and decreases
with temperature as a higher surface temperature favors quick
transitions back into the continuum after initial trapping.

Depending on whether transitions from the upper bound
states to the lowest state or to the continuum are more likely,
the electron trickles through after initial trapping or desorbs
before relaxing to the lowest bound state. For the three-phonon
deep surface potentials of Al2O3, CaO, and SiO2, trickling
through is suppressed, leading to a considerable reduction of
the kinetic compared to the prompt sticking coefficient.

C. Electron kinetics

So far, we have calculated from the kinetic rate
equation (2) the prompt and kinetic sticking coefficients and
the desorption time. The rate equation contains, however, more
information. For a specified electron influx or initial condition,
the time evolution of the bound-state occupancy and the energy
resolution of the desorption flux can be calculated as well.

To address the first question, we plot in Fig. 5 the time
evolution of the bound-state occupancy. Our aim is to identify
the stages of physisorption and to relate them to the eigenvalues
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FIG. 5. (Color online) Time evolution of the bound-state occu-
pancy of a single electron trapped at t = 0 in the upper bound states of
Al2O3 at Ts = 300 K. The thin vertical lines correspond to λ−1

0 , λ−1
1 ,

and λ−1
2 , respectively, where −λi are the three lowest eigenvalues of

the matrix Tnm.

of the matrix Tnm. The situation we are considering is a
three-phonon deep potential, that is, −3 < 	12 < −2, with the
second bound state lying more than one Debye energy below
the continuum, that is, ε2 < −1, so that electron trapping,
due to one-phonon processes, can occur only in the third and
higher bound states. The bound states i � 2, which we call
upper bound states, are linked by one-phonon transitions.

To obtain the time evolution of the bound-state occupancy
after trapping of an electron at t = 0, we solve the rate equation
with the initial condition for the bound-state occupancy
ni(0) = τtWik for a specified k, which is the probability that
the electron is trapped in state i. In Fig. 5, k corresponds to
an electron energy of E = 0.05 eV. Due to the high electron
energy, the third state can not be reached by a one-phonon
process. Thus, trapping occurs in the fourth and higher bound
states.

In a first stage after trapping of the electron, the fast one-
phonon transitions between the upper bound states dominate
the electron kinetics. Due to trapping of the electron in the
fourth and higher bound states, the occupancy of the upper
bound states is out of equilibrium. Over the time scale set by
λ−1

2 , the inverse of the third eigenvalue of Tnm, the occupancy
in the upper bound states relaxes toward its equilibrium value.
The electron trickles through from the fourth and higher bound
states to the second bound state, as can be seen from the
increase in the occupancy of the second bound state n2 and
the reduction of the occupancy of the third and higher bound
states nq�3.

Then, the strong one-phonon transitions between the upper
bound states and the continuum, occurring over the time
scale set by λ−1

1 , empty the upper bound states. The weak
multiphonon transitions from the upper states to the lowest
bound state are only a small perturbation to the electron
kinetics in the upper bound states so that λ−1

1 corresponds
to the desorption time for the system of the upper bound states
without the lowest bound state.

Until the upper bound states are emptied, a small fraction
of the occupancy reaches the lowest bound state as can be seen
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FIG. 6. (Color online) Energy-resolved desorption flux at t =
10−4 s for an electron trapped at t = 0 in the upper bound states under
the same conditions as in Fig. 5. For Al2O3, one-phonon transitions
between bound and continuum states are only possible from the third
and higher bound states. The small numbers give the bound state
from which transitions to the continuum are no longer possible at the
respective energy.

from the discrepancy of the initial occupancy of the upper
bound states nq�2 and the maximum occupancy of n1. This
difference corresponds to the reduction of the kinetic with
respect to the prompt sticking coefficient in Fig. 4. The lowest
bound state remains occupied for a much longer time, until
desorption takes place at times on the order of τe = λ−1

0 .
Figure 6 finally shows the energy-resolved desorption flux

at t = 10−4 s [given by Eq. (9)] after trapping of the electron
under the same conditions as in Fig. 5. The final transition that
sets the electron free is a one-phonon transition from one of the
upper bound states to the continuum. From each bound state i,
one-phonon transitions are only possible to continuum states
with an energy E � Ei + h̄ωD . Hence, the energy-resolved
desorption flux exhibits the same discontinuities as the energy-
resolved sticking coefficient shown in Fig. 3, located at
electron energies for which one-phonon transitions between
bound states and the continuum cease to be operational.

V. TWO-STATE SYSTEM: DISCUSSION

To clarify the generic behavior of electron physisorption
at dielectric surfaces, and to put the results presented in the
previous section and in I and II into perspective, we study a
simple model of two bound states coupled to a continuum of
states. Electron physisorption occurs in the image potential
that supports a deep lowest bound state, well separated from
a group of relatively closely packed upper bound states. Since
the upper bound states are strongly coupled by one-phonon
processes, they can be subsumed under an effective upper
bound state. The effective state is then weakly coupled to the
lowest bound state via multiphonon processes and strongly
coupled to the continuum via one-phonon processes.

The left panel of Fig. 7 schematically shows the system
of the two surface states. Gearing toward deep potentials, we
include only transitions between the two bound states and
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FIG. 7. (Color online) Left panel: Schematic drawing of the two-
state model discussed in the main text. Middle panel: Physisorption
scenario of type A. A trapped electron has a high chance to drop
to the bottom, then it revolves between the two bound states, until
it desorbs. Right panel: Physisorption scenario of type B. Due to a
relaxation bottleneck, the electron is unlikely to drop to the lowest
state. Transitions that the electron makes once per temporary trapping
event are represented by a thin line; a bold line represents transitions
made more than once; and dashed lines represent transitions that are
made with a very low probability.

between the upper state and the continuum. The matrix Tnm

defined by Eq. (1) reads, for this system, as

T =
(−W21 W12

W21 −W12 − Wc2

)
, (43)

where W12 and W21 are the transition probabilities from the
second to the first bound state and vice versa, and Wc2 is
the transition probability from the second bound state to the
continuum. For the two-state model, the eigenvalues −λκ and
the right and left eigenvectors e(κ) and ẽ(κ) can be calculated
analytically. The eigenvalues are given by

−λ0,1 = − 1
2 (W21 + W12 + Wc2)

± 1
2

√
(W21 + W12 + Wc2)2 − 4W21Wc2. (44)

Parameters of physical interest can be also obtained
analytically. The desorption time, for instance, is the negative
inverse of the lowest eigenvalue τe = λ−1

0 . Since only the
upper bound state can be reached from the continuum, prompt
sticking arises solely from trapping in the upper bound state.
The prompt sticking coefficient is thus given by s

prompt
e,k =

τtW2k . In the two-state model, the kinetic sticking coefficient
is moreover related to the prompt sticking coefficient by
skin
e = ẽ

(0)
2 s

prompt
e . Hence, the probability for the electron to

trickle through from the upper to the lower bound state is ẽ
(0)
2 .

For many dielectrics, the weakest transitions are from
the lowest bound state to the upper bound states. They are
typically triggered by more than two phonons. To mimic this
situation within the two-state model, we set W21 � W12,Wc2.
The inverse of the desorption time becomes, in this limit,

τ−1
e = Wc2

W12 + Wc2
W21, (45)

and the ratio between kinetic and prompt sticking coefficient
becomes

skin
e

s
prompt
e

= W12

W12 + Wc2
. (46)

The physical behavior of the two-state model depends,
therefore, on the ratio between W12 and Wc2 and, thus, on
the potential depth and the surface temperature. Two extreme

cases are possible and represent different physisorption sce-
narios. For Wc2 � W12, τ−1

e
∼= (W21/W12)Wc2, which, using

detailed balance, can be brought into the Arrhenius form
τ−1
e = e−β(E2−E1)Wc2. Kinetic and prompt sticking coeffi-

cients coincide moreover in this parameter range. Hence,
an electron trapped in the upper state drops to the lowest
state before desorption. Desorption from the lowest state
occurs then via a cascade, that is, a series of fast transitions
1 → 2 → 1 → 2 → 1 . . . until eventually the transition 2 →
removes the electron from the bound states. The just-described
physisorption scenario, which we call type-A scenario, is
illustrated in the middle panel of Fig. 7. Recalling that the
upper level stands for a manifold of strongly coupled bound
states, it resembles the physisorption of neutral particles via
cascades originally proposed and investigated by Gortel and
co-workers.28

In the other limit, W12 � Wc2. The inverse of the desorption
time and the ratio between prompt and kinetic sticking
coefficient are then given by τ−1

e
∼= W21 and skin

e /s
prompt
e

∼=
W12/Wc2, respectively. The physisorption scenario is now
dramatically different from the one discussed before because
the desorption time is solely determined by the transition
probability from the lower to the upper bound state. As a result,
desorption does not occur via a cascade, but as a one-way
process 1 → 2 → continuum, where the second transition is
so fast that it basically does not affect the desorption time.
Hence, in this scenario, which we call type B, the upper bound
state can be considered as de facto belonging to the continuum
and desorption as basically equivalent to desorption from a
single deep state. For sticking, the type-B scenario exhibits
moreover a relaxation bottleneck. An electron trapped in the
upper state is very unlikely to drop to the lowest bound state,
as schematically shown in the right panel of Fig. 7.

Within the limits set by the model for the electron-surface
interaction introduced in I and briefly recalled in Sec. III,
the two-state model contains the essential physics of electron
physisorption. For potentials with ε2 > −1, where a direct
one-phonon transition from the second bound state to the
continuum is possible, the two-state model can be applied
directly. Calculating the desorption time within the two-state
model shows very good agreement with the results for graphite
obtained in I. For the ratio between kinetic and prompt
sticking coefficient skin/sprompt, which is given in the two-state
model by ẽ

(0)
2 , the agreement is less good but qualitatively

correct, reproducing, for instance, the temperature-dependent
transition between types A and B. For potentials with ε2 < −1,
no one-phonon process from the second bound state to the
continuum is possible and the two-state model can not be
applied directly. For physisorption of type B, however, the
electron kinetics in the upper bound states is only marginally
perturbed by transitions to and from the lowest bound state.
The time it takes an electron to get from the second bound state
into the continuum is then the desorption time of the system of
the upper bound states alone, that is, the negative inverse of the
smallest eigenvalue −λ

up
0 of the matrix T

up
nm, which is the matrix

Tnm defined in Eq. (2) with n,m > 1. In the two-state model,
λ

up
0 can be regarded as an effective transition rate between the

second state and the continuum. Hence, to apply the two-state
model with potentials where the second bound state does not
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couple by one-phonon processes to the continuum, we simply
replace in Eqs. (45) and (46) Wc2 by λ

up
0 .

Let us finally look at the results obtained in the previous
section and in I and II from the perspective of the two-state
model. In a one-phonon deep potential, the transitions from the
upper bound states to the lowest bound state and from the upper
bound states to the continuum are enabled by one-phonon
processes. In this case, the downward transitions are always
more likely than the upward transitions so that one-phonon
deep potentials always give rise to physisorption of type A.
Hence, they show no relaxation bottleneck and prompt and
kinetic sticking coefficient coincide. Two- or more-phonon
deep potentials can either lead to physisorption of type A or B,
depending on the surface temperature. In this case, one-phonon
transitions from the upper bound states to the continuum
compete with multiphonon transitions from the upper bound
states to the lowest bound state. As a transition from the
upper states to the continuum requires phonon absorption,
proportional to nB , while a transition from the upper states to
the lowest requires phonon emission, proportional to 1 + nB ,
we expect that, for sufficiently low temperature, physisorption
is always of type A, even for multiphonon deep potentials. For
sufficiently high temperatures, all two- or more-phonon deep
potentials are, however, of type B. In this case, a relaxation
bottleneck results in the discrepancy between prompt and
kinetic sticking coefficient (see Fig. 4). The electron kinetics
is primarily determined by the one-phonon transitions among
the upper states (see Fig. 5). The temperature at which type
A merges into type B depends on the potential depth and the
Debye temperature. For room temperature, the three-phonon
deep potentials of Al2O3, CaO, and SiO2 and the two-phonon
deep potential of MgO are all of type B. The crossover between
types A and B occurs for the two-phonon deep potential of
graphite at room temperature (see Fig. 5 of our previous work
II).

VI. CONCLUSIONS

Within a simplified one-dimensional model for the
polarization-induced interaction between an external electron
and a dielectric surface with a sufficiently large energy gap
and a sufficiently negative electron affinity, we investigated
phonon-induced adsorption and desorption of an electron at
a dielectric surface. The required electron energy relaxation,
inducing transitions between the eigenstates of the surface
potential, which we approximated by a recoil-corrected image
potential, is due to the coupling to an acoustic bulk phonon.

The majority of dielectrics of interest have a surface
potential that is three- or more-phonon deep, that is, the
energy difference between the two lowest bound states is more
than two Debye energies of the bulk phonon. In our previous

work,23,24 we took multiphonon processes into account using
a T matrix approach, which is, however, only feasible for
one- and two-phonon deep potentials, as it is, for instance,
in the case for graphite. To overcome this limitation, we
derived in this paper a nonperturbative expression for the
multiphonon transition probability arising solely from the
nonlinearity of the electron-phonon interaction. In view of
our previous results for one- and two-phonon deep potentials,
we expect this approximation to give an acceptable correct
order-of-magnitude estimate for the multiphonon transition
probability involving more than two phonons, despite the
neglect of resonant processes stemming from the iteration of
the T matrix.

We presented numerical results for the electron desorption
time for graphite, MgO, CaO, Al2O3, and SiO2 and the prompt
and kinetic energy-resolved and energy-averaged electron
sticking coefficient for CaO, Al2O3, and SiO2. In addition, we
calculated the energy-resolved desorption flux and investigated
the time evolution of the bound-state occupancy after initial
trapping of an electron, revealing the characteristic stages of
electron physisorption: initial trapping, relaxation in the upper
bound states, trickling through to the lowest bound state, and
desorption. Ultrafast electron spectroscopy at surfaces with
stable image states4–6 should be able to resolve these different
stages experimentally.

Using a simple two-state model, we finally identified two
vastly different scenarios of electron physisorption, depending
on potential depth and surface temperature, and put our results,
including the ones of our previous work,23,24 into perspective.
For almost all dielectrics of practical interest, the trapped
electron has, only for very low temperatures well below
room temperature, a significant chance to trickle through to
the lowest bound state. The desorption process in this case
would then proceed via a cascade between the first and second
bound state until it eventually makes a transition from there
to the continuum. The shallow bound states, albeit important
for adsorption, play a minor role for desorption. The second
bound state is the most important one. It is a relay state. At
room temperature, however, a relaxation bottleneck prevents
the trapped electron from falling to the lowest bound state.
The electron physisorption kinetics is thus dominated by fast
one-phonon transitions in the upper bound states. Only a small
fraction of the electron trickles through to the lowest bound
state and resides there for a very long time until it makes a
one-step desorbing transition to the continuum.
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33A. Šiber and B. Gumhalter, Phys. Rev. Lett. 90, 126103 (2003).
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