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Band structure of strain-balanced GaAsBi/GaAsN superlattices on GaAs
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GaAs alloys with dilute content of Bi and N provide a large reduction in band-gap energy with increasing
alloy composition. GaAsBi/GaAsN heterojunctions have a type-II band alignment, where superlattices based
on these materials offer a wide range for designing effective band-gap energy by varying superlattice period
and alloy composition. The miniband structure and effective band gap for strain-balanced GaAsBi/GaAsN
superlattices with effective lattice match to GaAs are calculated for alloy compositions up to 5% Bi and N using
the k·p method. The effective band gap for these superlattices is found to vary between 0.89 and 1.32 eV for
period thickness ranging from 10 to 100 Å. The joint density of states and optical absorption of a 40/40 Å
GaAs0.96Bi0.04/GaAs0.98N0.02 superlattice are reported demonstrating a ground-state transition at 1.005 eV and
first excited transition at 1.074 eV. The joint density of states is similar in magnitude to GaAs, while the optical
absorption is approximately one order of magnitude lower due to the spatially indirect optical transition in the
type-II structure. The GaAsBi/GaAsN system may provide a new material system with lattice match to GaAs
in a spectral range of high importance for optoelectronic devices including solar cells, photodetectors, and light
emitters.
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I. INTRODUCTION

Semiconductor alloy compounds with large electroneg-
ativity variation, often termed highly mismatched alloys,
possess dramatic changes in electronic and optical properties
with only small alloy concentrations. Highly mismatched
alloys of GaAsBi and GaAsN have received much attention
due to their wide range of achievable band-gap energy.
GaAsN with dilute nitrogen content has demonstrated ma-
terials with desired narrow band-gap properties1 resulting
from shifting the conduction-band edge relative to GaAs,
though their use in device applications has been limited
due to substantial degradation of electron mobility in the
material.2 GaAsBi similarly offers a means of shifting the
band gap relative to GaAs,3 primarily through altering
the valence-band edge. Heterojunctions of GaAsN/GaAsBi are
expected to have a type-II band lineup, and provide a further
range of band-gap energy and a means of engineering carrier
transport.4 Furthermore, GaAsBi/GaAsN superlattices would
offer a means for strain-balanced structures on technologically
important GaAs substrates due to compressive or tensile
strain for GaAsBi/GaAsN materials. The band gap versus
lattice constant relationships for GaAsBi and GaAsN and
schematic concept for the GaAsBi/GaAsN superlattice are
shown in Fig. 1. In this work, the band structure of strain-
balanced GaAsBi/GaAsN is calculated using for varying alloy
composition and superlattice layer thickness to determine
realistically achievable effective band-gap energies for this
material system. The results of the band-structure calculations
are then used to determine the near-band-edge density of states
and optical-absorption coefficient.

II. METHODS

A. Overview

The electronic band structure of GaAsBi/GaAsN strain-
balanced superlattices with (001) crystal orientation was
calculated using an eight-band k·p method, and compared

to the self-consistent solution to the Schrodinger and Poisson
equations.5 Superlattice period and thickness were varied for
structures that were strain-balanced with an effective lattice
match to GaAs, for Bi and N content up to 5%. Details for the
calculation methods and material parameters are described in
the following.

B. Material parameters

Lattice constants and elastic constants of GaAsBi and
GaAsN layer were obtained using the virtual crystal approx-
imation with the parameters of GaAs,6 GaN,6 and GaBi.7

Results of theoretical studies were used for GaBi, where
experimental data on this material are generally lacking.7

It should be noted that the alloy compositions studied in
this work are well within the range of previously achieved
values of 5% for GaAsN,8 10% for GaAsBi,9 and agree with
prior experiments that follow the band anticrossing model.10,11

GaAs material with dilute concentrations of Bi results in a
band-gap reduction primarily resulting from a valence-band
shift, which may be explained by the valence-band anticrossing
(VBAC) model.10 The valence-band maximum for GaAsBi
was calculated by applying the VBAC model,

EV =
EBi + HGaAs +

√
(HGaAs − EBi)2 + 4C2

Bi−GaAsx

2
(1)

with

HGaAs = − h̄2

2m0

[(
k2
x + k2

y

)
(γ1 + γ2) + k2

z (γ1 − 2γ2)
]

+�EVBMx, (2)

where EBi = 0.4 eV, CBi-GaAs = 1.55 eV, and �EVBM =
0.8 eV. Concurrently, the conduction-band minimum of
GaAsBi layer was approximated using the virtual crystal
approximation,

EC = Eg(GaAs) − �ECBMx, (3)
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FIG. 1. Band-gap energy versus lattice constant for GaAsN25 and
GaAsBi10,26 dilute alloys and (inset) schematic of strain-balanced
GaAsBi/GaAsBi superlattice with effective lattice match to GaAs.

where�ECBM = EC(GaAs) − EC(GaBi) = −2.1 eV. In con-
trast, GaAs with dilute nitrogen concentration results in a
band-gap reduction primarily resulting from a shift in the
conduction-band minimum. The band-gap energy and band
alignment can be similarly described by the conduction-band
anticrossing (CBAC) model given by11

EC =
EN + EC,GaAs −

√
(EN − EC,GaAs)2 + 4C2

N−GaAsx

2
,

(4)

where EN = 1.65 eV and CN−GaAs = 2.7 eV. The
GaAsBi/GaAsN superlattice has a corresponding type-II
band lineup with a potential well for electrons and holes in
GaAsN and GaAsBi layers, respectively. It should be noted
that GaAsN exhibits significant deviations from the BAC
model due to disorder in the alloy system, where N-cluster
states and related interactions between N states alter the band
structure. A closer fit to experimental data is provided by the
linear combination of the resonant nitrogen states (LCINS)
model.12 Similar behavior may also occur for GaAsBi, though
the materials growth technology is still in its infancy. The BAC
model was employed in this work in order to provide a more
direct interpretation of trends related to the type-II superlattice
band structure that are not clouded by deviations related to
effects described in LCINS and similar models, or deviations
related to material synthesis methods. Furthermore, the BAC
model has been shown to provide excellent agreement for
the band-gap energy of both GaAsN (Ref. 11) and GaAsBi
(Ref. 10) relevant to the superlattice calculations presented in
this work.

C. Strain balanced criteria

Strain-balanced superlattices were investigated for struc-
tures with individual layer thickness of up to 100 Å, which
is below the critical thickness predicted by the Matthews-
Blakeslee model.13 Alternating layers of tensile (GaAsN) and
compressive (GaAsBi) strain can be used to minimize the total

FIG. 2. Strain balanced composition of Bi and N for several
thickness ratios of GaAsBi and GaAsN layers.

average strain energy of the superlattice, where the condition of
zero average in plane can be achieved based on the relations14

t1A1ε1a2 + t2A2ε2a1 = 0, (5)

a0 = A1t1a1a
2
2 + A2t2a2a

2
1

A1t1a
2
2 + A2t2a

2
1

, (6)

A = C11 + C12 − 2C2
12

C11
, (7)

where a0, a1, and a2 represent lattice constants (a1 > a0 > a2)
for the substrate with constant a0, and t1 and t2 define the
thickness of each layer. According to these relations, strain-
balanced GaAsBi/GaAsN superlattices with effective lattice
match to GaAs can be obtained by controlling the thickness of
GaAsBi and GaAsN layers. Figure 2 shows a series of Bi
and N compositions in GaAsBi and GaAsN, respectively,
which satisfy the strain-balanced criteria in the superlattice for
several ratios of layer thickness. In the following calculations,
4% Bi and 2.1% N are chosen under the strain-balanced
condition corresponding to equivalent thickness of the GaAsBi
and GaAsN layers.

D. Band-structure calculation by the k·p method

The energy band structure and wave functions of the
superlattice were calculated using eight-band k·p perturbation
theory within the envelope function approximation, which
is suitable for describing the band structure near the zone
center where the envelop function is slowly varying.15 The k·p
methodology has been similarly applied to GaInNAs (Ref. 16)
and type-II GaAsN/GaAsSb (Ref. 17) quantum wells, demon-
strating good agreement with experimental measurements. In
future work, the k·p model may also be adapted to account
for interactions between nitrogen (or bismuth) states based
on experimental or first-principles calculations, as has been
done previously for GaInAsN/GaAs quantum wells.18 In this
approximation, two 8×8 k·p Hamiltonian matrices describing
the band structure of the bulk constituent material satisfy the
relation19

Hi�j (r) = ej�j (r)

{
i = GaAsBi,GaAsN
j = CB,HH,LH,SO

}
(8)
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in each layer, where terms representing energy-band offsets
and hydrostatic and shear strain effects were included in the
matrix elements. The wave function �j (r) was expanded in
the basis set of the cell-periodic wave function expressed by

�j (r) =
∑

j

fj (z) exp(ikxx) exp(ikyy)|j 〉, (9)

where fj (z) is the envelope function of the jth band of the
superlattice and |j 〉 is the Kane basis function of the zinc-
blende structure satisfying the relation

�(r + d) = exp(iq · d)�(r), (10)

where d is the period of the superlattice and q is the superlattice
wave vector. In addition, the envelope function and the first
derivative of fj (z) are required to be continuous at the interface
between the constituent materials of the superlattice. In this
work, additional assumptions of the Hamiltonian parameters
for the conduction-band Kane parameter F, Kohn-Luttinger
parameters γ 1, γ 2, and γ 3, and the matrix elements of the
momentum operator between conduction and valence band
〈s|px |x〉 were assumed to be equivalent to GaAs,6 due to
the lack of available data for GaAsBi and GaAsN, and
the expectation that variation in these parameters would be
insignificant across the range of the dilute alloy compositions
studied.

The envelope function approach of the eight-band k·p
method provides a set of eight coupled second-order differen-
tial equations in the variable z, where kz is replaced by −i∂/∂z.
The equations were solved numerically using a transfer-matrix
algorithm.19 The coupled differential equations may be written
as

8∑
j=1

[
Aij

∂2

∂z2
− iBij

∂

∂z
+ Cij

]
fj (z) = εfi(z),

i = 1,2, . . . ,8 (11)

and modified to first-order coupled differential equations using
a new 16×1 column vector �(z) given by

�i(z) =
{

fi(z), i = 1,2, . . . ,8∑8
j=1 −Aij

∂fj

∂z
− iBijfj (z), i = 9,10, . . . ,16

(12)

satisfying the relation

∂�(z)

∂z
=

(−iA−1B −A−1

ε − C 0

)
�(z). (13)

Because the solution of the first-order homogeneous differ-
ential equation is exponential, the solution of Eq. (13) can be
described by the exponential matrix

�(z) = exp

[(−iA−1B −A−1

ε − C 0

)
z

]
�(0), (14)

where the solution is continuous at the interface between the
layers. Energy eigenvalues ε are obtained according to the
translational symmetry of the superlattice. If d is a period of
the superlattice, �(z) and the wave function of the superlattice
should follow the relation

�(d) = exp(iqd)�(0), (15)

where q is the superlattice wave vector in the growth direction.
The eigenvalue problem may then be described by

exp

[(−iA−1B −A−1

ε − C 0

)
d

]
�(0) = exp(iqd)�(0) (16)

to calculate the energy-band structure and wave functions for
the superlattice.

E. Miniband structure with self-consistent solution
of Schrödinger-Poisson equations

The spatial dependence of minibands in superlattices with
finite periods was also investigated using one-dimensional
calculation of the self-consistent solution of Schrödinger-
Poisson equations.5,20 The superlattice miniband profile was
determined by this method including strain effects, where the
Schrödinger equation was solved to obtain energy eigenvalues
and wave functions of the superlattice based on the transfer-
matrix formulation. The superlattice structure was divided by
N segments, where the time-independent Schrödinger equation
for the ith segment is written as21

d2

dz2
�i(z) + κ̃2

i �i(z) = 0 (zi−1 � z � zi) (17)

with the boundary conditions

�i−1(zi−1) = �i(zi−1), (18)
1

m∗
i−1

d

dz
�i−1(zi−1) = 1

m∗
i

d

dz
�i(zi−1), (19)

where κ̃i =
√

2m∗
i /h̄

2(E − Vi) and m∗
i is the effective mass

of charge carriers in ith layer. Considering the boundary
conditions and combining all relations between two adjacent
layers, the 0th and (N+1)th layer can be related as(

�0(z0)
1

m∗
0

d
dz

�0(z0)

)
= M ×

(
�N+1(zN+1)

1
m∗

N+1

d
dz

�N+1(zN+1)

)
, (20)

M =
N∏

i=1

(
cos(κ̃i · di) −m∗

i

κ̃i
sin(κ̃i · di)

κ̃i

m∗
i

sin(κ̃i · di) cos(κ̃i · di)

)
(21)

to determine � and E. In this work, the numerical calculation
of the transfer method formulation was performed using the
argument principle method.21

The results from the Schrödinger equation solution can be
used to calculate the carrier distribution in the superlattice and
may then be incorporated in the Poisson equation,20

d

dz

(
εs(z)

d

dz

)
φ(z) = − q

ε0
[n(z)], (22)

where εs(z) is the dielectric constant and φ(z) is electrostatic
potential distribution which satisfies the relation

V (z) = −qφ(z) + �E(z), (23)

where �E defines the band offset at the interfaces of
the superlattice. The calculations were performed iteratively
until the results of the Schrödinger and Poisson equations
converged.

The electron effective mass of GaAsBi and the hole
effective mass of GaAsN were assumed to be equal to GaAs
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effective mass values since the conduction band and valence
band are almost unchanged when a small amount of Bi and N
are incorporated in GaAs, respectively.22 The electron effective
mass of GaAsN was obtained based on the relation11

m∗
eff(E) = m∗

GaAs

{
1 + C2

N−GaAsx

(EN − E)2

}
. (24)

The hole effective mass of GaAsBi is not well known,
where predictions have only estimated that the values would
be higher than that of GaAs.3 In this work, the heavy-hole and
light-hole effective mass were assumed to be m∗

hh = 0.55 and
m∗

lh = 0.10, respectively.

F. Absorption coefficient

The near-band edge density of states and optical-absorption
coefficient were studied due to their major importance for
device applications. The calculations of these parameters
were all based on the results from the k·p band-structure
calculations. From the dispersion relations, constant transition
energy surface in k space can be obtained. By evaluating
the volume between two adjacent surfaces, which represent
transition energy E and E + dE, and dividing it by the volume
in which each electron state occupies, the joint density of states
of the superlattice was obtained. The absorption coefficient is
given by23

α(h̄ω) = 2π

h̄

e2

m2
0

(
h̄

2ωnrcε0

) ∑
n,n′

∫
dK|〈n,K|px |n′,K〉|

2

× δ[En(K) − En′(K) − h̄ω] (25)

neglecting the Coulomb interaction between electrons and
holes, and considering only x-polarized light (normal inci-
dence to the superlattice). The δ function in the integration
was evaluated by counting the number of states at K, and
the number of states was multiplied by the matrix element
of momentum operator, 〈n,K| px |n′,K〉. With the envelope
function approximation of the superlattice wave function, the
matrix element of the momentum operator can be written as24

〈n,K|px |n′,K〉

=
∑
j,j ′

〈j,n|px |j ′,n′〉
∫ d

0
f ∗

j,n(K,z)fj ′,n′ (K,z) dz, (26)

where the px is the momentum operator −ih̄ ∂
∂x

, and fj,n(z)
represents the envelope function of the jth basis of the nth band.
For the term langlej,n|px |j ′,n′〉, only the 〈x|px |s〉 term is a
nonzero, and was assumed to be equivalent to GaAs for the
small composition of Bi and N in this work. The value of the
matrix element for the momentum operator was obtained from

Ep = 2

m0
|〈x|px |s〉|2, (27)

whereEp for GaAs was assumed to be 28.8 eV from Ref. 6.

III. RESULTS AND DISCUSSION

A. Band structure

A representative band structure for a GaAs0.96Bi0.04/
GaAs0.979N0.021 superlattice with 80-Å period thickness cal-

FIG. 3. Miniband structure of 40-Å/40-Å GaAs0.96Bi0.04/

GaAs0.979N0.021 superlattice with effective band-gap energy of 1 eV.

culated by the k·p method is shown in Fig. 3. The conduction
band contains one confined miniband (CB1) and a continuum
of states at the edge of the conduction-band offset. The valence
band contains confined minibands corresponding to the first
heavy hole (HH1), the first light hole (LH1), and the second
heavy hole (HH2). The effective band-gap energy for this
superlattice, defined as the energy separation between lowest
energy states in the conduction and valence bands (CB1-HH1),
shows a value of 1 eV. It should be noted that this effective
band-gap energy has not been previously achieved for a lattice
matched III-V system to GaAs. While strained quantum well
and quantum dot systems have succeeded in achieving such
narrow band-gap materials on GaAs, they do not offer a
means for achieving sufficiently thick active layers that are
required for devices such as solar cells and photodetectors. The
energy-momentum relations are shown for both the in-plane
directions and the direction normal to the superlattice. For the
in-plane direction, the band structure is isotropic for kx and
ky , while the curvature differs dramatically for the direction
normal to the superlattice. The range of effective band-gap
energies achievable for the GaAsBi/GaAsN superlattice were
investigated by varying the alloy composition up to 5% and
superlattice period up to 100 Å with equivalent thickness for
the GaAsBi and GaAsN layers. The variation in effective
band gap spans from 0.89 to 1.32 eV in this range, as
shown in Fig. 4. The superlattice band structure was found
to be primarily dependent on the superlattice period, strain
parameters, and band-gap energy and band offsets of the
materials. These parameters have a high degree of certainty
for these calculations.

Uncertain parameters for the k·p calculations include
the matrix element of the momentum operator EP and
Kohn-Luttinger parameters γ 1, γ 2, and γ 3, which may be
significantly altered in GaAsN and GaAsBi dilute alloys.
Calculations were performed with large variations in these
parameters to determine their influence on the calculated
band structure and effective band gap. Varying parameters
EP (for GaAsN, conduction-band states) γ 1, γ 2, and γ 3

(for GaAsBi, valence-band states) by up to a factor of 2 for
the GaAs0.096Bi0.04/GaAs0.979N0.021 superlattice results in a
similar result, with a deviation of <5% for the effective band

195327-4



BAND STRUCTURE OF STRAIN-BALANCED GaAs . . . PHYSICAL REVIEW B 83, 195327 (2011)

FIG. 4. Effective band-gap energy for GaAsBi/GaAsN superlat-
tices with matched layer thickness, varying period thickness, and
variable alloy composition.

gap. The small deviation suggests a relatively low sensitivity
of the results presented to the chosen k·p parameters.

B. Effective mass

The electron and hole effective masses in the superlattice
growth direction can be calculated for these structures assum-
ing parabolic relationships near the band edge according to the
relation

1

m∗ = 1

h̄2

d2ε

dk2
. (28)

The effective mass of electrons and holes increases as
the superlattice period increases, as shown in Fig. 5. This
increase is consistent with a decrease in tunneling proba-
bility with increasing layer thickness. This trend is more
pronounced in the valence band for the range of composition
and period examined, with an increasing dependence on
period for larger Bi/N alloy compositions. The effective
mass for the conduction band demonstrates a crossover
point at a period of approximately 60 Å, reflecting the

FIG. 5. Effective masses of ground-state minibands (m∗
e for

CB1 and m∗
hh for HH1) for GaAsBi/GaAsN superlattices with

matched layer thickness, varying period thickness, and variable alloy
composition.

FIG. 6. Miniband structure for ten period 40-Å/40-Å
GaAs0.96Bi0.04/GaAs0.979N0.02 superlattice using self-consistent
Schrödinger-Poisson calculations.

transition from smaller effective mass dominated by GaAsN
behavior at small period thickness to larger effective mass
dominated by decreased tunneling probability at large period
thickness.

C. Spatial distribution of wave functions

Varying finite total thickness of the superlattices was
investigated between 5 and 15 periods using the Schrödinger-
Poisson self-consistent solution in order to evaluate the
influence of finite structures and number of periods on effective
band gap. The spatial distribution of wave functions for
a ten period (80-Å period) GaAs0.096Bi0.04/GaAs0.979N0.021

superlattice with GaAs layers at both ends is shown in Fig. 6.
The effective band-gap energy of the superlattice is 1 eV, with
four confined states in the bound-state region (CB1, HH1,
LH1, and HH2). The conduction and the first heavy-hole band
levels are in agreement with the results of the k·p calculations,
while the first light-hole and the second heavy-hole band
levels differ by approximately 30 meV. The discrepancy for
the position of the first light-hole and the second heavy-hole
states is attributed to assumed values for the hole effective
mass in GaAsBi required to evaluate the Schrödinger equation
using the transfer-matrix formalism, while these values are
not required for the k·p calculations. Although the hole
effective mass of GaAsBi is expected to be larger than
the hole effective mass of GaAs, the value is still unknown due
to lack of theoretical and experimental data. In this work, the
hole effective mass of GaAsBi was used as a fitting parameter
to match the transition energy for effective band-gap energy
obtained by k·p, resulting in values of 0.55m0 and 0.10m0 for
heavy-hole and light-hole mass, respectively. In addition, the
effective band-gap energy is found to match the k·p prediction
of 1.000 eV, with a variation of approximately 1.001 to
1.004 eV varying between 5 and 15 periods.

The spatial dependence of the wave functions is also
examined using results of the k·p method due to the importance
of optical properties. The square of the envelope function of
the superlattice at kx = ky = q = 0 is shown as a function of
the superlattice normal direction in Fig. 7. The s component
of the conduction-band and x component of the valence-band
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FIG. 7. Squared envelope function of the 40-Å/40-Å
GaAs0.96Bi0.04/GaAs0.979N0.02 superlattice. Characters s and x
in the figure represent the symmetry character of the envelope
function.

envelope functions are shown, corresponding to the primary
components that are coupled with optical radiation at normal
incidence to the superlattice. The s and x designation indicate
the component of the zinc-blende zone-center cell-periodic
basis function. The electrons and holes are primarily confined
in the GaAsN and GaAsBi layers, respectively, with significant
overlap near the GaAsBi/GaAsN interfaces.

D. Optical properties

The joint density of states for the superlattice including the
transitions from HH1 to CB1 and LH1 to CB1 is shown in
Fig. 8 for a GaAs0.96Bi0.04/GaAs0.979N0.021 superlattice with
80-Å period thickness. The curve has a steplike shape due to
the quantum confinement in the superlattice, with a smooth
transition in the vicinity of the effective band gap due to
the miniband dispersion. The joint density of states for the
LH1 to CB1 transition results in a shallower transition due to
the large curvature of the LH1 band in the out-of-plane
direction. The optical-absorption coefficient of the superlattice
for x-polarized light incident in the growth direction is shown
in Fig. 9, assuming a full valence band and empty conduction

FIG. 8. Joint density of states of a 40-Å/40-Å GaAs0.96Bi0.04/

GaAs0.979N0.02 superlattice.

FIG. 9. Absorption coefficient of a 40-Å/40-Å GaAs0.96Bi0.04/

GaAs0.979N0.02 superlattice.

band. The absorption spectrum follows the steplike shape of
the joint density of states, altered by the oscillator strength of
the optical transition in this type-II structure. In these calcu-
lations, the Coulomb interaction between electrons and holes
was not considered, which would otherwise result in excitonic
peaks below the effective band-gap energy. The magnitude of
the optical-absorption coefficient is approximately one order
of magnitude smaller than bulk GaAs due to the spatially
indirect transition, with approximately the same magnitude
for joint density of states.

IV. CONCLUSIONS

In conclusion, the miniband structure for strain-balanced
GaAsBi/GaAsN with effective lattice match to GaAs was
calculated, demonstrating a range of effective band gap of
0.89–1.32 eV for Bi,N composition of less than 5% and
period thickness of up to 100 Å. The energy-momentum
dispersion relations show a general trend of increasing carrier
effective mass with increasing period due to reduced tunneling
probability, and a compositional dependence that contains a
crossover point for electron effective mass due to competing
mechanisms of the superlattice period and host material
properties. The calculated miniband structure by the k·p
method is consistent with the Schrodinger-Poisson technique,
where further efforts to determine carrier effective mass
are required in order to provide improved accuracy and
agreement for excited-state transitions. The GaAsBi/GaAsN
superlattices have a joint density of states similar to GaAs
and an optical-absorption coefficient that is approximately
one order of magnitude lower than GaAs due to the spatial
separation of electron and hole wave functions in the type-II
structure. This superlattice structure may provide a narrow
band-gap material system that is lattice-matched to GaAs with
optical response suitable for optoelectronic devices requiring
optically thick active regions, such as a spectral band in a
multijunction solar cell. Further theoretical and experimental
work is desired to realize these materials and to determine
optical transitions and charge-transport properties.
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