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Material configurations for n-type silicon-based terahertz quantum cascade lasers
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Silicon-based quantum cascade lasers (QCLs) offer the prospect of integrating coherent terahertz (THz)
radiation sources with silicon microelectronics. Theoretical studies have proposed a variety of n-type SiGe-based
heterostructures as design candidates; however, the optimal material configuration remains unclear. In this work,
an optimization algorithm is used to design equivalent THz QCLs in three recently proposed configurations
[(001) Ge/GeSi, (001) Si/SiGe, and (111) Si/SiGe], with emission frequencies of 3 and 4 THz. A systematic
comparison of the electronic and optical properties is presented. A semiclassical electron transport simulation is
used to model the charge carrier dynamics and calculate the peak gain, the corresponding current density, and the
maximum operating temperature. It is shown that (001) Ge/GeSi structures yield the best simulated performance
at both emission frequencies.
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I. INTRODUCTION

Terahertz quantum cascade lasers (THz QCLs) are semi-
conductor devices in which electrons are transported through
a periodic multiple quantum well heterostructure, with a
radiative transition in each period.1 THz QCLs have numerous
potential applications including radiation sources for medical
and security imaging, and local oscillators in astronomy and
remote gas sensing.2–6

All THz QCLs to date have been fabricated from III–V
compound semiconductors (for example, see Refs. 7 and 8).
However, Si-based QCLs could offer a number of significant
advantages. Mature Si processing technology may reduce costs
and allow integration with conventional electronic devices.
Existing THz QCLs operate only at cryogenic temperatures
[currently below 186 K for resonant-phonon QCLs (Ref. 7)
or 116 K for bound-to-continuum9], but the high thermal
conductivity of Si-based structures could enable heat to be
extracted more effectively and, hence, allow higher operating
temperatures. III–V QCLs are also limited to THz emission
at frequencies lower than 4.9 THz,10 owing to the strong
absorption in the Reststrahlen band. However, this limitation
does not exist in nonpolar group-IV materials.

Although the indirect bandgap in Si has, so far, frustrated
efforts to develop an interband laser, this is not an issue
for intersubband devices such as QCLs because the radiative
transitions occur between subbands within the same valley of
an energy band. Midinfrared11 and THz (Ref. 12) intersubband
electroluminescence has been observed from p-type SiGe/Si
quantum cascade structures. However, dispersion relations
for holes in these structures are quite complicated, owing
to the contributions from multiple valence bands, and in
recent years, attention has switched toward n-type structures.
This greatly simplifies the device design process and may
result in a lower spectral linewidth (and hence greater peak
gain) than that of p-type structures. Early design proposals
included n-type Si/SiGe structures that exploited transitions
in the � valleys of (001) Si quantum wells (QWs), with
SiGe barriers.13 However, a range of alternative material
configurations have been considered in recent years. L valley
transitions in (001)-oriented Ge/GeSi have attracted greatest
attention,14–16 although transitions in the � valleys of (111)-

oriented Si/SiGe,17,18 the � valley of Ge/GeSi,19 and the L

valleys of Ge/GeSiSn (Ref. 20) have also been considered.
Many properties relating to the bandstructure and carrier

transport have a strong effect upon the gain of QCLs. To date,
no quantitative comparison has been made of the expected
performance of THz QCLs in different Si-based material con-
figurations. In this paper, we present such a comparison by sim-
ulating equivalent devices in the (001) Si/SiGe, (111) Si/SiGe,
and (001) Ge/GeSi material configurations, using a detailed
semiclassical rate-equation approach. Devices emitting near
3 and 4 THz were designed for each material configuration
by rescaling a recent bound-to-continuum design,14 according
to the effective mass of the material and then applying
an automated design-optimization algorithm. In Sec. II, we
calculate the conduction band potentials for each material
configuration and the range of energies within QWs that can
be used for QCL design. Section III describes our model for
simulating carrier transport, gain, and current density in QCLs.
The design-optimization algorithm is described in Sec. IV
and a summary of the optimized devices is presented. Finally,
Sec. V presents a comparison of the simulated performance of
devices in each material system.

II. CONDUCTION BAND STATES

A. Model solid approximation

The model solid approximation25 was used to calculate the
conduction band offset between a strained Si1−xGex alloy and
a substrate material. The difference between the average of the
light-hole, heavy-hole, and spin-orbit split off valence band
edges in the two materials was used as a reference energy,
as it is almost independent of strain and crystal orientation.25

The value of this property was interpolated from empirical
pseudopotential data as26

�Ev = (0.47 − 0.06xs)(x − xs), (1)

where xs is the Ge fraction in the substrate. The valence band
maximum in an unstrained bulk alloy was found using

Ebulk
v = �Ev + 1

3�SO, (2)
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TABLE I. Material parameters for Si and Ge.

Constant Si Ge Unit

a 0.5431a 0.5633a nm
�so 44.0b 296.0c meV
C11 165.773d 128.528d GPa
C12 63.924d 48.260d GPa
C44 79.619d 66.799d GPa
(�d + 1

3 �u − av)� 1.72e 1.31e eV
(�d + 1

3 �u − av)L −3.12e −2.78e eV
��

u 9.16e 9.42e eV
�L

u 16.14e 15.13e eV

aReference 21.
bReference 22.
cReference 23.
dReference 24.
eReference 25.

where �SO is the spin-orbit splitting energy. Material param-
eters for alloys were found by interpolating from the bulk Si
and Ge values in Table I. These parameters yield an offset
of 0.55 eV between the top of the valence bands in bulk Ge
and Si, which matches a recently measured value for weakly
strained Ge and Si films.27 Very similar parameters have
also been shown to yield close agreement with experimental
measurements of intersubband absorption energies in Ge/GeSi
QWs.28

The low-temperature indirect bandgaps for the � and L

valleys in an unstrained alloy (in eV) were taken as29

E�
g = 1.155 − 0.43x + 0.0206x2,

(3)
EL

g = 2.010 − 1.270x,

and the unstrained conduction band edge for a given valley
was found using Ebulk

c = Ebulk
v + Eg .

The effects of hydrostatic and uniaxial strain on the band
edge were determined as follows. First, the lattice constant of
a thin Si1−xGex layer was found using

a(x) = aSi(1 − x) + aGex − bbowx(1 − x), (4)

where bbow = 0.2733 pm (Ref. 21) is a bowing factor.30 The
layer was assumed to deform uniformly, such that the lattice
constant matched that of a thick substrate material, as . The
resulting strain in the plane of epitaxial growth was given by
ε‖ = (as − a)/a.

The hydrostatic deformation was found for each set of
conduction band valleys using

�EHyd
g = (

�d + 1
3�u − av

)
Tr ε′, (5)

where �d + 1
3�u − av is the bandgap deformation potential

for the � or L valleys and Tr ε′ is the trace of the strain tensor,
where31

Tr ε′(001) = 2

(
1 − C12

C11

)
ε‖, (6)

Tr ε′(111) = 12C44

C11 + 2C12 + 4C44
ε‖, (7)

for (001)- and (111)-oriented epilayers, respectively. In the
above equations, C11,C12, and C44 are elastic constants.

Uniaxial strain leads to splitting of the � valley degeneracy
in (001)-oriented layers. The energy shifts are given by31

�E�4,Uni
c = 1

3
��

u

(
1 + 2C12

C11

)
ε‖,

(8)

�E�2,Uni
c = −2

3
��

u

(
1 + 2C12

C11

)
ε‖,

for the valleys with their major axes perpendicular and parallel
to the growth-direction, respectively, where ��

u is the uniaxial
deformation potential for the � valleys. Similarly, L valleys
in (111)-oriented layers are shifted by

�EL1,Uni
c = −2�L

u

C11 + 2C12

C11 + 2C12 + 4C44
ε‖,

(9)

�EL3,Uni
c = 2

3
�L

u

C11 + 2C12

C11 + 2C12 + 4C44
ε‖,

for the valley with its major axis in the growth direction, and
the three other valleys, respectively. Uniaxial strain has no
effect upon the � valleys in (111) layers, or the L valleys in
(001) layers, owing to symmetry.

Finally, the energy of a given conduction band minimum
in a strained layer was found relative to the average substrate
valence band using

Ec = Ebulk
c + �EHyd

g + �EUni
c . (10)

B. Available energy range

In this section, we determine the energy ranges within
group-IV QWs that can be reliably exploited for THz QCL
design. It is insufficient to simply calculate the depth of a
QW as there are multiple conduction band valleys within the
energy range of interest. This can degrade device performance
by introducing undesirable intervalley scattering processes.
To avoid this problem, we consider the energy difference
between the bottom of the well, and the next-lowest conduction
band minimum (which may be in either the well or the
barrier). This is illustrated in Fig. 1 for the case of a
Si0.15Ge0.85/Ge/Si0.15Ge0.85 QW on a Si0.025Ge0.975 substrate.
Here, the L valleys form the bottom of the well and the
usable energy range is limited by the �2 valley minima in the
barriers.

Figure 2 shows the conduction band minima in QWs that
consist of either a Si or Ge well surrounded by SiGe barriers.
The energies of the valley minima in the well and barriers are
plotted as a function of the barrier alloy composition. In each
case, the energies are expressed relative to the bottom of the
QW, and usable energy range is therefore given by the lowest
line in the plot.

Figure 2(a) shows the results for a (001)-oriented
SiGe/Si/SiGe QW. Here, the �2 valleys form the bottom
of the well in the Si layer. The total depth of the QW is
given by the energy difference between the �2 minima in the
barrier and the well. As we shall see in Sec. IV, the barriers
in (001)-Si/SiGe QCL designs may need to be thinner than
1 nm, owing to the large �2 quantization effective mass. It is,
therefore, necessary to limit the barrier Ge fraction to obtain
a lower �2 confinement potential, and hence a realistically
wide barrier layer. We selected a Si0.8Ge0.2 alloy for the
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FIG. 1. (Color online) Spatial variation of � and L conduction
band minima in a Si0.15Ge0.85/Ge/Si0.15Ge0.85 heterostructure on a
Si0.025Ge0.975 virtual substrate. The energy range available for QCL
design is defined here as the region between the bottom of the QW
and the next-lowest conduction band valley.

barriers, which provides a �2 band offset of 95 meV. A
∼4.5% Ge virtual substrate is required for mechanical stability
in our (001)-Si/SiGe QCL designs because the Si wells are
considerably thicker than the SiGe barrier layers. This induces
only a relatively low uniaxial strain in the QW layers and as a
result the �4 minima in the barrier layers lie only 5 meV above
the bottom of the well. It is, therefore, impossible to avoid the
presence of �4 subbands within the energy range of interest
for (001) Si/SiGe QCL designs.

Figure 2(b) shows the calculated valley minima for (111)-
oriented SiGe/Si/SiGe QWs. Here, the � valleys are degener-
ate, and for most barrier compositions the usable energy range
is limited by the � valley offset at the Si/SiGe interface. The
system is less sensitive to strain, and the maximum usable
energy range of 185 meV is obtained when the barriers have a
Ge fraction of around 89%. However, our designs in Sec. IV
use lower barriers with a Si0.4Ge0.6 alloy composition, in order
to obtain realistically wide layer widths, as described above.
This composition provides a usable energy range of 90 meV.

Figure 2(c) shows the minima for (001)-oriented
GeSi/Ge/GeSi QWs. In structures with barrier Ge fractions

greater than around 75%, the L valleys form the bottom of
the QW in the Ge layer. However, for lower Ge alloys, the
�2 valleys are lowest in energy. The maximum usable energy
range of ∼90 meV is obtained when the barriers have a Ge
fraction of around 0.85. It is worth noting that �2 states in
the thin GeSi layers of QCLs will have confinement energies
well above the �2 band edge. It may, therefore, be possible to
obtain a larger usable energy range by using a lower barrier
Ge fraction.

C. Self-consistent Poisson–Schrödinger solution

Self-consistent solutions of the one-dimensional time-
independent Schrödinger equation and the Poisson equation
were found for the structures considered in this work, using a
similar approach to those in Refs. 33 and 34.

The charge density over the length of the structure takes the
form ρ(z) = e[d(z) − ρe(z)], where e is the electron charge,
d(z) is the ionized donor profile, ρe(z) is the electron density
profile, and z is the spatial position. It was assumed that all
donors are ionized, and hence d(z) is equal to the dopant
distribution. An initial estimate of the space-charge effect on
the Hamiltonian was generated by solving the Poisson equation
for a uniform electron distribution, in which ρe(z) ≈ N2D/Lp,
where N2D is the sheet doping density across a structural period
of length Lp.

A one-band parabolic effective mass approximation was
used for the Schrödinger equation, which is justified by the
small confinement energy, and the large energy separation
from other energy bands. The quantization and density-
of-states effective masses (mq and md , respectively) were
calculated for each material and crystal orientation using the
method in Ref. 32 and are shown in Table II.

Intervalley mixing splits the �2 subbands in (001) Si/SiGe
and the L subbands in Ge/GeSi heterostructures. It is, however,
only possible to include this effect in complex heterostructures
via computationally expensive atomistic approaches such as
tight-binding35 or pseudopotential calculations.36 We have
previously shown that the splitting energies are small in
structures wider than 2–3 nm,36 and have, therefore, omitted
the effect in the present work.

Three periods of the conduction band potential profile were
used in the Hamiltonian for the QCL simulations, with box
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FIG. 2. (Color online) Conduction band minima in the well and barrier regions of Si-based QWs relative to the bottom of the well. Energies
are plotted as a function of the barrier alloy composition, and results are shown for structures grown on various Si1−xs

Gexs
virtual substrates.

The figures show band minima in QW heterostructures comprising (a) (001)-SiGe/Si/SiGe, (b) (111)-SiGe/Si/SiGe, and (c) (001)-GeSi/Ge/
GeSi.
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TABLE II. Quantization and two-dimensional density-of-states
effective masses of conduction band valleys in (001) Si, (111) Si,
and (001) Ge films, calculated as described in Ref. 32. Masses are
expressed relative to the rest mass of a free electron.

Material system Valley m q md

(001) Si �2 0.916 0.19
(111) Si � 0.26 0.36
(001) Ge L 0.12 0.30

boundary conditions. This introduced an unrealistic limit to
the spatial extent of the wavefunctions which were localized
near to the boundaries. To eliminate this effect, we replaced
the Schrödinger equation solutions whose wavefunctions lay
in the left and right periods of the structure with translated
copies of the central period solutions.

Having solved the Schrödinger equation, the subband
populations, nj , were calculated as described in the next
section, and a new estimate of the charge distribution was
generated, using

ρe(z) = nval

∑
j

nj |ψj (z)|2, (11)

where nval is the valley degeneracy and ψj is the wavefunction
of state j . The Poisson and Schrödinger equations were then
solved iteratively to find the self-consistent solutions.

III. CARRIER TRANSPORT MODEL

We used a computationally efficient scattering calculation
and a semiclassical approach to electron transport in QCLs
as described in our previous work.17,37 Similar Boltzmann-
or rate-equation-based models have previously yielded good
agreement with experimental data for III–V midinfrared38

and THz QCLs.1 Indeed, our carrier-transport model has
been shown to calculate the current density and maximum
operating temperature quite accurately for a 4.4 THz, seven-
well chirped-superlattice GaAs/AlGaAs QCL that is similar
in structure to the devices considered in Sec. IV.39 Although
recent work on III–V QCLs has focused on coherent transport
effects, using nonequilibrium Green’s functions40 or density
matrix41–46 approaches, the semiclassical approach combines
the computational speed and flexibility required for extensive
exploration of the parameter space of possible device specifica-
tions. We have assumed that coherent transport effects are less
significant in the bound-to-continuum devices considered in
this work than in resonant-phonon QCLs, owing to the reduced
thickness of the injection barriers through which electrons
tunnel into the active region. Furthermore, the absence of
resonant LO-phonon scattering may lead to longer dephasing
times for coherent transport in group-IV materials than in III–V
materials.

As in our previous work,17,37 our model includes elastic
intravalley scattering due to interface roughness (allowing
arbitrary interface geometries),37 alloy disorder,47,48 ion-
ized impurities,49 electron–electron interactions50 and de-
formation potential scattering for electron–acoustic phonon
interactions.51 Intravalley optical phonon interactions are
forbidden in � valleys due to the symmetry of the system,52

but were included for L valleys via a zero-order deformation
potential model.51,53

Intervalley phonon scattering was also described using
the zero-order deformation potential model, with the rates
multiplied by the number of equivalent destination valleys. In
L → L scattering, all three destination valleys are degenerate,
and separated by a wavevector of the same magnitude.
A phenomenological approach, described in Ref. 54, was
used to describe the L → L interactions by treating the
combined scattering from all phonon branches as a single
interaction. � → � scattering interactions are categorized as
either g type, in which the destination valley lies on the same
crystallographic axis as the source, or f type in which the
destination valleys lie on a different axis. Phonon energies
and deformation potentials for g and f interactions with
longitudinal/transverse optical (LO/TO) and acoustic (LA/TA)
phonon branches were taken from Ref. 55. The high-energy
g-LO, f -LA, and f -TO phonon interactions were determined
using the zero-order deformation potential model. The lower
energy g-TA, g-LA, and f -TA interactions have no zero-order
component in their deformation potential, owing to symmetry
selection rules, and were instead determined using a first-order
model.56,57 The bandstructure calculations in Sec. II show that
�4 quantum wells correspond to �2 barriers in (001) Si/SiGe
heterostructures. The small spatial overlap of wavefunctions
leads to very small �2 → �4 scattering matrix elements, and
f transitions were therefore omitted in our model of (001)
devices as a first approximation.

The steady-state populations ni for each subband were
found using a rate-equation approach.38 Intrasubband scatter-
ing rates were typically calculated to be an order of magnitude
faster than intersubband scattering. It was therefore assumed
that electrons settle between intersubband scattering events
to a quasi-thermal Fermi–Dirac distribution. The distribution
for each subband was described by a quasi-Fermi energy EF,i

and a global electron temperature Te and the total subband
population was found using

ni = ρ2DkBTe ln

{
1 + exp

[
EF,i(Te)

kBTe

]}
, (12)

where ρ2D = md/(πh̄2) is the two-dimensional density-of-
states.

A root-finding approach was used to determine the steady-
state electron temperature at which no net gain or loss of kinetic
energy occurred within the QCL, using the expression38

dEk

dt
=

∑
f

∑
i

ni(Te)Eif Wif (Te) = 0. (13)

Here, Wif is the average intersubband scattering rate between a
pair of subbands i and j , summed over all scattering processes,
and Eif is the energy difference between the subband minima.
In the case of inelastic processes, the transition energy was
modified as Eif → Eif ± h̄ωq to account for the absorption
or emission of a phonon with energy h̄ωq .
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The current density was estimated by considering the
average scattering rates and the change in electron position
for all intersubband transitions,17

J = e

Lp

∑
i

nin
i
val

∑
f

(〈z〉f − 〈z〉i)Wif , (14)

where Lp is the length of a structural period of the QCL,
nval is the number of equivalent initial valleys, and 〈z〉 is the
expectation position for an electron in a given subband.

The optical gain per unit length was calculated using
G(ω) = σ (ω)/(ε0cnr ),38,58 where nr is the real part of the
refractive index of the active region stack and σ is the real part
of the optical conductivity. This is given by

σ (ω) = πe2

2
(
mqm

2
d

) 1
3 Lp

∑
i,j

fjinin
i
val sgn(Eij )Lij (ω), (15)

where Lij (·) is a lineshape function and sgn(·) represents the
sign function. The oscillator strength is given by

fji = 2
(
mqm

2
d

) 1
3

h̄
ωij |zij |2, (16)

where, zij = 〈j |z|i〉 is the dipole matrix element. A Lorentzian
lineshape was assumed, with a linewidth of 2 meV, as is typical
for the lasing transition in GaAs-based THz QCLs.9,59

IV. DEVICE DESIGNS

Equivalent 3 and 4 THz QCLs were designed for each of the
three material configurations, in order to simulate the relative
performance of each system. To obtain a fair comparison
between the materials, all designs were generated using an
automated process. In principle, it would have been possible
to generate slightly better designs than those presented in this
section by manually adjusting the device structures at the start
and end of the automated design process. However, we chose
not to apply any manual design optimization in this work, in
order to ensure that a consistent, reproducible and systematic
exploration of the design parameter space was used for each
material configuration.

Pure Si or Ge was used as the well material in order
to prevent depopulation of the upper laser level via alloy
disorder scattering. For each material configuration, a SiGe
alloy was chosen for the barriers to maximize the usable energy
range (as described in Sec. II), without introducing mechanical
instability.

A recent seven-well bound-to-continuum (BTC) (001)
Ge/GeSi design was selected as a template for all the
designs considered. This device gives a large simulated gain
(∼50 cm−1) at 3.5 THz, with a threshold current density around
300 A/cm2, an operating bias of 3.6 kV/cm,14 and a maximum
operating temperature of 136 K.60 In this structure, doping
was spread evenly over four wells and three barriers in the
injector region of each QCL period, with a total sheet density
of 8 × 1010 cm−2. Complete donor ionization was assumed. A
similar seven-well BTC device has been demonstrated in the
GaAs/AlGaAs material system, with an emission frequency
of 3.66 THz at an operating bias of 4.15 kV/cm and with
a threshold current density of ∼200 A/cm at low operating
temperatures. This GaAs/AlGaAs device was shown to have
a maximum operating temperature of 116 K—the highest
reported for a BTC THz QCL.9

An automated design algorithm61 was used to generate a
pair of new QCL designs from the Ge/GeSi QCL template,
with emission frequencies of 3 and 4 THz. In this method,
the gain spectrum was calculated using a range of external
electric fields from 3 to 10 kV/cm. The thickness of each
barrier and well was adjusted sequentially to maximize the
gain in a frequency window of ±200 GHz around the desired
emission frequency. The entire process was iterated until the
algorithm converged on an optimal layer structure and field.
The optimal virtual substrate composition was calculated for
each device,62 to ensure zero net stress across each period of
the QCL.

Equivalent 3 and 4 THz QCL designs were generated using
(001)- and (111)-oriented Si/SiGe configurations. In each case,
the thickness l of each layer in the template QCL structure was
transformed according to l′ = l

√
mq/m′

q ,63 where the prime
notation denotes parameters of the Si/SiGe system in the
appropriate orientation. This transformation yields subband
spacings approximately equal to those in the original Ge/GeSi
design template. The automated design algorithm was then
applied as described above.

Parameters for each of the final QCL designs are summa-
rized in Table III. It can be seen that the Si/SiGe device designs
generally require thinner layers than the Ge/GeSi designs,
owing to the difference in effective mass. Epitaxial growth
of QCLs in Si/SiGe may, therefore, be more challenging. The
total length of an active region period is also lower in Ge/GeSi
designs than in Si/SiGe, which leads to a lower operating bias.
The band structure and electron probability densities for the
Ge/GeSi designs are plotted in Fig. 3.

TABLE III. QCL design parameters for each of the devices designed in this work, where f0 is the emission frequency in THz, xs denotes the
virtual substrate Ge fraction, and F is the operating bias in kV/cm. Bold text in the layer structure represents barriers, while normal weighted
text represents wells. Doped layers are underlined.

Material f0 Layers (nm) xs F

(001) Si/Si0.8Ge0.2 2.9 2.1/0.8/6.4/0.7/3.5/1.0/3.3/1.2/3.1/1.4/3.0/1.4/2.9/1.6 0.048 7.1
(111) Si/Si0.4Ge0.6 3.1 3.2/1.0/9.2/0.8/5.0/1.5/4.5/1.9/4.4/2.3/4.4/2.4/4.2/3.3 0.146 6.9
(001) Ge/Ge0.85Si0.15 3.0 6.7/1.2/15.1/1.4/11.1/1.5/9.5/1.8/8.7/2.3/7.7/3.5/7.1/4.3 0.969 3.3

(001) Si/Si0.8Ge0.2 4.1 2.2/0.7/6.1/0.8/4.3/1.0/3.1/1.0/3.1/1.2/3.0/1.4/2.7/1.5 0.045 7 .3
(111) Si/Si0.4Ge0.6 4.0 3.1/1.0/8.7/1.3/5.3/1.6/5.0/2.0/4.6/2.1/4.0/2.4/4.0/3.7 0.154 6.9
(001) Ge/Ge0.85Si0.15 3.8 5.8/1.0/15.3/1.4/12.3/1.6/9.9/1.9/8.3/2.4/7.8/2.9/7.0/4.3 0.970 3.5
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FIG. 3. Potential profile and electron probability densities for
optimized (001) Ge/GeSi QCL designs, with emission frequencies
and operating biases of (a) 3.0 THz, 3.3 kV/cm and (b) 3.8 THz,
3.5 kV/cm. The upper and lower subbands involved in the radiative
transition are shown as solid-bold and dashed-bold lines, respectively.

V. SIMULATED DEVICE PERFORMANCE

The simulated gain spectra for all devices, operating at
their respective design biases are shown in Fig. 4. It can
be seen that the Ge/GeSi designs yield the highest gain
at both frequencies, with peaks of 63 and 82 cm−1 for
the 3 and 4 THz designs, respectively. The peak gains for the
Si/SiGe designs are significantly lower: 25 and 38 cm−1 for the
(111)-oriented devices, and 5 and 3 cm−1 for the (001)-oriented
devices at 3 and 4 THz, respectively. We have previously
calculated a threshold gain of 31 cm−1 for a 15-μm-thick
(001) Si/SiGe QCL active region in a copper double-metal
waveguide structure.60 By taking this threshold as an indicative
figure, we predict that net gain is achievable for both Ge/GeSi
devices, and for the 4 THz (111) Si/SiGe device.

The peak gains in the spectra decrease as the lattice tem-
perature increases, as shown in Fig. 5, owing to the reduction
in population inversion. This is caused by a number of thermal
effects, including electron leakage from the upper laser level
via phonon emission, and by thermal backfilling of the lower
laser level. Net gain is predicted for the Ge/GeSi devices up
to lattice temperatures of 179 and 184 K for 3 and 4 THz
emission, respectively. The 4 THz (111) Si/SiGe device is
predicted to yield net gain up to a lattice temperature of 127 K.
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FIG. 4. Gain spectra for devices emitting near (a) 3 THz and
(b) 4 THz.
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FIG. 5. (Color online) Peak gain as a function of lattice temper-
ature for devices emitting near 3 THz (thin lines) and 4 THz (bold
lines). The blue line represents an indicative figure of 31 cm−1 for the
threshold gain.
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FIG. 6. (Color online) Relationship between electron temperature
and lattice temperature for devices emitting near 3 THz (thin lines)
and 4 THz (bold lines).

The simulated temperature of the electron distribution
Te is plotted as a function of lattice temperature T in
Fig. 6. At high lattice temperatures, Te is a linear function
of T and is approximately independent of bias. At low
lattice temperatures, however, Te is determined principally by
the applied electric field. In the case of (001) Si/SiGe devices,
the bias is relatively large (>7 kV/cm), and electrons therefore
scatter preferentially into high-energy states. This yields high
steady-state electron temperatures of 184 and 189 K for
emission at 3 and 4 THz, respectively, at a lattice temperature
of 4 K. The electric fields are lower in (111) Si/SiGe and
(001) Ge/GeSi devices, owing to the greater lengths of the
active regions. This leads to correspondingly lower electron
temperatures of 127 and 129 K for (111) Si/SiGe devices, and
93 and 100 K for Ge/GeSi devices emitting at 3 and 4 THz,
respectively. The effect of thermal excitation upon device
performance is illustrated in Fig. 7. It can be seen that the gain
decreases monotonically as electron temperature increases,
owing to the thermal backfilling of the lower laser level.
Ge/GeSi devices are able to operate with the lowest electron
temperatures, and hence achieve the highest peak gains.

The current density was calculated at the design bias for
each of the devices. Current densities of 270 and 380 A cm−2

were predicted at the design bias for Ge/GeSi devices operating
at 3 and 4 THz, respectively. In Si/SiGe, current densities
were calculated as 430 and 460 A cm−2 for the (111)-oriented
devices and 210 and 240 A cm−2 for the (001)-oriented devices
at 3 and 4 THz, respectively. The low operating currents in
(001) Si/SiGe devices were due to the very low scattering
rates, which result from the high �2 valley effective mass. The
ratio of peak gain to current density was calculated as a figure
of merit for each device at its design bias. Ge/GeSi devices
were found to have the highest values (240 and 210 cm/kA)
followed by (111) Si/SiGe (57 and 84 cm/kA), and (001)
Si/SiGe (25 and 14 cm/kA) at 3 and 4 THz, respectively. We
should note that our simulations of (001) Si/SiGe QCLs do not
include �2 → �4 intervalley scattering events, which would
further degrade the predicted performance. However, as these
structures already appear to be poor candidates for laser design,
a more comprehensive transport model was considered unnec-
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FIG. 7. (Color online) Relationship between peak gain and
electron temperature for devices emitting near 3 THz (thin lines)
and 4 THz (bold lines).

essary. Threshold current densities were calculated at T = 4 K
as 440, 210, and 330 A cm−2 for the 4 THz (111)-Si/SiGe,
3 THz Ge/GeSi, and 4 THz Ge/GeSi devices, respectively.

VI. CONCLUSION

We have presented a comparison between the simulated
performance of Si-based QCLs using the (001) Ge/GeSi,
(111) Si/SiGe, and (001) Si/SiGe material configurations.
A semiautomated design optimization algorithm was used,
in order to provide a fair comparison between equivalent
designs. Our results show that (001) Ge/GeSi is the most
promising system for development of a Si-based QCL. First,
the bandstructure calculations in Sec. II show that the (001)
Ge/GeSi and (111) Si/SiGe systems offer a �90 meV energy
range for QCL design, compared with only ∼5 meV in (001)
Si/SiGe systems, owing to the large energy separation between
conduction band minima. This reduces the probability of
current leakage via intervalley scattering, and allows a wider
range of emission frequencies to be targeted. Second, the low L

valley effective mass was found to yield a relatively long period
length for the QCL active region. This reduces the operating
electric field, and hence the current density and the temperature
of the electron distribution. Net gain was predicted for both
of the Ge/GeSi devices, but only one of the four optimized
Si/SiGe devices. Ge/GeSi bound-to-continuum QCLs were
predicted to operate up to temperatures of 179 and 184 K
at 3 and 4 THz, respectively, while the 4 THz (111) Si/SiGe
device was predicted to operate up to 127 K. These figures may
potentially be improved via waveguide design optimization
to minimize losses, or through the use of a resonant-phonon
active region design. Nevertheless, the predicted values exceed
the highest recorded operating temperature of 116 K for a
3.66 THz seven-well III–V BTC device.9
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VALAVANIS, DINH, LEVER, IKONIĆ, AND KELSALL PHYSICAL REVIEW B 83, 195321 (2011)

*a.valavanis@leeds.ac.uk
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