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Ehrenfest-time dependence of counting statistics for chaotic ballistic systems
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Transport properties of open chaotic ballistic systems and their statistics can be expressed in terms of the
scattering matrix connecting incoming and outgoing wave functions. Here we calculate the dependence of
correlation functions of arbitrarily many pairs of scattering matrices at different energies on the Ehrenfest time
using trajectory-based semiclassical methods. This enables us to verify the prediction from effective random-
matrix theory that one part of the correlation function obtains an exponential damping depending on the Ehrenfest
time, while also allowing us to obtain the additional contribution that arises from bands of always correlated
trajectories. The resulting Ehrenfest-time dependence, responsible, e.g., for secondary gaps in the density of
states of Andreev billiards, can also be seen to have strong effects on other transport quantities, such as the
distribution of delay times.
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I. INTRODUCTION

After the conjecture by Bohigas, Gianonni, and Schmit in
19841 that chaotic systems are well described by random-
matrix theory (RMT),2 research started to demonstrate this
connection on dynamical grounds by means of semiclassical
methods based on analyzing energy-averaged products of
expressions similar to the Gutzwiller trace formula3 for the
density of states that are asymptotically exact in the limit
h̄ → 0. For open systems we are particularly interested in
the scattering matrix S(E), which is an N × N matrix if
the scattering leads carry N states or channels in total. Its
elements can, like the Gutzwiller trace formula, be expressed4

in terms of sums over the classical trajectories containing
the stability factors of the orbits Aγ and rapidly oscillating
phases depending on the classical actions Sγ of the considered
trajectories γ divided by h̄,

So,i ≈ 1√
TH

∑
γ (i→o)

Aγ e(i/h̄)Sγ , (1)

with TH ≡ 2πh̄� with the mean level spacing of the quantum
system �. Here the sum is over the scattering trajectories that
connect the two channels i and o. For systems with two (or
more) leads, the scattering matrix breaks up into reflecting and
transmitting subblocks, so we might restrict our attention to
trajectories starting and ending in certain leads.

In the context of spectral statistics, i.e., for the two-point
correlation function of the density of states containing a double
sum over periodic orbits, this dynamical understanding of the
conjecture1 was—as for other quantities—achieved in several
steps. Starting with the pairing of identical (or time-reversed)
orbits in the presence of time-reversal symmetry, the so called
diagonal contribution was evaluated in Ref. 5 using a sum rule
from Ref. 6. Nondiagonal contributions consisting of pairs of
long orbits differing essentially only in the place where one
of the orbits possesses a self-crossing and the other avoids
this crossing were analyzed in Ref. 7. This was extended8

and formalized for orbits differing at several places, so called
encounters.

In the context of transport, i.e., for example, for the
two-point correlator of scattering matrix elements, which if

restricted to the transmission subblocks is via the Landauer-
Büttiker formalism9 proportional to the conductance, the
diagonal contribution was calculated in Ref. 10. An orbit pair
differing only in one crossing was analyzed in Ref. 11, and
this was again extended to orbits differing at several places.12

These results and those for closed systems agreed with results
from RMT, but besides this dynamical understanding of the
RMT results, these semiclassical calculations proved very
successful in determining the effect of a finite Ehrenfest
time τE on transport quantities, starting with the pioneering
work of Ref. 13. The Ehrenfest time14 separates times
when the time evolution of a particle follows essentially the
classical dynamics from times when it is dominated by wave
interference. Its value is obtained as the time when two points
inside a wave packet initially of quantum size h̄/pF with the
Fermi momentum pF evolve to points with a distance L of
the linear system size. We thus get, due to the exponential
separation of neighboring trajectories in the chaotic case,

τE = 1

λ
ln

pFL

h̄
, (2)

with the Lyapunov exponent λ.
Before these semiclassical calculations of the Ehrenfest-

time dependence, there already existed theories to describe the
effect of a finite Ehrenfest time on the correlators of scattering
matrix elements: Aleiner and Larkin obtained15 for the
correlator of two transmission matrices, i.e., the conductance,
an exponential suppression with increasing Ehrenfest time
in agreement with semiclassics. This work was, however,
unsatisfactory in one main aspect: a small amount of impurity
scattering was introduced by hand to imitate the effects of
diffraction in a ballistic system.

Another phenomenological theory to describe the effect of
a finite Ehrenfest time is effective RMT.16 It splits the phase
space and thereby also the underlying scattering matrix of
the considered system into a classical and a quantum part,
where the first one is determined by all trajectories shorter
than τE and the second one by all trajectories longer than
τE, as well as introducing an artificial phase dependent on the
Ehrenfest time. The predictions of this theory are only partially
correct: weak localization is predicted to be independent of the
Ehrenfest time, while the previously mentioned theories and
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also numerical simulations17,18 predict it to decay with the
Ehrenfest time. In contrast to the quantum correction of weak
localization, effective RMT gave good predictions for effects
at leading order in N such as shot noise19–22 or the gap in the
density of states of a chaotic Andreev billiard.23,24

Staying only at the leading order in inverse channel number,
we will consider the correlation function of 2n scattering
matrices at alternating energies defined as

C(ε,n,τ ) = 1

N
Tr

[
S†

(
− εh̄

2τD

)
S

(
+ εh̄

2τD

)]n

, (3)

where for simplicity the energy ε is measured with respect to
the (Fermi) energy E and in units of the so called Thouless
energy ET = h̄/2τD with the dwell time τD measuring the
typical time a particle stays inside the system. The latter is
related to the Heisenberg time TH via the relation TH = NτD.
The Ehrenfest-time dependence is incorporated in τ ≡ τE/τD.
The explicit form is

C(ε,τ,n) = C1(ε,τ,n) + C2(ε,τ,n), (4)

C1(ε,τ,n) = C(ε,n)e−τ (1−inε), (5)

C2(ε,τ,n) = 1 − e−τ (1−inε)

1 − inε
, (6)

with the RMT (i.e., τ = 0) part of this correlation function
denoted by C(ε,n). The term in (5) derives from effective
RMT.16,25 Although this theory describes certain phenomena
quite well, e.g., the dependence of the Andreev gap on the
Ehrenfest time,24 a dynamical justification of this result is still
lacking. So far Ref. 25 calculated C(ε,τ,n) for n = 1,2,3 while
Refs. 26 and 18 showed the separation into two terms in (4)
to be a consequence of the preservation under time evolution
of a phase-space volume of the system. Moreover, they also
calculated the explicit form we give in (6) for the second
term and that the first term in (5) is proportional to the factor
e−τ (1−inε).

Because of (1), the correlation function can be written
semiclassically in terms of 2n scattering trajectories con-
necting channels along a closed cycle as in Fig. 1(a). This
leads to trajectory sets with encounters as in Figs. 1(b) and
1(c), which can then be moved into the leads to create the
remaining diagrams in Fig. 1. Including the correct prefactors

(a) (b) (c)

(d)

(f)
(e)

(g)

(h)

FIG. 1. (Color online) The trajectory sets with encounters that
contribute to the third correlation function C(ε,3).

and the energy dependence, the correlation function becomes
semiclassically

C(ε,τ,n) ≈ 1

NTH
n

n∏
j=1

∑
ij ,oj

∑
γj (ij →oj )

γ ′
j (ij+1→oj )

Aγj
A∗

γ ′
j

× e
(i/h̄)(Sγj

−Sγ ′
j

)
e

(iε/2)(Tγj
+Tγ ′

j
)/τD

, (7)

where Tγ are the times trajectories γ spend inside the system,
and we identify the channels in+1 = i1. Note that (7) and
this identification imply that the trajectories and their partners
(traversed in reversed direction) considered in C(ε,τ,n) form
a closed cycle.

In this paper, we want to show how Eqs. (4)–(6) can
be obtained using the trajectory-based methods developed in
Refs. 7, 8, 11, and 12. In Sec. II, we consider the first term
in (4): we show that the prefactor C(ε,n) of the exponential
is indeed given by the RMT expression obtained in Ref. 27
and that this is multiplied by the exponential given in (5).
The underlying diagrams considered here are the same as
the ones occurring also in the semiclassical calculation of
the RMT contribution. In Sec. III, we consider the second
term in (4) and show how this contribution arises from
trajectories that are always correlated. Furthermore, we show
in Sec. IV that there exist no mixed terms between the first
and the second term in (4), that could result—expressed in
terms of the considered diagrams—from correlations between
trajectories always correlated with each other on the one
side and trajectories only correlated with each other during
encounters on the other side.

II. INFLUENCE OF THE EHRENFEST TIME ON
TRAJECTORIES WITH ENCOUNTERS

The main idea in this section is to split our diagrams
in a different way compared to the semiclassical analysis
without Ehrenfest time (referred to as the RMT treatment)
and the analysis of the Ehrenfest-time dependence of the cases
n = 1,2,3 in Ref. 25: in the semiclassical calculation, one
considers an arbitrary number of orbits encountering each
other. It turns out in the RMT treatment to be sufficient to
consider only encounters where all orbits are linearizable up
to the same point; see, for example, Fig. 2. When taking
into account the Ehrenfest-time dependence, this is no longer
sufficient, as was first shown in Ref. 25; see Fig. 3 for
an example of an additional diagram analyzed in this case.
The main complication arising in Ref. 25 is then to treat
these encounters. To simplify the calculation, we imagine
these encounters being built up out of several encounters,
each of which consists of two encounter stretches. We have
distinguished these 2-encounters by different boxes in Fig. 4.

FIG. 2. (Color online) A 3-encounter as it can be approximated in
the RMT-treatment [cf. Fig. 1(c)]. The encounter stretches are marked
by a box (shown red).
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FIG. 3. (Color online) A 3-encounter as previously treated with
Ehrenfest time.25 The encounter stretches are marked by a box (shown
red).

In this way, it is much easier to consider encounter diagrams
of arbitrary complexity with finite Ehrenfest time, which did
not appear in the formalism used in Ref. 25.

We first illustrate our procedure by considering three
correlated orbits with two 2-encounters as in Fig. 4 and show
how the result given in Ref. 25 can be obtained in this case,
and then we treat the general case of n orbits with (n − 1)
independent or overlapping 2-encounters.

A. Explanation of our procedure for n = 3

In the treatment of the RMT-type contribution (5), we first
consider the case in which all the encounters occur inside the
system. For n = 3, we have the two semiclassical diagrams
in Figs. 1(b) and 1(c), which include a trajectory set (of three
original trajectories and three partners) with two 2-encounters
in Fig. 1(b) and a single 3-encounter in Fig. 1(c). By shrinking
the link connecting the two encounters in Fig. 1(b), we can see
how we deform them into the diagram in Fig. 1(c), and we use
this idea in our Ehrenfest-time treatment.

1. Two 2-encounters

For the calculation of contributions resulting from diagrams
differing in encounters, we first need to review the notation and
the important steps of the corresponding calculation in Ref. 8.
An encounter of two orbits is characterized by the difference
of the stable and unstable coordinates si and ui measured in a
Poincaré surface of section (PSS) put inside the encounter;
see Fig. 4. In terms of these coordinates, the duration of
the encounters is given by tenc,i = 1/λ ln(c2/|siui |) derived
from the condition that the coordinates si,ui are only allowed
to grow up to a classical constant c (which is later related
to the Ehrenfest time). The weight function measuring the
probability to find these encounters is obtained by integrating
over all possible positions where the encounter stretches can
be placed and dividing by the volume of available phase space
(in the corresponding closed system) � and further by the

FIG. 4. (Color online) A diagram with two 2-encounters as we
treat it with Ehrenfest time. The encounter stretches of the two 2-
encounters are marked by boxes (shown red and blue). A possible
position of the Poincaré surface of section (PSS) is marked by a black
vertical line.

durations of the encounters tenc,i to avoid overcounting the
same set of correlated trajectories. The action difference �S

between the orbits is in general given by a quadratic form
of the coordinates si,ui determined by where the partner
trajectories must pierce the PSS’s to reconnect in the right way
to form a closed cycle. For example, for a 3-encounter one
obtains8 �S = s ′

1u
′
1 + s ′

2u
′
2 − s ′

1u
′
2, where the prime denotes

that the coordinates are measured in one PSS from the central
trajectory. If we instead measure the coordinates in two differ-
ent sections, we obtain �S = s1u1 + s2u2 − s1u2 exp (−λ�t),
where the time �t denotes the time the particle needs to
travel between the two sections. This leads in the limit of
well-separated encounters to �S ≈ s1u1 + s2u2. From this
and from Ref. 8, we can draw the following conclusions for
the form of the action difference in the case of an arbitrary
number of (possibly overlapping) 2-encounters: In the case
of k well-separated 2-encounters, we obtain for the action
difference �S ≈ ∑k

i=1 siui . When these encounters overlap,
the action difference can differ from the last expression by
terms exponentially damped with the time difference between
the two sections.

In our treatment, the overall contribution C4(ε,τ,3) of
the two 2-encounters (depicted in more detail in Fig. 4) is
obtained by allowing the upper trajectory to possess a minimal
length of the first 2-encounter and the lowest one a minimal
length of the second 2-encounter. The middle trajectory, which
passes through both encounters, has a minimal length given
by the maximum of the two encounter times as we allow
the encounters to overlap. However, we do not yet allow one
encounter to be subsumed into the other, so we also set the
time t between the start of the first encounter and the end of
the second to be longer than the maximum encounter time.
To write down the semiclassical contribution of the diagram
in Fig. 4, we sum over the number of possible classical
orbits using the open sum rule.11 Converting the time integrals
resulting from this rule to time integrals with respect to link
durations, we obtain

C4(ε,τ,3) = N2

τ 3
D

(
6∏

i=1

∫ ∞

0
dtie

−ti (1−iε)/τD

)
(8)

×
∫ c

−c

d2sd2u
eiε(tenc,1+tenc,2)/τD

�2tenc,1tenc,2

×
∫ ∞

max{tenc,1,tenc,2}
dt e(i/h̄)�Se−t(1−iε)/τD ,

where the superscript refers to Fig. 4. We have summed
over the possible channels, and ti with i = 1, . . . ,6 label
the links from the channels to the encounters. In (8), where
d2s = ds1ds2 and d2u = du1du2, si and ui with i = 1,2 are
the stable and unstable coordinate differences between the two
parts of the trajectories piercing through a PSS placed in the ith
encounter. As explained above, the action difference is given
by �S = s1u1 + s2u2 − s1u2 exp (−λ�t). By expanding the
part of the exponential e(i/h̄)�S containing this �t-dependent
part into a Taylor series, one verifies easily that contributions
from higher-order terms than the leading (time independent)
one are of higher order in 1/(λτD) and can be neglected.
This reasoning also holds for diagrams with more than two
2-encounters.
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In the first line of (8), we can see that each integral over
the links is weighted by its classical probability to remain
inside the system for the time ti , which decays exponentially
with the average dwell time τD. We only want to consider
trajectory sets where the whole diagram remains inside the
system, as if any parts were to hit the lead and escape, the
diagram would be truncated at that point. With the energy
dependence in (7), this gives the factors e−ti (1−iε)/τD in (8).
Inside the encounters, however, we have trajectory stretches
that are so close that the conditional survival probability of
secondary traversals is 1 and we need only consider the survival
probability of one stretch. If that stretch does not escape, then
neither will the other. The energy dependence still depends
on the total time, so that encounter 1 would lead to the factor
e−tenc,1(1−2iε)/τD . With the overlap, encounter 2 would then have
a more complicated exponential factor, but because the time
t (between the two outer ends of the encounter stretches on
the middle trajectory shown in Fig. 4) passes through both
encounters, their survival probability (of both stretches of both
encounters) can be expressed as the survival probability of a
stretch of duration t as in the last line of (8). The energy
dependence instead also requires the extra traversal of the
encounters as given by the exponential factor in the middle
line of (8).

Performing the integrals in the first line of (8), we have

C4(ε,τ,3) = τDT 2
H

(1 − iε)6
F 4(τ ), (9)

where we have moved all of the Ehrenfest-time-dependent
parts into the factor F 4(τ ) with the superscript again referring
to Fig. 4,

F 4(τ ) =
∫ c

−c

d2sd2u
e(i/h̄)�Seiε(tenc,1+tenc,2)/τD

�2tenc,1tenc,2

×
∫ ∞

max{tenc,1,tenc,2}
dt e−t(1−iε)/τD . (10)

Here we can also see the connection with the previous
Ehrenfest-time treatment of such a diagram. When t > tenc,1 +
tenc,2, the two encounters separate (the integrals can then be fur-
ther broken down into products), and this is the case in which
the trajectories can be considered to have two independent
2-encounters as in Ref. 25. Because we choose a different
lower limit, however, the contribution above also includes
some of the diagrams previously treated as 3-encounters in
Ref. 25. The reason for our choice becomes clear in the
following steps. We first substitute t ′ = t − max{tenc,1,tenc,2},

F 4(τ ) =
∫ c

−c

d2sd2u
e(i/h̄)�Seiε(tenc,1+tenc,2)/τD

�2tenc,1tenc,2

×
∫ ∞

0
dt ′ e−(t ′+max{tenc,1,tenc,2})(1−iε)/τD , (11)

and then substitute ui = c/σi , si = cxiσi , and perform the σi

integrals using the explicit form of the tenc,i = 1/λ ln(c2/|siui |)

(for details of this calculation, see also Ref. 25). This
results in

F 4(τ ) = 16
∫ 1

0
dx2 λ2c4

�2
cos

(
c2

h̄
x1

)
cos

(
c2

h̄
x2

)

×
∫ ∞

0
dt ′ e−(t ′+max{− ln x1,−ln x2}/λ)(1−iε)/τD

× e−iε(ln x1+ln x2)/(λτD). (12)

Now we substitute x ′
i = xic

2/h̄ and obtain

F 4(τ ) = 16
∫ ∞

0
dx ′2 λ2h̄2

�2
cos(x ′

1) cos(x ′
2)

×
∫ ∞

0
dt ′ e−(t ′+max{− ln x ′

1,−ln x ′
2}/λ)(1−iε)/τD

× e−iε(ln x ′
1+ln x ′

2)/(λτD)e−τ (1−3iε). (13)

Here we split the resulting expression into an h̄-independent
integral (or more exactly trivially dependent on h̄) that
exists due to the energy average that is always contained
in our calculations, and an Ehrenfest-time- or h̄-dependent
part with τE ≡ 1/λ ln(c2/h̄). This contains the Ehrenfest-time
dependence that is expected from (5), so (13) already shows
that the diagrams considered here yield the correct Ehrenfest-
time dependence.

2. A 3-encounter

Now we consider the case in which one of the two 2-
encounters lies fully inside the other one, which we will refer
to as a generalized version of a 3-encounter, as depicted in
Fig. 5.

For the Ehrenfest-time-dependent part, we have a similar
contribution as in (10) with two differences: First, t is best
defined as the distance between the midpoints of the two
different encounter stretches, and so it can vary between

|t | � 1
2 (max{tenc,1,tenc,2} − min{tenc,1,tenc,2}),

(14)
|t | � 1

2 |tenc,1 − tenc,2|.
Second, the survival probability of the encounters is deter-
mined by the longest encounter stretch and is independent of
t . The Ehrenfest-time-dependent part can then be written as

F 5(τ ) =
∫ c

−c

d2sd2u
e(i/h̄)�Seiε(tenc,1+tenc,2)/τD

�2tenc,1tenc,2

×
∫ 1

2 |tenc,1−tenc,2|

− 1
2 |tenc,1−tenc,2|

dt e−(max{tenc,1,tenc,2})(1−iε)/τD . (15)

FIG. 5. (Color online) One 2-encounter is located fully inside the
other, corresponding to our treatment of a generalized version of a
3-encounter. The two 2-encounters are marked by boxes (indicated
by different colors).
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Performing the t integral and following the same steps as for
(12) and (13), we find

F 5(τ ) = 16
∫ ∞

0
dx ′2 λ2h̄2

�2

| ln x ′
1 − ln x ′

2|
λ

cos(x ′
1)

× cos(x ′
2)e−(max{− ln x ′

1,−ln x ′
2})(1−iε)/(λτD)

× e−iε(ln x ′
1+ln x ′

2)/(λτD)e−τ (1−3iε). (16)

This part also shows an Ehrenfest-time dependence as expected
from (5). Note that when performing the t integral, the result
in this case is of course proportional to |tenc,1 − tenc,2|, which
contains, after the substitution from x to x ′, two times the
same terms linear in τE with different signs that thus cancel
each other.

3. Touching the lead

Up to now we have concentrated on encounters inside
the system, but apart from these diagrams we also need to
consider diagrams where the encounters touch the opening,
as in Figs. 1(d)–1(h). We will, as above, start by considering
encounters built up out of two 2-encounters, and we focus
here on how the calculation of the contribution is changed
when encounters move into the lead compared to the treatment
of encounters inside the system. As can also be found in
more detail in Ref. 25, when encounters touch the lead, one
includes in the semiclassical expressions for encounters inside
the system an additional time integral running between zero
and the corresponding encounter time, which characterizes the
duration of the part of the encounter stretch that has not yet
been moved into the lead.

We consider two encounters with durations tenc,1 and tenc,2,
with the second encounter touching the opening as in Fig. 1(d)
and drawn in more detail in Fig. 6. As the second encounter
enters the lead, we now define the time t to be from the start of
the first encounter until the lead and introduce the time tc which
measures the part of the second encounter that has not yet
been moved into the lead. We also separate the Ehrenfest-time
relevant contribution F 6(τ ) in this detailed calculation into
two cases: in the first case (A), tenc,2 < tenc,1; we have F 6

A(τ )
with the additional integral over the time tc,

F 6
A(τ ) =

∫ c

−c

tenc,2 < tenc,1

d2sd2u
e(i/h̄)�Seiεtenc,1/τD

�2tenc,1tenc,2

×
∫ tenc,2

0
dtc eiεtc/τD

∫ ∞

tenc,1

dt e−t(1−iε)/τD , (17)

FIG. 6. (Color online) The second of two 2-encounters now enters
the lead so that only tc of it remains inside the system.

where the limits on the time integrals derive from the fact
that the first encounter is not allowed to touch the lead (this
would be included as a 3-encounter) and that the second must.
Performing the time integrals, this is

F 6
A(τ ) =

∫ c

−c

tenc,2 < tenc,1

d2sd2u
e(i/h̄)�S

�2tenc,1tenc,2

τ 2
D

iε(1 − iε)

× [eiεtenc,2/τD − 1]e−tenc,1(1−2iε)/τD , (18)

with the first and second term in the square brackets resulting
from the upper and lower limit of the tc integration. In the
second case (B), tenc,2 > tenc,1; we obtain

F 6
B(τ ) =

∫ c

−c

tenc,2 > tenc,1

d2sd2u
e(i/h̄)�Seiεtenc,1/τD

�2tenc,1tenc,2

×
[∫ tenc,1

0
dtc eiεtc/τD

∫ ∞

tenc,1

dt e−t(1−iε)/τD

+
∫ tenc,2

tenc,1

dtc eiεtc/τD

∫ ∞

tc

dt e−t(1−iε)/τD

]
, (19)

where the more complicated limits derive from not allowing
the second encounter to move further left than the first. After
integrating, we have

F 6
B(τ ) =

∫ c

−c

tenc,2 > tenc,1

d2sd2u
e(i/h̄)�S

�2tenc,1tenc,2

τ 2
D

(1 − iε)

×
[

1

iε
[eiεtenc,1/τD − 1]e−tenc,1(1−2iε)/τD

+ 1

(1 − 2iε)
e−tenc,1(1−3iε)/τD

− 1

(1 − 2iε)
eiεtenc,1/τD e−tenc,2(1−2iε)/τD

]
. (20)

The last line comes from the upper limit of the second tc
integral and has the same Ehrenfest-time dependence as before
and in line with (5). Likewise, the upper tc time limit for case A
in (17) leads to the same dependence, and we can conclude that
the upper limits of the tc integrations yield contributions similar
to when the encounters are inside the system and with the same
Ehrenfest-time dependence. The remaining (lower) limits of
the time integrations in (17) and (19) give contributions
possessing a different Ehrenfest-time dependence, which,
however, always yield zero in the semiclassical limit due to
the fact that the corresponding terms contain no tenc,2 in the
exponentials containing τD. Apart from the action difference,
the only term depending on s2,u2 is the 1/tenc,2. The resulting
expression is rapidly oscillating as a function of the energy8

and thus canceled by the energy average.
We can repeat this procedure for the remaining diagrams

in Fig. 1 and see that the contributions are determined by
the upper limits of the corresponding tc integrals. For the
diagrams with a generalized 3-encounter [Figs. 1(g) and 1(h)],
this follows as for the 3-encounter inside the system, but for
Fig. 1(e), where the two 2-encounters enter different channels
(and possibly different leads), there is an additional subtlety.
The two encounters are still allowed to overlap, so that during
the time t the stretch now connecting both channels can
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always be inside encounters but the individual encounters are
not allowed to connect leads at both ends. These additional
possibilities are considered later, where if both encounters
connect to the leads at both ends, we actually have a band
of correlated trajectories (treated in Sec. III), and if only one
does we have a mixed term (treated in Sec. IV). With this
organization of the encounters, we see that each diagram has
the same Ehrenfest-time dependence as when the encounters
are inside the system, which is in line with (5).

4. Intermediate summary

The reasoning so far in this section proves the form of (5) for
n = 3. First of all, we know that the resulting contribution from
the diagrams analyzed contains an overall factor e−τ (1−3iε).
Secondly, the remaining integrals are independent of h̄ and
thus independent of the Ehrenfest time. Thirdly, the diagrams
we analyze are the same as the ones analyzed in the RMT case
in the first part of Ref. 27. As in the limit τE → 0 we must
recover that previous result, this implies that C(ε,τ,3) in (5) is
indeed given by the RMT expression.

5. Full contributions

Before proceeding to the general case, however, we first
want to illustrate how our calculation can be used to obtain,
apart from just the Ehrenfest-time dependence, the complete
dependence on τD and ε.

We therefore start for the two 2-encounters from Fig. 4 from
the last expression in (13) and perform first the t ′ integral,

F 4(τ ) = 16τD

(1 − iε)

∫ ∞

0
dx ′2 λ2h̄2

�2
cos(x ′

1) cos(x ′
2)

× e− max{− ln x ′
1,−ln x ′

2}(1−2iε)/(λτD)

× emin{− ln x ′
1,−ln x ′

2}iε/(λτD)e−τ (1−3iε), (21)

where it is simpler to rewrite the result in terms of the
maximum and minimum value of ln x ′

i . For calculating the
x ′

i integrals, we perform partial integrations (integrating each
time the cos functions) and then perform the resulting integrals
from zero to infinity,

F 4(τ ) = −16iε

τD

(1 − 2iε)

(1 − iε)

∫ ∞

0
dx ′2 h̄2

�2

sin(x ′
1)

x ′
1

sin(x ′
2)

x ′
2

× e− max{− ln x ′
1,−ln x ′

2}(1−2iε)/(λτD)

× emin{− ln x ′
1,−ln x ′

2}iε/(λτD)e−τ (1−3iε)

= − iε

τDT 2
H

(1 − 2iε)

(1 − iε)
e−τ (1−3iε). (22)

In the first line, the additional terms due the partial integration
are either zero or cancel due to the energy average. The final
result in the last line of (22) can be also obtained by replacing
max{− ln x ′

1, − ln x ′
2}/λ = y1 and min{− ln x ′

1, − ln x ′
2}/λ =

y2 and performing the integrals with respect to yi from zero to
infinity.

To evaluate the contribution from the generalized 3-
encounter in Fig. 5, we again perform two partial integrations

in (16) and obtain

F 5(τ ) = 16

τD
(1 − iε)

∫ ∞

0
dx ′2 h̄2

�2

sin(x ′
1)

x ′
1

sin(x ′
2)

x ′
2

× e− max{− ln x ′
1,−ln x ′

2}(1−2iε)/(λτD)

× emin{− ln x ′
1,−ln x ′

2}iε/(λτD)e−τ (1−3iε)

= (1 − iε)

τDT 2
H

e−τ (1−3iε), (23)

where we have also left out the terms from the partial
integrations that cancel due to the energy average.

With these results, we can now show how they connect to
the RMT-type results. For this we need to split our diagrams
differently, and first we need the result for an ideal 3-encounter
as depicted in Fig. 2, whose contribution was calculated25

to be

F 2(τ ) = − (1 − 3iε)

τDT 2
H

e−τ (1−3iε). (24)

With the extra factors in (9), it is clear how in the limit τE = 0
this reduces to the RMT-type result for a 3-encounter as in
Ref. 27. All the remaining contributions should be collected
together as two 2-encounters, and as the ideal 3-encounter is
included in our generalized 3-encounter, we first subtract (24)
from (23),

F 5(τ ) − F 2(τ ) = 2
(1 − 2iε)

τDT 2
H

e−τ (1−3iε). (25)

Before we add the result from our separation of two 2-
encounters in (22), we remember that in the treatment we
enforce that the first encounter is to the left of the second. The
result in (25) does not have this restriction, so we divide by 2
to ensure compatibility and then add the result in (22) to obtain

F 3(τ ) = 1

τDT 2
H

(1 − 2iε)2

(1 − iε)
e−τ (1−3iε). (26)

This then reduces to the RMT-type result for trajectories with
two 2-encounters when τE = 0 as in Ref. 27. The agreement of
these results with the previous Ehrenfest time treatment25 can
be seen as the result in (26), including both the result from two
independent 2-encounters as well as most of the contribution
of the diagram referred to as a 3-encounter in Ref. 25. When
splitting the contribution in a different way, as in Ref. 25,
this also leads to terms in both classes that contain different
Ehrenfest-time dependencies that only cancel when summed
together.

B. All orders

Although up to now we have just reproduced results from
Ref. 25, the procedure used here has the advantage that it
yields a simple algorithm for determining the Ehrenfest-time
dependence of the corresponding contributions to C1(ε,τ,n) at
arbitrary order. For our example of n = 3, we showed how it
was possible to split the diagrams into two classes that both
showed the Ehrenfest-time dependence as expected from (5).
We want now to show how to generalize our way of splitting
considered for three trajectories to diagrams containing n

trajectories.
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FIG. 7. (Color online) A ladder of consecutive 2-encounters. The
encounter stretches are marked by boxes (shown in different colors).

1. Ladder diagrams

We start again with the situation in which all of the
encounters are inside the system and by considering a case
analogous to Fig. 4, but now involving n instead of three
trajectories. We first take a diagram that consists of a ladder
of (n − 1) 2-encounters so that the central n − 2 trajectories
each contain two encounter stretches while the two outside
trajectories only contain one encounter stretch each. This
situation is depicted in Fig. 7, and the encounters are thus
characterized by (n − 1) s,u coordinates.

In this case, we obtain for the Ehrenfest-time relevant
contribution F 7(τ ) that the t integral measuring the time
difference between the end points of the two encounter
stretches on the middle orbit in (10) is replaced by n − 2
integrals over times ti with the same meaning as t ; they
measure the time difference between the end points of the two
(consecutive) encounter stretches on the central trajectories
containing two encounter stretches. These times likewise run
from the maximum of the corresponding encounter times to
infinity. The survival probability is determined by a single
(artificial) stretch that runs through all the encounters so that
the exponential term describing the τD and ε dependence is
now given by

e− ∑n−2
i=1 ti (1−iε)/τD e

∑n−2
i=2 tenc,i /τD eiε(tenc,1+tenc,n−1)/τD , (27)

where tenc,i are the durations of the (n − 1) individual 2-
encounters, and the middle exponential compensates for the
fact that the middle encounters are traversed by two ti and that
only one traversal should contribute to the survival probability.
Setting t ′i = ti − max{tenc,i ,tenc,i+1} and repeating now the
steps of (12) and (13), we find the Ehrenfest-time-dependent
factor in this case to be

F 7(τ ) =
(

4λh̄

�

)n−1 n−1∏
j=1

∫ ∞

0
dx ′

j cos(x ′
j )

n−2∏
i=1

∫ ∞

0
dt ′i

× e− ∑n−2
i=1 (t ′i+max{− ln x ′

i ,−ln x ′
i+1}/λ)(1−iε)/τD

× e− ∑n−2
i=2 ln x ′

i /(λτD)e−iε(ln x ′
1+ln x ′

n−1)/(λτD)

× e−τ (1−inε), (28)

again confirming the Ehrenfest-time dependence of (5).

2. Single encounter

Along with the case in which none of the encounters in the
ladder can move completely inside another, we can look at the
opposite extreme where all the encounter stretches lie inside of
the encounter k with the longest duration tenc,k = maxi{tenc,i},

where tenc,i are the durations of the (n − 1) individual 2-
encounters with one of the two orbits containing the stretch
of duration tenc,k . This situation is like a generalization of
the diagram in Fig. 5, and we similarly now define the times
ti to be measured between the centers of encounter i and
the encounter k of maximum length (with i 	= k). Here the
same Ehrenfest-time dependence e−τ (1−inε) follows by taking
into account that each time ti has a range of variation of size
tenc,k − tenc,i and that the τD- and ε-dependent exponential in
this case is

e−tenc,k (1−iε)/τD eiε
∑n−1

i=1 tenc,i /τD . (29)

This yields for the Ehrenfest-time-dependent factor

F 7′
(τ ) =

(
4λh̄

�

)n−1 n−1∏
j=1

∫ ∞

0
dx ′

j cos(x ′
j )

× e(1−iε) ln x ′
k/(λτD)

⎡
⎢⎣ n−1∏

i = 1
i 	= k

(ln x ′
i − ln x ′

k)

λ

⎤
⎥⎦

× e−iε
∑n−1

i=1 ln x ′
i /(λτD)e−τ (1−inε), (30)

confirming again the Ehrenfest-time dependence predicted
by (5).

3. Mixture

Of course it is additionally possible to have a mixed form
between these two extreme cases. This means that some
2-encounters only overlap like in the case of a ladder diagram
while the others form “single” encounters; see Fig. 8 for
a possible diagram. We then have a ladder of “combined”
encounters that themselves can be made up of one or more
2-encounters. The treatment of such diagrams is very similar
to the treatments above, and the only slight complication is
in defining the appropriate times to extract the Ehrenfest-time
dependence.

We recall that the first and last trajectories only pass
through one 2-encounter while the central n − 2 trajectories
pass through two. Numbering the central trajectories from
1, . . . , n − 2, so that trajectory i has encounters i and i + 1
along it, we divide them into two sets: those whose encounter
stretches lie fully inside each other, or a connected encounter,
as in the case of a single encounter above, that we place
in the set �1. We place the remaining orbits with two
stretches separated as in ladder diagrams in the set �2. As
mentioned above, we condense the overlapping encounters

FIG. 8. (Color online) One possible example of a mixed case:
One encounter is fully contained inside another, the others form a
ladder as considered before.
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into combined encounters and record in the set 
 the labels
of the trajectories that pass through the second stretch in each
combined encounter. We also include in this set combined
encounters made of a single separated (ladder) 2-encounter.
We then use m(i) for i ∈ 
 to record the number of additional
consecutive trajectories involved in the same encounter, so that
m(i) = 0 for separated 2-encounters and m(i) > 0 for larger
encounters corresponding to the single encounter case above.
If the last combined encounter is a 2-encounter, its second
stretch is traversed by the last trajectory in the diagram, which
we number by n − 1 and include as an element of 
. For
example, for the diagram in Fig. 8, we would have �1 = {1},
�2 = {2,3}, 
 = {1,3,4}, m(1) = 1, m(3) = 0, and m(4) = 0.
For the elements i ∈ 
, we also label by ki the corresponding
encounter of maximum length among those from encounter i

to encounter i + m(i). To be precise, the two stretches that stay
together longest have length tenc,ki

while the other encounter
times are defined by how long the remaining stretches remain
close to one of the two longest.

For the trajectories passing through two separated con-
densed encounters i ∈ �2, we define the times ti to include
the whole of the leftmost and rightmost condensed encounters,
i.e., to include the encounters kī and ki+1, where ī is the largest
element in 
 that is �i. In this case, the τD- and ε-dependent
exponential can be written as

e− ∑
i∈�2

ti (1−iε)/τD e
∑

i∈
̄ tenc,ki (1−iε)/τD

× e−tenc,k1 (1−iε)/τD eiε
∑n−1

i=1 tenc,i /τD , (31)

where 
̄ is 
 with its largest element removed so that the
second term accounts for the overlap between the ti’s and the
third term for the fact that there is also no overlap at the start of
the first such stretch. This equation incorporates both (27) and
(29). If we introduce the notation M[i,j ] ≡ max{tenc,i ,tenc,j },
we can then define the times t ′i = ti − M[kī,ki+1] as before
(28). Making the substitutions as done previously yields for
the Ehrenfest-time-dependent factor

F 8(τ ) =
(

4λh̄

�

)n−1 n−1∏
j=1

∫ ∞

0
dx ′

j cos(x ′
j )

∏
i∈�2

∫ ∞

0
dt ′i

×
∏

i∈(�1∩
)

⎡
⎢⎣ i+m(i)∏

j = i

j 	= ki

(
ln x ′

j − ln x ′
ki

)
λ

⎤
⎥⎦

× e− ∑
i∈�2

(t ′i+M̂[kī ,ki+1]/λ)(1−iε)/τD

× e− ∑
i∈
̄ ln x ′

k[i](1−iε)/(λτD)eln x ′
k[1](1−iε)/(λτD)

× e−iε
∑n−1

i=1 ln x ′
i /(λτD)e−τ (1−inε), (32)

with M̂[i,j ] = max{− ln x ′
i , − ln x ′

j }. As �2 and 
̄ must have
the same number of elements, this again shows the predicted
Ehrenfest-time dependence.

4. General encounters

Up to now, we restricted our discussion to diagrams
where each trajectory is involved in one or two encounters.
This is, however, not yet the most general case in which

FIG. 9. (Color online) A general diagram containing also orbits
with more than two stretches. The encounters are marked by boxes
(shown in different colors).

the only restriction is that each trajectory contains at least
one encounter stretch, so that some trajectories can also
contain more than two encounter stretches. Note that the
situation where two trajectories interact (pass through the
same 2-encounter block) more than once cannot occur at
leading order in inverse channel number. An example of a
diagram that is possible is depicted in Fig. 9. In the most
general case, we define the times ti slightly differently: first,
we separate the k � 2 trajectories that have one encounter
stretch from the remaining n − k that have more than one.
Then we number our encounters accordingly, first those along
the trajectories with one encounter stretch with duration tenc,i ,
i = 1, . . . ,k, then the remaining encounters with duration
tenc,i , i = k + 1, . . . ,n − 1. For the n − k trajectories with two
or more encounter stretches, we now define ti , i = 1, . . . ,n − k

to be the time difference between the outer edges of the
outermost encounters along those trajectories.

For any trajectories with more than two encounter stretches,
we will need additional time differences to fully fix the posi-
tions of the encounters. Because we defined the times ti to go
through the outmost encounters, importantly the exponential
factor with the survival probability and the energy dependence
does not depend on these additional time differences and is
given by

e− ∑n−k
i=1 ti (1−iε)/τD e

∑n−1
i=k+1 tenc,i /τD eiε

∑k
i=1 tenc,i /τD , (33)

where the middle term ensures that the survival probability
only includes one copy of each encounter and the energy
dependence involves all traversals of all the encounters.

For the remaining times we notice that, starting with the
ladder system with two trajectories containing one encounter
stretch and n − 2 trajectories containing two stretches, every
time we increase the number of trajectories with one encounter
stretch, we simultaneously increase the number with more than
two. Therefore, there are k − 2 additional time differences
needed to fix the positions of the central encounters along
trajectories with more than two, and we define times t̃i for
i = 1, . . . ,k − 2 from the left-hand side of one encounter
stretch to the right-hand side of the next encounter stretch
following on the right on those trajectories; see also Fig. 10.
As the encounters are ordered, they are not (yet) allowed
to be subsumed by each other or pushed past the outside
encounters. The ranges of the times t̃i are then fixed by
these restrictions. Using again M[i,j ] defined after (31) in
the following to make the notation more compact, we obtain
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FIG. 10. (Color online) Definition of the times t̃i in the case
of more than two encounter stretches on one orbit. The encounter
stretches are shown thicker (blue).

for a trajectory containing m encounter stretches of durations
tenc,i , i = 1, . . . ,m, as illustrated in Fig. 10, the integrals

∫ ti

M(1,2)
dt̃1 · · ·

∫ ti−
∑m−3

o=1 (t̃o−M[o,o+1])

M[m−2,m−1]
dt̃m−2

=
∫ ti−M[1,2]

0
dt̃ ′1 · · ·

∫ ti−
∑m−3

o=1 t̃ ′o−M[m−2,m−1]

0
dt̃ ′m−2. (34)

In the second line, we substituted t̃ ′j = t̃j − M[j,j + 1]. The
time differences ti , which are more important for the Ehrenfest-
time dependence, must instead just be longer than the maximal
length of the encounter stretches lying on the considered
trajectory. In general, the numbering of the encounters and
time differences can be more complicated than in Fig. 10, so
we define l(i) to be a list of length m(i) of the encounters
enclosed by the time ti (including the outer encounters), and
L(i) a list of the corresponding m(i) − 1 times t̃ between the
ends of those encounters. Now we can make the substitution
t ′i = ti − maxj∈l(i){tenc,j }. After this substitution, we recognize
that (34) has become independent of h̄ or the Ehrenfest time.
Following then the steps in (12) and (13), we obtain

F 9(τ ) =
(

4λh̄

�

)n−1 n−1∏
j=1

∫ ∞

0
dx ′

j cos(x ′
j )

n−k∏
i=1

∫ ∞

0
dt ′i

×
∫ t ′i−(ln x ′

max ,i+M̂[l1,l2])/λ

0
dt̃ ′L1

· · ·

×
∫ t ′i−

∑m−3
o=1 t̃ ′Lo

−(ln x ′
max ,i+M̂[lm−2,lm−1])/λ

0
dt̃ ′Lm−2

×e− ∑n−k
i=1 (t ′i−ln x ′

max ,i /λ)(1−iε)/τD

× e− ∑n−1
i=k+1 ln x ′

i /(λτD)e−iε
∑k

i=1 ln x ′
i /(λτD)

× e−τ (1−inε), (35)

with − ln x ′
max ,i = maxj∈l(i){− ln x ′

j } linked to the duration of
the longest encounter stretch contained within ti . We have
also used M̂[i,j ] defined after (32) and dropped the explicit
i dependence of l,L and m above. Again we obtain the
Ehrenfest-time dependence predicted by (5).

As in the case of the ladder diagram above, we can also have
the possibility of some encounter stretches being contained
in larger encounter stretches and some separated from those
larger encounters; see Fig. 11 for an example of a possible
diagram. This just implies that some of the ti integrals have to
be treated as was done in the case of the configuration shown
in Fig. 5, and the Ehrenfest-time dependence predicted by (5)
also follows in this case.

FIG. 11. (Color online) An encounter diagram containing also
orbits with more than two stretches. In contrast to Fig. 9, encounter
stretches here are allowed to be contained fully inside others. The
encounters are marked by boxes (shown in different colors).

5. Touching the lead

When the encounters are allowed to enter the lead, we again
have to consider times representing how far each encounter
has moved into the lead (actually how much of the encounter
remains inside the system). As for the case treated in detail
for n = 3, it is only the upper limit (namely the full encounter
time) of these time integrals that have the necessary encounter
time dependence to contribute in the semiclassical limit. The
reasoning for n = 3 can then be carried over directly to the
more general cases as the upper limits of these integrations
yield contributions that are (up to constant factors) the same as
the ones obtained when the encounters are inside the system.
We thus obtain the same Ehrenfest-time dependence from
encounters moved into the leads.

C. Summary

The separate diagrams considered in the RMT-type semi-
classical treatment27 can be created from the original collapse
of trajectories onto each other and by sliding the individual
encounters together or into the leads. The Ehrenfest-time
treatment, however, suggests treating all of these possibilities
instead as part of continuous families. What we have shown
above in this section is that, if we partition this family in a
particular way, for any partition we can find a suitable set
of coordinates that allows us to transform the semiclassical
contribution so that we can extract the overall Ehrenfest-time
dependence. Though the exact details of this transformation
depend on the structures of the partition, the algorithmic
routines described above all lead to the same Ehrenfest-time
dependence. Each partition and hence family then has the
factor e−τ (1−inε) and no other Ehrenfest time or h̄ dependence.
As we know that we must recover the RMT-type result C(ε,n)
in (5) when τE = 0 (since we treat the same diagrams) with
no further Ehrenfest-time dependence, we then obtain the full
result in (5) and hence provide a semiclassical justification of
the effective RMT ansatz.

III. TRAJECTORIES ALWAYS CORRELATED

In this section, we determine the so called classical
contribution in (6). To obtain this contribution C2(ε,τ,n)
semiclassically, we consider a band of n trajectories that are
correlated (inside the same encounter) for their entire duration
between entering and leaving the system, as in Fig. 12. This
implies that all the trajectories have the same length t and that
the maximum of the differences si,ui between their stable and
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FIG. 12. (Color online) Band of n = 3 correlated trajectories. The
length of the orbits is marked by a box; the duration of the encounter
tenc = 1/λ ln(c2/maxi |si |maxj |uj |) is marked by a dotted box.

unstable coordinates lies below the constant c (related to the
Ehrenfest time). For the case n = 2, this configuration was first
considered in Ref. 22 and then extended to n = 3 in Ref. 25.
For our calculation, we follow Ref. 25 and place a PSS at a dis-
tance t1 from the left end of the trajectories while the remaining
time on the right of the section is denoted by t2 = t − t1. The
semiclassical contribution C2(ε,τ,n) can be written as

C2(ε,τ,n) = 1

τD

∫ ∞

0
dt1

∫ ∞

0
dt2

e−t(1−inε)/τD

(2πh̄)n−1(t1 + t2)

×
∫

|si |�ce−λt1

dsn−1
∫

|ui |�ce−λt2

dun−1e(i/h̄)�S,

(36)

where we only include one traversal of the band in the survival
probability, and the restrictions on the s and u integrals ensure
that the band always remains together under the exponential
divergence of the trajectories due to the chaotic dynamics.
Performing an integral over t1 − t2 and the ui integrals gives

C2(ε,τ,n) = 4n−1

τD

∫ ∞

0
dt

e−t(1−inε)/τD

(2πh̄)n−1

×
∫ e−λt

0
dxn−1

n−1∏
i=1

h̄

xi

sin

(
c2xi

h̄

)
, (37)

where xi = e−λt2si/c. Using that in the semiclassical limit∫ e−λt

0
dx

h̄

x
sin

(
c2x

h̄

)
= πh̄

2
�(τE − t), (38)

with the Heaviside theta function �(x), we finally obtain

C2(ε,τ,n) = 1 − e−τ (1−inε)

1 − inε
, (39)

proving the Ehrenfest-time dependence of the C2(ε,τ,n) in (6).

IV. MIXED TERMS

Finally, we want to consider possible correlations between
trajectory structures giving the RMT-type contribution and
those giving the classical part, i.e., contributions from correla-
tions between bands of trajectories (that are always correlated
with each other) and trajectories that are only correlated
with each other during encounters. In particular, we want to
show that diagrams that have a correlated band that has any
encounter with other trajectory structures (with encounters)
give no contribution in the semiclassical limit. This, once
generalized, then excludes the existence of mixed terms in
(4) so that (4) is complete. First we consider the case in
which n − 1 of the trajectories form a correlated band with
the remaining trajectory meeting the band in an encounter
inside the system, as depicted in Fig. 13. This contribution
C13(ε,τ,n) to the correlation function C(ε,τ,n) can be written

FIG. 13. (Color online) An example of a band of three trajectories
that possesses an encounter with another trajectory. The band is
marked by a thicker box (red stretches), the encounter of the other
trajectory with the band by a dotted box (blue stretch), and the links
by thin (black) lines. The link durations are denoted by t3 and t4, and
the durations of the band before and after the PSS by t1 and t2.

by treating the correlated band as before and introducing the
times t3 and t4 to represent the durations of the parts of the
trajectory that encounter the band on the left and on the right
of the PSS. It reads

C13(ε,τ,n) = 1

τ 3
D

∫ ∞

0

4∏
i=1

dti
e− ∑4

i=1 ti (1−iε)/τD

(2πh̄)n−1

×
n−2∏
i=1

[ ∫
|si |�ce−λt1

dsn−2
∫

|ui |�ce−λt2

dun−2

]

×
∫

ce−λt1 <|s|�c

ds

∫
ce−λt2 <|u|�c

du

× e(i/h̄)�Seiε[tenc+(n−2)(t1+t2)]/τD

(t1 + t2)
, (40)

where tenc is the time during which the remaining trajectory
encounters the band. In this case, no overcounting factor 1/tenc

occurs as the limits of the s,u integrals in the third line are
chosen such that the time integral accounting for all possible
positions of the single encounter stretch with respect to the
band cancels this factor. Choosing different limits for the s,u

integrals, we could replace the current overcounting factor of
1/(t1 + t2) in (40) again by the usual 1/tenc as in Sec. II.

The integrals over the (n − 2) s,u coordinates within the
band are performed in the same manner as in the last section
in (38) and lead to the same Heaviside function �(τE − t). For
the integrals in the third line in (40) over the differences s,u

between the coordinates of a band trajectory and the trajectory
encountering it, we obtain∫

ce−λt1 <|s|�c

ds

∫
ce−λt2 <|u|�c

du e(i/h̄)sueiεtenc/τD

≈
∫ 1

e−λt

dx
4h̄

x
sin

(
c2x

h̄

)
eiετ

=
∫ eλτE

e−λ(t−τE)
dx ′ 4h̄

x
sin x ′eiετ

= 2πh̄�(t − τE)eiετ , (41)
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with x = e−λt2s/c. This Heaviside function is opposite to the
one from the band, so that the total contribution vanishes
due to the opposing restrictions of the theta functions. Note
that when evaluating the Ehrenfest-time dependence of the
RMT contributions in Sec. II, we chose a different way for
performing the integrals. In Sec. II, we performed restricted
time integrals first and unrestricted x ′ integrals afterward. The
different order of calculating these integrals leads to the theta
functions, which make it clear that mixed terms like those in
Fig. 13 vanish; this is why we use this ordering here. If we
move more trajectories from the band (composed of at least
two trajectories) to the trajectory structure with encounters,
we still obtain these opposing Heaviside functions and hence
no contribution.

A similar reasoning can be applied if the encounter of a
trajectory (or part of a trajectory structure) with a band does not
happen inside the system but enters the lead at the beginning
or the end. In this case, we obtain an additional time integral
with respect to the time of the encounter that remains inside the
system, but, as the s,u integrals still yield the same Heaviside
functions, this contribution also vanishes. Note that if we move
both ends of the encounter into the leads, then the encountering
trajectory can be considered as part of the band and treated as
above or in Sec. III.

The reasoning in this section applies to an arbitrary number
of bands of correlated trajectories connected by trajectories
that are only correlated in encounters. Therefore, all such
mixed terms vanish.

V. IMPLICATIONS FOR TRANSPORT AND SCATTERING

A. Moments of transmission

Up to now, we have concentrated on energy-dependent
correlation functions involving the whole scattering matrix.
Because we use the same semiclassical diagrams, our result
can be applied directly to dc-transport properties of chaotic
systems such as the moments of the transmission or reflection
eigenvalues. Assuming the system has two scattering leads
and taking just the transmission subblock t of the scattering
matrix connecting the N1 channels in lead 1 to the N2 channels
in lead 2 (without an energy difference), the moments of the
transmission eigenvalues can be written as

M(τ,n) = 1

N
Tr[t t†]n, (42)

where N = N1 + N2 is the total number of channels. Within
the Landauer-Büttiker9 approach to quantum transport, the
moments carry information about statistical properties of
the transmission in the phase-coherent regime, the counting
statistics.28 For example, the first moment characterizes the
average conductance G ∝ M(τ,1) and the second one the
power of the shot noise P ∝ M(τ,1) − M(τ,2). Using
the semiclassical results from this paper, we can simply write

M(τ,n) = M(n)e−τ + N1N2

N2
(1 − e−τ ), (43)

where we have included the probability N1/N of starting in
lead 1 in the moments. Equation (43) can be generalized to
ac transport considered in Ref. 29 by including in the latter
equation the ε-dependent factors given in (5) and (6). The

result in (43) again splits into two parts, with the first involving
the semiclassical moments M(n) calculated in Ref. 30, which
in turn lead to the random-matrix probability distribution.31,32

The second term in (43) leads to the classical Bernoulli
distribution, where the transmission amplitude T is 1 with
probability N2/N and 0 otherwise (i.e., N1/N ). The Ehrenfest
time then provides a smooth interpolation between these two
distributions, giving a weight e−τ to the RMT one and the
remaining weight (1 − e−τ ) to the classical one. A similar
formula and result follows for the moments and probability
distribution of the reflection eigenvalues whose zero Ehrenfest-
time contributions can be simply derived from the treatment
in Ref. 30.

B. Moments of delay times

Taking the full correlation functions C(ε,τ,n), it is possible
to obtain not only the Ehrenfest-time dependence of the density
of states of chaotic Andreev systems, covered in detail in
Ref. 27, but also the moments and distribution of the Wigner
delay times. We start with the Wigner-Smith matrix33

Q = h̄

i
S†(E)

dS(E)

dE
, (44)

which can be shown to be Hermitian by using the unitarity of
the scattering matrix. Because of this unitarity, Q can also be
written as

Q = τD

i

d

dε

[
S†

(
− εh̄

2τD

)
S

(
+ εh̄

2τD

)]∣∣∣∣
ε=0

, (45)

where the scattering matrix energy differences are measured
with respect to the energy E. The delay times are simply the
eigenvalues of Q, so their moments are

m(τ,n) = 1

N
Tr[Q]n. (46)

Using the relation

1

n!

dn

dεn
[f (ε) − f (0)]n|ε=0 = [f ′(0)]n, (47)

the moments of the delay times are34

m(τ,n) = τn
D

inn!N

dn

dεn
Tr

[
S†

(
− εh̄

2τD

)
S

(
+ εh̄

2τD

)
− I

]n∣∣∣∣
ε=0

.

(48)

Expanding (48), the moments can be expressed as

m(τ,n) = τn
D

inn!

dn

dεn

n∑
k=1

(−1)n−k

(
n

k

)
C(ε,τ,k)

∣∣∣∣
ε=0

(49)

in terms of the correlation functions calculated before. As this
is additive, we can look at the two parts of the Ehrenfest-time-
dependent results in (4) separately.

For the first part of the C1(ε,τ,k), however, it is possible to
put our Ehrenfest dependence into the framework of Ref. 34,
where the moments and the probability distribution ρ(τW)
of the Wigner delay times τW were calculated (without the
Ehrenfest time). We can actually obtain the result in a simple
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way. Using (47) again, we can see that since

Q − τEI = τD

i

d

dε

[
S†

(
− εh̄

2τD

)
S

(
+ εh̄

2τD

)
e−iετ

]∣∣∣∣
ε=0

,

(50)

we have

1

N
Tr[Q − τEI ]n

= τn
D

inn!

dn

dεn

n∑
k=1

(−1)n−k

(
n

k

)
C(ε,τ,k)e−ikετ

∣∣∣∣
ε=0

. (51)

Plugging in our result for C1(ε,τ,k) from (5), the energy-
dependent exponentials cancel, so, apart from the damping
factor e−τ , we just have the moments without any Ehrenfest-
time dependence, leading34 to the RMT result.35 Of course
on the left-hand side of (51) we have a simple translation
by the Ehrenfest time, meaning that the translated probability
distribution is the same as the RMT one (damped). For the full
Ehrenfest-time-dependent distribution, we simply translate
back again and have

ρ1(τW) =
√

(τ+ − τW)(τW − τ−)

2π (τW − τE)2
e−τ , τ− < τW < τ+,

(52)
τ± = (3 ±

√
8)τD + τE.

For the second “classical” contribution in (4), we first take
the simplest part of the contribution

C
(1)
2 (ε,τ,k) = 1

1 − ikε
(53)

and substitute into (49), obtaining

m
(1)
2 (τ,n) = τn

D

n∑
k=1

(−1)n−k

(
n

k

)
kn = τn

Dn! (54)

These moments clearly come from an exponential distribution,
so that in the limit τ → ∞ we recover, for the probability
distribution ρ

(1)
2 (τW), the classical exponential decay of trajec-

tories inside the system,

ρ
(1)
2 (τW) = 1

τD
e−τW/τD , τW > 0. (55)

For the remaining contribution of the second part ρ
(2)
2 (τW),

we have the damping factor e−τ , and the energy-dependent
phase again just leads to a shift in the exponential distribution
so this contribution starts at τE, thus yielding

ρ
(2)
2 (τW) = − 1

τD
e−τW/τD , τW > τE. (56)

The minus sign, however, means we truncate the previous
exponential at τE, so the total second contribution to the
probability distribution is

ρ2(τW) = 1

τD
e−τW/τD , 0 < τW < τE, (57)

and 0 elsewhere. Since this contribution to the delay time
probability distribution is considered to be made up of the
two distributions ρ

(1)
1 (τW) and ρ

(2)
1 (τW), and as the shifted and

damped one ρ
(2)
1 (τW) has the same mean (τD + τE) and weight

τW τD

ρ(
τ W

) τ
D

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6
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1.0

FIG. 14. (Color online) The probability density of the Wigner
delay times for τ = 1.

as the shifted and damped RMT distribution ρ1(τW) but a minus
sign, it is clear that the average time delay stays at τD (i.e., from
the untruncated exponential distribution) and is unaffected by
the Ehrenfest time. In fact, this is an example of the general
relation,36 derived from the unitarity of the scattering matrix,
in which the mean time delay depends just on the average
spacing of the resonant levels of the scattering system and the
number of scattering channels, i.e., it should have no Ehrenfest
time or other dependence.

This shape of the distribution, however, is significantly
affected by the Ehrenfest time, and as an example we plot
the complete probability density of the Wigner delay times
for τ = 1 in Fig. 14. There we can see the exponential decay
truncated at τE = τD before a hard gap separates it from the
damped RMT distribution, which is shifted to the right by
τE. As the RMT distribution in (52) starts at τ−, which is
(3 − √

8)τD above the Ehrenfest time, the hard gap is a constant
0.172τD wide. The RMT distribution is continuous (unlike the
truncation of the exponential at τE) and peaks very quickly
(0.056τD) after the gap at around 1.72e−τ /τD. Related to the
semicircle distribution, it likewise has an upper bound (τ+),
which interestingly can be connected37 to the excitation gap in
the density of states of Andreev billiards. By expanding, for
small energies, the determinantal equation that governs this
excitation gap in terms of the Wigner-Smith matrix Q, Ref. 37
showed that the gap’s width is approximately the inverse of
the maximum delay time. There the maximum was increased
by disorder scattering, leading to a decrease in the Andreev
gap, while here the maximum delay time is increased by the
Ehrenfest time as the RMT distribution is correspondingly
shifted right. A simultaneously decreasing Andreev gap fits
with the effective RMT23,24 and semiclassical27 treatments.
However, the connection between the secondary gaps, which
appear in the density of states of Andreev billiards27 as a
consequence of the Ehrenfest dependence in (4)–(6) shown in
this paper, and the gap in the density of the delay times is not
so clear.

VI. CONCLUSIONS

In this paper, we have shown how to treat the effect of
the Ehrenfest time on correlation functions of arbitrarily many
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pairs of scattering matrices. In our semiclassical approach, we
extended and combined the zero Ehrenfest-time approach27

(which leads to the RMT result) and the n = 3 Ehrenfest-time
approach25 and showed how the results of the effective
RMT ansatz can be obtained. The different contributions
are described by simple diagrams, and following an innovative
way of partitioning these diagrams, we implemented an
algorithmic procedure that allows one to easily obtain the
Ehrenfest-time dependence. Interestingly, this always led to
the same factor (which can be traced back to the survival
probability only depending on one traversal of each encounter)
so that the RMT-type expression is simply modified by the
Ehrenfest time by the additional factor e−τ (1−inε). This is in
line with the effective RMT result, but as our result is derived
just from the underlying chaotic dynamics of the system, we
can justify for this situation the use of effective RMT, which
instead conjectures the Ehrenfest-time dependence.

As the semiclassical framework is based on the underlying
classical dynamics, we can equally well move away from
the RMT arena and obtain the “classical” contribution to the
correlation functions. This can be seen to come from bands
of trajectories that remain correlated with each other for the
entire duration of their stay inside the system. Furthermore,
the fact that no mixed (between the RMT-type and classical-
type) terms arise is simply due to their opposing classical
restrictions. This lack of mixed terms as well as the classical
contribution were previously shown to be more generally
due to the preservation of volume under the dynamical
evolution and the separation of phase space into two essentially
independent subsystems.18,26

The separation of the correlation functions into two contri-
butions, which each have a straightforward dependence on the
Ehrenfest time, was previously shown to be responsible for

secondary gaps in the density of states of Andreev billiards,27

but has an equal effect on other transport quantities. For
the transmission eigenvalues (and their moments) with no
energy dependence, we just get a straightforward interpolation
between the RMT30 and classical values. For the distribution
of the Wigner delay times, we further see a truncation of the
classical (exponential) distribution and a shift to higher times
of the RMT-type distribution. Between the two, though, a hard
gap remains.

The method described in this paper allows for the com-
putation of the Ehrenfest-time dependence of the trace of
arbitrarily many scattering matrix pairs but only to leading
order in inverse channel number 1/N . The calculation was only
doable because at this order the corresponding semiclassical
diagrams involve no closed loops and have no periodic
orbit encounters (surrounded periodic orbits). When such
surrounded periodic orbits are involved, for example for the
conductance variance38 or the next-to-leading-order quantum
correction to the transmission, reflection, and the spectral
form factor,39 the relatively simple cancellation mechanism
observed in this paper no longer holds. But by taking into
account all possibilities for partial correlations within the
“fringes” as in Refs. 39 and 38 in a systematic way, it should,
however, also be possible to extend our Ehrenfest-time results
to infinite order.
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