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We derive the transport properties of a quantum dot subject to a source-drain bias voltage at zero temperature
and magnetic field. Using the scattering Bethe anstaz, a generalization of the traditional thermodynamic Bethe
ansatz to open systems out of equilibrium, we derive results for the quantum dot occupation in and out of
equilibrium and, by introducing phenomenological spin- and charge-fluctuation distribution functions in the
computation of the current, obtain the differential conductance for large U

�
. The Hamiltonian to describe the

quantum dot system is the Anderson impurity Hamiltonian and the current and dot occupation as a function of
voltage are obtained numerically. We also vary the gate voltage and study the transition from the mixed valence
to the Kondo regime in the presence of a nonequilibrium current. We conclude with the difficulty we encounter
in this model and a possible way to solve it without resorting to a phenomenological method.

DOI: 10.1103/PhysRevB.83.195314 PACS number(s): 72.15.Qm, 72.10.Bg, 72.10.Fk

I. INTRODUCTION

The past few years have witnessed a spectacular progress
in the fabrication and exploration of nanostructures giving
experimentalists unprecedented control over the microscopic
parameters governing the physics of these systems. Nanos-
tructures, beyond their practical applications, display an
array of emergent phenomena stemming from their reduced
dimensionality which enhances quantum fluctuations and
strong correlations. Often, experiments are carried out under
nonequilibrium conditions, with currents passing through the
structures. The measurements are performed over a wide
range of parameters, such as temperature and applied bias,
allowing experimental exploration of the interplay between
nonequilibrium dynamics and strong correlation physics.1–6

A canonical example is the nonequilibrium Kondo effect
observed in a quantum dot attached to two leads held at
different chemical potentials μi . The voltage difference V =
μ1 − μ2 induces a nonequilibrium current I (V ) through the
dot, interfering with and eventually destroying the Kondo
effect as the voltage is increased.

The standard theoretical description of the transport trough
a quantum dot is the two-lead Anderson impurity model
under a bias voltage. The one- or two-lead Hamiltonian at
zero bias is exactly solvable via Bethe ansatz.7,8 Using this
exact solution as well as NRG calculations, for example,
the thermodynamics of the model have been studied in great
detail. However, the nonequilibrium situation, namely, when
the two leads experience each a different chemical potential,
is much more difficult. This is due to the subtle interplay
between the nonequilibrium aspect of the problem on one
hand and the presence of strong interactions on the other hand.
Technically speaking, it is a very nontrivial task to find a basis
of states that diagonalize simultaneously the voltage term and
the interaction term in the Hamiltonian. Nevertheless, a lot of
efforts have been put forward to study this model, but so far
only approximate ways of dealing with the voltage and/or the
interactions have been developed.9–24

In this paper we develop a phenomenological approach
to the problem, based on the scattering Bethe ansatz (SBA),

recently developed by P. Mehta and N. Andrei (MA),25 a
nonperturbative implementation of the Keldysh formalism to
construct the current-carrying, open-system scattering eigen-
states for the two-lead nonequilibrium Anderson impurity
mode. The basic idea of the SBA is to construct scat-
tering eigenstates of the full Hamiltonian defined directly
on the infinite line and match the incoming states by two
Fermi seas describing the initial states of the leads. The
nonequilibrium steady-state transport properties of the system
are then expressed as expectation values of the current or
dot occupation operators in these eigenstates. This program
has been implemented for the interacting resonance level
model (IRLM), a spinless interacting model, described in
Ref. 25 where the zero-temperature results for current and
dot occupation 〈n̂d〉 for all bias voltages were presented.
Another exact solution of this model at the so-called self-dual
point26 by E. Boulat, H. Saleur, and P. Schmitteckert in
Refs. 27 and 28 uses conformal field theory techniques and
compares successfully with time-dependent density-matrix
renormalization group results.

The main motivation of the present paper is to test the very
interesting ideas behind the SBA framework on a physically
more relevant model such as the Anderson impurity model
and to focus on the phenomenology that can be extracted
from it. Carrying out the program for the nonequilibrium
Anderson model we find difficulties in the direct application
of the SBA approach due to the fact that the ground state
in the Bethe basis consists of bound pairs of quasiparticles,
leading to problems in the computation of the scattering
phase shifts for the quasiparticles with complex momenta.
This problem is not present in the IRLM when the Bethe
momenta are below the impurity level and no bound states
can be formed. We circumvent this difficulty by means of
the following argument: The transport property computed in
the IRLM is related to the single-particle phase shift across
the impurity in the Bethe basis. Based on the same idea we
develop a phenomenological approach to describe the transport
property in the Anderson impurity model. We identify two
types of possible phase shifts across impurity, which we refer
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to as “spin-fluctuation” and “charge-fluctuation” types to label
two phenomenological phase shifts akin to the fundamental
excitations described in the traditional Bethe ansatz in this
model. The phenomenological ansatz is checked against exact
results on the dot occupation in equilibrium and the Friedel
sum rule,29,30 in the linear response regime. Subsequently,
we discuss our results for the out-of-equilibrium current,
conductance, and dot occupation. The scaling relations for
the conductance, predicted from the Fermi liquid picture of
the problem at strong and weak coupling, are also discussed.

The paper is organized as follows. We start with a formal
construction of scattering eigenstates in the two-lead Anderson
impurity model. Then we discuss how we impose boundary
conditions, which serve as initial condition in the time-
dependent picture, on the electrons within the leads. Next
we discuss our results for the dot occupation in equilibrium
and the conductance in the linear response regime. Based on
the checks in equilibrium we then extend our computation to
the out-of-equilibrium regime. The difficulty we encounter
for complex momenta and the way we handle it is also
addressed there. Comparison with another attempt of exact
solution for this model by R. M. Konik et al.31,32 with the
idea of dressed excitations above Fermi energy in the Bethe
ansatz picture, first considered for the exact conductance of
point contact device in the FQHE regime,33,34 is discussed.
We also comment on the validity and implication of our
numerical results, among them the charge susceptibility, in
the out-of-equilibrium regime. Qualitative agreement between
our theory and experimental result is then presented. The limit
of U → ∞ is also summarized in the last section based on the
same phenomenological approach. Finally, we summarize our
results and conclude with some issues on the SBA approach
to this model and state how they could be overcome.

II. THE SCATTERING BETHE ANSATZ APPROACH

A. Scattering-state construction

In this section we apply the SBA approach to construct
the scattering states of the full Hamiltonian. The (unfolded)
two-lead Anderson impurity Hamiltonian reads

Ĥ =
∑
i=1,2

∫
dx ψ

†
iσ (x)(−i∂x)ψiσ (x) + εdd

†
σ dσ

+ ti[ψ
†
iσ (0) dσ + d†

σ ψiσ (0)] + U d
†
↑d↑d

†
↓d↓, (1)

where summation over the spin indices σ is implied. The fields
ψiσ (x) describe chiral, right-moving electrons from lead i, U

is the on-site Coulomb repulsion between electrons on the dot,
ti is the coupling between the dot and the lead i, and εd is the
gate voltage. We have set the Fermi velocity vF = 1.

The model’s equilibrium properties have been studied in
great detail via the traditional thermodynamic Bethe ansatz
(TBA).7,8 The SBA exploits the integrability of the Anderson
model to construct current-carrying scattering eigenstates on
the open line. There are two main requirements. One is the
construction of scattering eigenstates with the number of
electrons in each lead conserved prior to scattering off the
impurity. Another is the asymptotic boundary condition that
the wave functions of the incoming electrons, that is, in the

region (x � 0), tend to those of two free Fermi seas far
from the impurity.25 All information about the external bias
applied to the system is encoded in the boundary condition by
appropriately choosing the chemical potential of the incoming
Fermi seas. As in all Bethe ansatz constructions, the full
multiparticle wave function is constructed from single-particle
eigenstates (now on the infinite open line) and the appropriate
two-particle S matrices. We first rewrite Eq. (1) in the even-odd
basis as

Ĥ = Ĥe + Ĥo,

Ĥe =
∑

σ

∫
dx ψ†

eσ (x)(−i∂x)ψeσ (x) + εdd
†
σ dσ

+ t[ψ†
eσ (0)dσ + d†

σ ψeσ (0)] + Ud
†
↑d↑d

†
↓d↓,

Ĥo =
∑

σ

∫
dx ψ†

oσ (x)(−i∂x)ψoσ (x),

with

ψeσ (x) = t1ψ1σ (x) + t2ψ2σ (x)√
t2
1 + t2

2

,

ψoσ (x) = t2ψ1σ (x) − t1ψ2σ (x)√
t2
1 + t2

2

,

and t = √
t2
1 + t2

2 . In what follows we consider the case
t1 = t2 = t√

2
for simplicity. The single-particle solution for

even and odd basis is |e,pσ 〉 = ∫
dx [eipxgp(x)ψ†

eσ (x) +
epδ(x)d†

σ ]|0〉 and |o,pσ 〉 = ∫
dx eipxhp(x)ψ†

oσ (x)|0〉, with |0〉
the vacuum state and gp(x), hp(x), ep independent of spin and
given by

gp(x) = θ (−x) + eiδp θ (x) + sep θ (x)θ (−x),

hp(x) = θ (−x) + θ (x) + sop θ (x)θ (−x), (2)

ep = t(1 + eiδp + sep/2)

2(p − εd )
.

Here δp ≡ 2 tan−1( �
εd−p

) is the usual single particle scattering
phase shift of the electrons off the impurity obtained when
setting sep = 0. � ≡ t2

2 is the width of the resonance level.
We adopted a symmetric regularization scheme θ (±x)δ(x) =
1
2δ(x) and imposed |p| � D, D being the bandwidth cutoff.35

The s(x) = θ (x)θ (−x) term appearing in Eqs. (2) and (3)
is a local constant since, using our regularization scheme,
the locally discontinuous function s(x) satisfies ∂xs(x) =
[s ′(x)|x=0− + s ′(x)|x=0+ ]/2 = 0. It should be noted that this
is consistent with the symmetric spread of the δ function
around x = 0, which is precisely the regularization scheme
adopted in this article. Notice also that the single-particle
wave functions defined in Eqs. (2) and (3) are properly
defined on the whole line x ∈ R. Considering only half of
the domain (such as taking x > 0 for instance) would lead
to an inconsistency of this regularization. The s(x) term is
included in the odd channel function in order to allow for
the same two-particle S matrices [Eq. (4)] in all channels.36,37

The θ (x)θ (−x) term in the even channel wave function is
introduced in order to modify the original (when sep = 0)
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single-particle phase shift across the impurity. The choice of sop and sep is addressed later. In the lead basis, |i,pσ 〉, the
single-particle scattering eigenstates with the incoming particle incident from lead i, can be restored by taking a proper linear
combination of even-odd states. For example, |1,pσ 〉 = 1√

2
(|e,pσ 〉 + |o,pσ 〉) = ∫

dx eipxα
†
1,pσ (x)|0〉 is written as

|1,pσ 〉 =
∫

dx eipx

{
[θ (−x) + 1

2
(eiδp + 1)θ (x)]ψ†

1σ (x) + 1

2
(eiδp − 1)θ (x)ψ†

2σ (x) + epd†
σ δ(x) + s

†
1pσ (x)

}
|0〉,

(3)

with |2,pσ 〉 = 1√
2
(|e,pσ 〉 − |o,pσ 〉) = ∫

dx eipxα
†
2,pσ (x)|0〉 and s

†
ipσ (x) related to the θ (x)θ (−x) terms by

s
†
1pσ (x) =

(
sep + sop√

2
ψ

†
1σ (x) + sep − sop√

2
ψ

†
2σ (x)

)
θ (x)θ (−x)

and

s
†
2pσ (x) =

(
sep − sop√

2
ψ

†
1σ (x) + sep + sop√

2
ψ

†
2σ (x)

)
θ (x)θ (−x).

These states have a single incoming particle (x < 0) from lead i, which is reflected back into lead i with amplitude Rp =
(eiδp + 1)/2 and transmitted to the opposite lead with amplitude Tp = (eiδp − 1)/2. Similar single-particle states are discussed
in Ref. 25.

The multiparticle Bethe ansatz wave function is constructed by means of the two-particle S matrix, S(p,k), describing the
scattering of two electrons with momenta p and k. By choosing sop = −4 in Eq. (2) (the choice of sep is discussed in Sec. II B and
does not affect the result here) in the single particle states we can construct the same two-particle S matrix for all combinations
in even-odd basis (see Appendix B). The two-particle solution for both particles coming from lead 1 in spin singlet state takes
the following form:

|1k, ↑; 1p, ↓〉 =
∫

dx1dx2A{ei(kx1+px2)Zkp(x1 − x2)α†
1k,↑(x1)α†

1p,↓(x2)}|0〉

=
{∫

dx1dx2A{g(x1,x2)ψ†
e↑(x1)ψ†

e↓(x2) + h(x1,x2)ψ†
o↑(x1)ψ†

o↓(x2) + j (x1,x2)[ψ†
e↑(x1)ψ†

o↓(x2)

−ψ
†
e↓(x1)ψ†

o↑(x2)]} +
∫

dxA[e(x)(ψ†
e↑(x)d†

↓ − ψ
†
e↓(x)d†

↑] + o(x)[ψ†
o↑(x)d†

↓ − ψ
†
o↓(x)d†

↑)] + Am d
†
↑d

†
↓

}
|0〉.

Here A is the antisymmetrizer. A is an overall normalization
factor and

g(x1,x2) = Zkp(x1 − x2)gk(x1)gp(x2)

+Zkp(x2 − x1)gk(x2)gp(x1),

j (x1,x2) = Zkp(x1 − x2)gk(x1)hp(x2)

+Zkp(x2 − x1)hk(x2)gp(x1),

h(x1,x2) = Zkp(x1 − x2)hk(x1)hp(x2)

+Zkp(x2 − x1)hk(x2)hp(x1),

e(x) = Zkp(−x)gp(x)ek + Zkp(x)gk(x)ep,

o(x) = Zkp(−x)hp(x)ek + Zeo
kp(x)hk(x)ep,

m = Z̃kp(0)ekep,

with Zkp(x) = e−iφkp θ (−x) + eiφkp θ (x) and Z̃kp(0) ≡
k+p−2εd

k+p−U−2εd
Zkp(0). Here tan(φkp) = −Ut2

(k−p)(p+k−U−2εd ) .
The derivation and more general form of two-particle
case is written in Appendix B. To include spin triplet

case we denote Zki,kj
(xi − xj ) ≡ Zki,kj

(xi − xj )
a

′
i a

′
j

aiaj
=

I
a

′
i a

′
j

aiaj
θ (xj − xi) + S

a
′
i a

′
j

aiaj
(ki,kj )θ (xi − xj ), where ai is the spin

index before the scattering and a
′
i the spin index after the

scattering. I
a

′
i a

′
j

aiaj
is the identity matrix. The S matrices must

satisfy the Yang-Baxter equations

Sa
′
1a

′
2

a1a2 (k1,k2)S
a

′
1a

′
3

a1a3 (k1,k3)S
a

′
2a

′
3

a2a3 (k2,k3)

= S
a

′
2a

′
3

a2a3 (k2,k3)S
a

′
1a

′
3

a1a3 (k1,k3)Sa
′
1a

′
2

a1a2 (k1,k2)

for such a construction to be consistent. The two-particle S

matrix for this two-lead Anderson model is given by

S
a

′
i a

′
j

aiaj
(k,p) = [B(k) − B(p)]I

a
′
i a

′
j

aiaj
+ i2U� P

a
′
i a

′
j

aiaj

B(k) − B(p) + i2U�
, (4)

with B(k) = k(k − 2εd − U ) and P = 1
2 (I · I + σ · σ ) the spin

exchange operator, with ai and aj representing the incoming
spin indices. Since the S matrix is the same for all even-
odd combinations, the S matrix does not depend on the
lead index i, and the number of electrons in a lead, Ni ,
can change only at the impurity site. This circumstance
allows us to construct the fully interacting eigenstates of
our Hamiltonian characterized by the incoming quantum
numbers, N1 and N2 the numbers of incident electrons from
leads 1 and 2 respectively. These quantum numbers are
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subsequently determined by the chemical potentials μ1 and μ2,
respectively.

To complete the construction of the SBA current-carrying,
scattering eigenstate, |�,μi〉, we must still choose the “Bethe
ansatz momenta” {pl}N1+N2

l=1 of the single-particle states to
ensure that the incoming particles look like two Fermi seas
in the region x < 0. This requirement translates into a set
of “free-field” SBA equations for the Bethe ansatz momenta
density of the particles from the two leads.25 The argument
is as follows: Away from the impurity |i,pσ 〉 reduces to
ψ

†
iσ (x) with the interparticle S matrix Eq. (4) present. Thus,

the scattering eigenstates describing noninteracting electrons
are in the Bethe basis rather than in the Fock basis of plane
waves. The existence of many bases for the free electron is
due to their linear spectrum, which leads to degeneracy of
the energy eigenvalues. The wave function eip1x1+ip2x2 [θ (x1 −
x2) + Sθ (x2 − x1)]A is an eigenstate of the free Hamiltonian
for any choice of S with, in particular, S = 1 defining the Fock
basis and S given in Eq. (4) defining the Bethe basis. The
Bethe basis is the correct “zero order” choice of a basis in
the degenerate energy space required in order to turn on the
interactions. We proceed to describe the leads (two free Fermi
seas) in this basis.

We consider the system at zero temperature and zero
magnetic field in this paper. To describe the two Fermi seas on
the leads translates to a set of Bethe ansatz equations whose
solution in this case consists of complex conjugate pairs:
p±(λ) = x(λ) ± iy(λ) in the λ parametrization,7,8,38 with

x(λ) = ε̃d −

√√√√λ + ε̃2
d +

√(
λ + ε̃2

d

)2 + U 2�2

2
,

(5)

y(λ) = −

√√√√−(
λ + ε̃2

d

) +
√(

λ + ε̃2
d

)2 + U 2�2

2
,

with ε̃d = εd + U/2. Each member of a pair can be either in
lead 1 or in lead 2, since the S matrix is unity in the lead
space. There are, therefore, two possible configurations for
these bound pairs. One possible way of forming bound pairs is
described by four types of complex solutions whose densities
we denote σij (λ) with {ij} = {11,12,21,22} indicating the
incoming electrons from lead i and lead j . The other
possibility, which is perhaps more intuitive in comparing
with the free electron in the Fock basis, is to include only
{ij} = {11,22}. These two types of states give the same
results when evaluating the expectation value of the dot
occupation in equilibrium. However, when we turn on the
bias voltage, the results obtained from a four-bound-states
description show some charge fluctuations even way below
the impurity level, which is not expected from the noninter-
acting (U → 0) theory (shown in Appendix A). Thus, we
disregard the four-bound-states solution on physical grounds
and focus on the two-bound-states description in the following
discussion.

To describe in the Bethe basis the two leads as two Fermi
seas filled up to μ1 and μ2, respectively, these densities must
satisfy the SBA equations,

2σi(λ) = − 1

π

dx(λ)

dλ
θ (λ − Bi) −

∑
j=1,2

∫ ∞

Bj

dλ′K(λ − λ′)σj (λ′),

(6)

with K(λ) = 1
π

2U�
(2U�)2+λ2 .

The SBA equations are derived from imposing boundary
condition in the free leads (incoming state) region and the
value of momenta is connected with spin rapidity λ by using
the quantum inverse scattering method. The Bethe ansatz
equations solved with periodic boundary conditions at the free
lead region with total number of particles N (N = N1 + N2 as
sum of particle number from leads 1 and 2) and the total spin
projection S (S = S1 + S2 = N/2 − M with M = M1 + M2

as number of down-spin particles from lead 1 and 2) are given
by

eikl
j L =

M∏
α=1

B
(
kl
j

) − λα + iU�

B
(
kl
j

) − λα − iU�
,

(7)∏
l=1,2

Nl∏
j=1

B
(
kl
j

) − λα − iU�

B
(
kl
j

) − λα + iU�
=

M∏
β �=α

λα − λβ + 2iU�

λα − λβ − 2iU�
,

with total energy E = E1 + E2 and El = ∑
j kl

j indicating the
energy of the electrons within the lead l at zero temperature.

The spectrum of Eq. (7) for the one-lead case has been
analyzed by N. Kawakami and A. Okiji,8 who found that
the ground state at zero temperature is composed of real λi

and complex kl
j in the thermodynamic limit for U > 0. The

same situation also occurs in the special limit where U → ∞,
where P. Schlottmann39 has also done the analysis in the
one-lead case. The proof that a two-leads ground state is
similar to the one-lead case is shown explicitly for the finite
temperature calculation and for the infinite-U case in Ref. 38.

As has been mentioned above in the zero-temperature,
zero-magnetic-field ground state, all λi are real (and distinct)
and kl

j form bound states for j = 1, . . . ,2M with bound-state
momenta given by the poles or zeros in the S matrix defined
in Eq. (4),

B[kl±(λj )] = λj ± iU� = B[x(λj ) ± iy(λj )] + γ ±(λj ),

(8)

where γ ± = O[exp(−L)] and x(λ) and y(λ) are shown in the
Eq. (5).

Note that the bound state can be formed from four possible
configurations for B2 < λα < ∞, which we denote bound state
from lead i and lead j quasimomenta denoted as λ

ij
α . The

bound state between B1 < λα < B2 can only be formed by
quasimomenta both coming from lead 1. As already mentioned
the four-bound-state distribution does not give physically
sensible results for the charge susceptibility as shown in
Appendix A and therefore we limit our discussion to two types
of bound-state distribution here. Below we surpass the index
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of lead in λ and put back the index dependence in the end for
simplification. Inserting Eq. (8) into Eq. (7) we get

eik+
α L =

M∏
β=1

λα − λβ + 2iU�

λα − λβ + γ +
α

, (9)

eik−
α L =

M∏
β=1

λα − λβ + γ −
α

λα − λβ − 2iU�
, (10)

M∏
β=1

λβ − λα + γ +
β

λβ − λα + γ −
β

= 1. (11)

Thus, for L → ∞ from multiplication of Eqs. (9) and (10) we
have

e2ix(λα )L =
∏
β

λα − λβ + 2iU�

λα − λβ − 2iU�
. (12)

Taking the logarithm of Eq. (12) we have

2πJα = −2x(λα)L −
∑

β

[
2θ2

(
λα − λβ

2U�

)
+ π

]
, (13)

with θn(x) ≡ tan−1(2x/n) and {Jα} a set of integer numbers.
We can extend the definition of Jα to include integers or half
integers and rewrite Eq. (13) as

π

L
Jα = −x(λα) − 1

L

∑
β

θ2

(
λα − λβ

2U�

)
. (14)

Now let us put back the dependence in lead indices. Starting
from Eq. (14) it can be shown that there is one-to-one
correspondence between the λα’s and the Jα’s and that all
λα’s have to be different. Thus, the set of rapidities {λij

α },
characterizing an eigenstate of the Hamiltonian, is uniquely
determined by one specific set of {Jα}. For instance, the
ground state of the Hamiltonian H0 in the presence of a bias
voltage is simply obtained by packing two “Fermi seas” of
nonconsecutive integers (Pauli principle in lead space) up to
certain “Fermi points” (see Fig. 1) corresponding to the B1

and B2 in the continuum limit.
For notational simplification we relabel {ij} = {11,22} as

{l} = {1,2}. Now defining
∑

ij σ (λij
α ) = 1

L

dJα

dλα
≡ ∑

l σ
(l)(λα)

and using ∂xθn(x) = 2/n

1+(2x/n)2 we can write Eq. (14) in the
continuum limit [by taking L → ∞ and differentiate Eq. (14)
with respect to λ]. Doing so we distinguish two different
domains:

For B2 < λ < ∞ the particles are fully packed and states
are labeled by a different lead index l. In this domain, the SBA
equations in the continuum limit takes the form

2∑
l=1

σ (l)(λ) = − 1

π

dx(λ)

dλ
−
∫ ∞

B2

dλ′ K(λ − λ′)σ (2)(λ′)

−
∫ ∞

B1

dλ′ K(λ − λ′)σ (1)(λ′). (15)

For B1 < λ < B2 we can see from Fig. 1 that the lead 2
states are unoccupied. We introduce a distribution of holes for

FIG. 1. Sketch of the configuration of Bethe momenta corre-
sponding to the ground state of H0 with an additional bias voltage,
that is, two Fermi seas at different chemical potentials.

the lead 2 that denote σ̃ (2)(λ). The continuum SBA equations
in this regime are given by

σ (1)(λ) + σ̃ (2)(λ) = − 1

π

dx(λ)

dλ
−
∫ ∞

B2

dλ′ K(λ − λ′)σ (2)(λ′)

−
∫ ∞

B1

dλ′ K(λ − λ′)σ (1)(λ′). (16)

Since σ̃ (2)(λ) obeys the same equation as σ (2)(λ), as may be
seen from subtracting Eqs. (16) and (15), we can combine
Eqs. (15) and (16) together to get

2σ (λ) = − 1

π

dx(λ)

dλ
− 2

∫ ∞

B2

dλ′ K(λ − λ′)σ (λ′)

−
∫ B2

B1

dλ′ K(λ − λ′)σ (λ′), (17)

with B1 < λ < ∞ for lead 1 and B2 < λ < ∞ for lead 2
Bethe momenta-density distributions. Each density is defined
in a domain extending from Bi to the cutoff D, to be sent to
infinity. The Bi play the role of chemical potentials for the
Bethe ansatz momenta and are determined from the physical
chemical potentials of the two leads, μi , by minimizing the
charge free energy,

F =
∑

i

(Ei − μiNi) = 2
∑

i

∫ ∞

Bi

dλ [x(λ) − μi]σi(λ),

(18)

with σ1 the lead 1 particle density and σ2 the lead 2 particle
density. Note that σ1 and σ2 obey the same integral equation
Eq. (6) with different boundary [σ1(λ) with λ ⊂ (B1,∞) and
σ2(λ) with λ ⊂ (B2,∞)]. Solving the SBA equations subject to
the minimization of the charge free energy fully determines the
current-carrying eigenstate, |�,μi〉, and allows for calculation
of physical quantities by evaluating expectation value of the
corresponding operators. In the following we discuss our
results from equilibrium cases to nonequilibrium ones, starting
with the expression for various expectation values of physical
quantities.

B. Expectation value of current and dot occupation

For μ1 = μ2 all Bi are equal to some equilibrium boundary
B fixed by the choice of μi . The dot occupation is given by
the expectation value

∑
σ 〈�,μi |d†

σ dσ |�,μi〉. Taking the limit
L → ∞ (L being the size of the lead) one can express nd as
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an integral over the density of λ and the corresponding matrix

element ν(λ) � 〈p+(λ)p−(λ)|∑σ d
†
σ dσ |p+(λ)p−(λ)〉

〈p+(λ)p−(λ)|p+(λ)p−(λ)〉 taken to order 1
L

.
Here the state |p+(λ)p−(λ)〉 denotes a pair (or bound states)
of quasiparticles with complex momenta given by Eq. (5).
The reason why nd is governed solely by one-bound-state
matrix element instead of a complicated many-particle object
is because Bethe wave functions are orthogonal to each other
for different pairs of Bethe momenta under the condition that
the size of the leads L taken to infinity.

Here we address the different choice of sep (with sop = −4
fixed to have the same S matrix in all channels) which
gives rise to different forms of ν(λ). We first discuss the
“natural” choice sep = 0 [i.e., absence of θ (−x)θ (x) terms]
and show it reproduces the exact result for the dot occupation
in equilibrium. While in checking the steady-state condition,
that is, d〈nd〉/dt = 0, for the out-of-equilibrium situation,
the choice of sep = 0 fails. To remedy this issue we propose
sep �= 0 [i.e., introducing counter-intuitive θ (−x)θ (x) terms]
schemes to circumvent this difficulty. We check this proposed
phenomenological scheme in equilibrium against the exact dot
occupation obtained in the sep = 0 case in the second part of
the discussion as a benchmark for our approach. First let us
discuss the result for sep = 0.

(1) sep = 0. We choose sep = 0 as in the case of the one-lead
Anderson impurity model and denote ν(λ) = νSBA(λ) in this
choice. The dot occupation expectation value in equilibrium is
given by

nd = 〈�,μ1 = μ2|
∑

σ d̂†
σ d̂σ |�,μ1 = μ2〉

〈�,μ1 = μ2|�,μ1 = μ2〉
= 2

∫ ∞

B

dλ σ (λ)νSBA(λ), (19)

where the factor 2 in front of the integral accounts for the spin
degeneracy. The matrix element of the operator d†

σ dσ in the
SBA state is given by

νSBA(λ) = 2�

x̃2(λ) + ỹ2+(λ)
+ 16y(λ)�2

[x̃2(λ) + ỹ2−(λ)][x̃2(λ) + ỹ2+(λ)]

×
(

x̃(λ)

2x̃(λ) − U

)2

,

where we introduced, for simplified notations, the functions
x̃(λ) = x(λ) − εd and ỹ±(λ) = y(λ) ± �.

Equation (19) can be proved to be exact by comparing it
with the traditional Bethe ansatz (TBA) result. In the latter,
nd is computed as the integral of the impurity density. This
observation that the SBA and TBA results for nd agree in
equilibrium shows the connection between the dot occupation
and the dressed phase shift across the impurity. The dressed
phase shift mentioned here is equivalent to the impurity density
as can be seen in the Eq. (C1) in Appendix C. The proof of
the equivalence between TBA and SBA in equilibrium is also
given in Appendix C.

To describe the out-of-equilibrium state we first check if the
steady-state condition d〈n̂d 〉

dt
= 0 (or equivalently, d〈N̂1+N̂2〉

dt
=

0) is satisfied in this basis. As mentioned earlier, these
scattering states are formed by bound quasiparticles with
complex momenta and therefore the single-particle phase
across the impurity is not well defined in the sense that

|eiδp± | �= 1. This problem begins to surface as we set out to
evaluate transport expectation value and renders

d〈n̂d〉
dt

=
∫ B22

B11

dλσb(λ)�(λ) �= 0, (20)

with

�(λ) = y2(λ)�2

[x̃2(λ) + ỹ2−(λ)][x̃2(λ) + ỹ2+(λ)]
.

Thus, it appears that using this basis the steady-state condition
is not observed. This problem does not appear when the
momenta are real as in the IRLM case.25

(2) sep �= 0. To remedy this problem we redefine the single-
particle phase shifts across the impurity, in analogy to the
results for the IRLM,25 through the choice of nonzero sep in
Eq. (2). With a suitable choice of sep we may restore a well-
defined single-particle phase |eiδ̃p± | = 1 with δ̃p± denoting this
new phase. The way we judge whether we make the correct
choice for the new phases δ̃p± is to compare the dot occupation
nd in equilibrium before and after the redefined phase. The
explicit form of sep and phase δ̃p± is motivated below but first
we show that a single redefined phase is not sufficient to satisfy
the constraint of dot occupation comparison.

Again the choice of new phases is constrained by the
requirement that we obtain the same result for 〈∑σ d†

σ dσ 〉
as given by νSBA(λ) in equilibrium. Based on this constraint
it can be shown explicitly that a single well-defined phase
(in the sense of |eiδ̃p± | = 1) is not sufficient to reproduce the
equilibrium νSBA(λ) as follows: The new dot amplitude ẽp+

and ẽp− have to satisfy

|ẽp+|2 + |ẽp−|2 = 4�

x̃2(λ) + ỹ2+(λ)
,

|ẽp+|2|ẽp−|2 = 4�2

[x̃2(λ) + ỹ2+(λ)][x̃2(λ) + ỹ2−(λ)]
.

As both |ẽp+|2 and |ẽp−|2 are positive we see that a single
redefined phase cannot satisfy the above constraints simul-
taneously. Therefore, we have to choose at least two sets of
redefined phases δ̃i

p± (with i = s,h denoting spin fluctuation
or charge fluctuation to be addressed later) and, along with
them, some distribution functions f i to set the weight for
these phases.

To motivate the idea of searching the correct phase shifts
we come back to the derivation of dot occupation in TBA
picture. In TBA the total energy of the system is described by
the energy of the leads’ electrons and energy shifts from the
impurity,

E =
∑

j

pj =
∑

j

(
2πnj

L
+ 1

L
δj

)
. (21)

Based on Feynman-Hellman theorem, which is applicable
in equilibrium (closed) system, we have

〈n̂d〉 = ∂E

∂εd

= 1

L

∑
j

∂δj

∂εd

= 1

L

∑
j

∂
(
δp+

j
+ δp−

j

)
∂εd

. (22)

The result for Eq. (2) agrees with those obtained from Eq. (C2)
and can be viewed as a third approach to obtain the expectation
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value of the dot occupation. The key observation here is
that this quantity is related to the bare phase shift δp+ + δp−

and therefore the redefined phases must be proportional to
this quantity. Among them there are two likely candidates
with redefined phase shift given by δp+ + δp− , describing

the tunneling of a bound pair, and
δp+ +δp−

2 , describing the
tunneling of a single quasiparticle. In a sense this is the echo
for the elementary excitations above the Fermi surface in the
Bethe basis characterized by N. Kawakami and A. Okiji40

as charge-fluctuation excitation, which describes bound-pair-
quasiparticle excitation, and spin-fluctuation excitation, which
describes one-quasiparticle excitation. Another similar picture
is the spin-fluctuation and charge-fluctuation two fluids picture
proposed by D. Lee et al.41 albeit in a different context. We
identify the phase defined by

δ̃p− = δ̃p+ = δp+ + δp−

2
≡ δ̃s

p

[with sep± ≡ ss
ep± = 2

�
[i(p± − εd ) − �](ei(

δ
p+ +δ

p−
2 ) − 1)] as

spin-fluctuation phase shift and

δ̃p− = δ̃p+ = δp+ + δp− ≡ δ̃h
p

[with sep± ≡ sh
ep± = 2

�
[i(p± − εd ) − �](ei(δp++δp− ) − 1)] as

charge-fluctuation phase shift.
The out-of-equilibrium current is evaluated by the expecta-

tion value of current operator Î with 〈Î 〉 defined by

〈Î 〉 = −√
2iet

h̄

〈∑
σ

{[ψ†
1σ (0±) − ψ

†
2σ (0±)]dσ − H.c.}

〉
(23)

in the state |�,μi〉. Notice that ψ
†
iσ (0±) ≡ limε→0[ψ†

iσ (−ε) +
ψ

†
iσ (+ε)]/2 is introduced in transport-related quantity to be

consistent with our regularization scheme which introduces
another local discontinuity in odd channel at impurity site.

From Eq. (23) and the expression for the phases δ̃s
p and δ̃h

p

we have the expression for current as

I (μ1,μ2) = 〈�,μ1,μ2|Î |�,μ1,μ2〉

= 2e

h̄

∫ B2

B1

dλ σb(λ)[fs(λ)J s(λ) + fh(λ)J h(λ)].

(24)

The corresponding spin fluctuation and charge-fluctuation
matrix element of the current operator based on the spirit of
Landauer transport, denoted as J s(λ) and J h(λ) with J α(λ) =
|Tp(λ)|2 = | e

iδ̃αp −1
2 |2 (α = {s,h}) depending on redefined phase

shift δ̃α
p only, are given by

J s(λ) = 1 + sgn[x̃(λ)][x̃2(λ) + y2(λ) − �2]√
[x̃2(λ) + y2(λ) − �2]2 + 4�2x̃2(λ)

(25)

J h(λ) = 2�2x̃2(λ)

[x̃2(λ) + �2]2 − 2y2(λ)[�2 − x̃2(λ)] + y4(λ)
.

(26)

Here sgn(x) = x
|x| is the sign function. It is introduced in order

to pick up the correct branch when taking the square root in
the denominator of Eq. (25). This way we ensure that J s(λ)
has the proper limit when U is sent to infinity (cf. Sec. III).

Other than the motivations mentioned above for identifying
spin and charge fluctuation phase shifts the functional forms
of J s(λ) and J h(λ) as a function of bare energy x(λ) can
also be used to identify these two types of phase shifts (see
Fig. 12 in Sec. III for infinite U Anderson model, the finite U

is similar).
Next we choose the appropriate weight for each type of

phase shift. So far we have not yet been able to deduce
the form of these weight functions fs(λ) and fh(λ) and
we introduce them phenomenologically. Let us define phe-
nomenological spin-fluctuation and charge-fluctuation weight
functions as

fs[ε(λ)] = Ds[ε(λ)]

Ds[ε(λ)] + Dh[ε(λ)]
(27)

and

fh[ε(λ)] = Dh[ε(λ)]

Ds[ε(λ)] + Dh[ε(λ)]
. (28)

Here Ds[ε(λ)] is the spin-fluctuation density of state, Dh[ε(λ)]
is the charge-fluctuation density of state as defined in Ref. 40,
and ε(λ) is the corresponding dressed energy, that is, the
energy required to produce these spin- and charge-fluctuation
excitations above the Fermi level. Here dressed energy refers
to the sum of the bare energy of adding/removing one bound
state, as in charge fluctuation, or single quasiparticle, as in spin
fluctuation, and the energy shift from other quasiparticles due
to this change. The equation that solves a single quasiparticle’s
dressed energy ε(λ) reads42

ε(λ) = [x(λ) − μ] −
∫ ∞

B

dλ′ K(λ − λ′)ε(λ′). (29)

We wish to compare at this point our approach to the one
taken by Konik et al.31,32 The authors’ Landauer approach
is based on an ensemble of renormalized excitations, the
holons and spinons, and the conductance is expressed in
terms of their phase shift crossing the impurity. However,
the leads are built of bare electrons and thus one faces the
difficult problem of how to construct a bare electron out
of renormalized excitations in order to be able to impose
the voltage boundary condition. The basic approximation
adopted, electron ≈ antiholon + spinon, is valid only when
the electron is close to the Fermi surface (see N. Andrei43),
and therefore the approach is trustworthy only for very small
voltages. Nevertheless, the dressed excitations framework
seems to give at least qualitatively good results when another
energy scale (such as the temperature or an external field)
is turned on.44 In contrast, we construct the eigenstates of
the Hamiltonian directly in terms of the bare electron field
and can therefore impose the asymptotic boundary condition
that the wave function tends to a product of two free Fermi
seas composed of bare electrons. While we do not have a
mathematically rigorous derivation of the weight functions
we introduced, the validity of the scattering formalism is
not restricted to any energy window other than energy
cutoff.
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C. Results for equilibrium and linear response

In the numerical computation, for the practical purpose,
we assumed Kondo limit (U = −2εd , U

�
� 1) form of the

spin-fluctuation and charge-fluctuation distributions, that is,

Ds[ε(λ)] � 1

π

Tk

ε2(λ) + T 2
k

(30)

and

Dh[ε(λ)] � 1√
2U�

�2

[ε(λ) + εd ]2 + �2
, (31)

with Tk being the Kondo scale derived in Ref. 40 as

Tk =
√

2U�

π
eπ

εd (εd +U )+�2

2U� . (32)

As we use the Kondo limit in our expression for the spin-
fluctuation and charge-fluctuation distributions, we expect that
our phenomenological approach works better for large U/�.
We also take ε(λ) � x(B) − x(λ) for numerical convenience
with B denoting the Bethe momenta boundary given by
μ1 = μ2 = 0. The dot occupation 〈∑σ d†

σ dσ 〉 evaluated by
these new phases is given by

〈∑
σ

d†
σ dσ

〉
= 2

(∫ ∞

B1
dλ σb(λ)[νs(λ)fs(λ) + νh(λ)fh(λ)] +

∫ ∞

B2

dλ σb(λ)[νs(λ)fs(λ) + νh(λ)fh(λ)]

)
,

(33)

with νs(λ) and νh(λ) given as

νs(λ) = 1

�

[
1 − [x̃2(λ) + y2(λ) − �2]√

[x̃2(λ) + y2(λ) − �2]2 + 4�2x̃2(λ)

]

×
[

1 + 8y(λ)
1

�

(
1 − [x̃2(λ) + y2(λ) − �2]√

[x̃2(λ) + y2(λ) − �2]2 + 4�2x̃2(λ)

)(
x̃(λ)

2x̃(λ) − U

)2
]
, (34)

νh(λ) =
[

2�x̃2(λ)

[x̃2(λ) + �2]2 − 2y2(λ)[�2 − x̃2(λ)] + y4(λ)

]

×
[

1 + 36y(λ)�x̃2(λ)

[x̃2(λ) + �2]2 − 2y2(λ)[�2 − x̃2(λ)] + y4(λ)

(
x̃(λ)

2x̃(λ) − U

)2
]
, (35)

respectively. We may check whether this choice of phe-
nomenological distribution functions satisfies the condition
in equilibrium that〈∑

σ

d†
σ dσ

〉
= 4

∫ ∞

B

dλ σb(λ)νSBA(λ)

= 4

(∫ ∞

B

dλ σb(λ)[νs(λ)fs(λ) + νh(λ)fh(λ)]

)
.

(36)

We can see from the top of Fig. 2 that the comparison
between the phenomenological and the exact result for the dot
occupation in equilibrium is good deep into the Kondo regime
(εd � −U

2 ) and far away from it (εd � 0) but is worse when
we are in the mixed valence region (εd � 0). This discrepancy,
due in part to the approximations we made for Ds(ε) and
Dh(ε), may go away if we took more realistic form of Ds[ε(λ)]
and Dh[ε(λ)] also in mixed valence regime, as suggested
in Fig. 2. However, the numerical procedure is much more
complicated there. We confine ourself to this simpler limit in
our phenomenological approach.

Another check on our result in equilibrium is to find
the linear response conductance through our formulation
and compare with the exact linear result given by the

Friedel sum rule.29,30 The Friedel sum rule, which relates
the equilibrium dot occupation to the phase shift experienced
by electrons crossing the dot, is related to zero voltage
conductance by dI

dV
|V =0 = 2 sin2(π〈n̂d〉/2). The zero bias

conductance in our construction can be analyzed easily45 by
noting that at low voltage eV = μ1 − μ2 � 2π

L
(N1 − N2) =

4π
∫ B2

B1
σb(λ)dλ. By taking B2 � B1 = B in the expression

for the current across the impurity Eq. (24) we get the zero
bias conductance expressed as

dI

dV

∣∣∣
V =0

= e2

h
[fs(B)J s(B) + fh(B)J h(B)]. (37)

Here B = B(μ,εd,�,U ) is determined by μ1 = μ2 = 0.
The comparison between Friedel sum rule (FSR) result and
the conductance given by Eq. (37) [denoted as (pSBA)] is
shown at the bottom of Fig. 2. It displays the consequence of
the equilibrium Kondo effect in the quantum dot setup: Due to
the formation of the Kondo peak attached to the Fermi level,
the Coulomb blockade is lifted and a unitary conductance
is reached for a range of gate voltages εd around −U/2.
Again we see that the comparison is good for large U/�

but poorer in mixed valence regime for smaller U/�, which is
consistent with the observation we made when evaluating 〈n̂d〉
as shown in top panel of Fig. 2. Having checked our results
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FIG. 2. (Color online) (Top) 〈n̂d〉 as a function of εd from the
exact result (solid lines) and from Eq. (36) (symbols). (Bottom) The
differential conductance in the linear-response regime, as a function
of εd from the phenomenological scattering Bethe ansatz (pSBA) and
exact linear response conductance from Friedel sum rule (FSR) for
� = 0.5, 0.25, 0.1, and U = 8.

in equilibrium we go on to compute the current and the dot
occupation in the out-of-equilibrium regime.

D. Results out of equilibrium

Now let us begin to investigate the current and dot
occupation change as we turn on the voltage. We start with
the discussion on current vs voltage for various regime. The
current vs voltage is plotted in the inset of figure of Fig. 3 for
different values of U and at the symmetric point εd = −U/2.
Note that we use an asymmetric bias voltage when solving
numerically the integral equations originating from Eq. (6)
with constraint of minimizing the charge free energy Eq. (18):
Namely, we fix μ1 � 0 (around 10−3–10−5) and lower μ2.
Therefore, a direct confrontation between the results obtained
from real-time simulations of the Anderson model out of
equilibrium20,21,24 is difficult but the main features of our
calculation match the predicted results: a linear behavior of the

FIG. 3. (Color online) dI/dV vs V/� for � = 1, εd = −U/2,
and various U . (Inset) Steady-state current vs voltage curves for
� = 1, εd = −U/2, and various U . The dashed line is a line with
constant conductance 2e2

h
plotted for comparison.

I -V characteristics at low voltage, the slope being obtained
from the FSR (2 in units of e2/h at the symmetric point),
and a nonmonotonic behavior at higher voltage, the so-called
nonlinear regime. In particular, our calculations show clearly
that the current will decrease as U/� is increased, which is in
agreement with other numerical approaches (e.g., cf. Fig. 2 of
Ref. 21 for a comparison).

The plots of the differential conductance vs source drain
voltage for different dot levels, εd , tunneling strengths �, and
interaction strengths U are shown in Figs. 3 and 5. Two major
features emerge from these plots: (1) a narrow peak around
zero bias reaching maximal value of 2e2/h (the unitary limit)
for values of the gate voltage close to the symmetric point
(εd � −U/2) and (2) a broader peak developing at finite bias.
The first peak is a nonperturbative effect identified as the many-
body Kondo peak, characteristic of strong spin fluctuations in
the system. However, the broad peak is due to renormalized
charge fluctuations around the impurity level. Notice the two
features merge as the gate voltage, εd is raised from the Kondo
regime, εd = −U/2, to the mixed valence regime, εd = 0, with
the Kondo effect disappearing. As a function of the bias the
various curves describing the Kondo peak for different values
of the parameters can be collapsed onto a single universal
function dI/dV = dI/dV (V/T ∗

k ), as shown in Fig. 4. Here
T ∗

k is defined as

T ∗
k = c1

√
2U�

π
e

εd (εd +U )+�2

2U� , (38)

with c1 = 0.002. The energy scale T ∗
k was extracted from

the numerics by requiring that the function dI/dV (V/T ∗
k )

decreases to half its maximal value when V � T ∗
k . The

expression for T ∗
k , as given by Eq. (38), differs from

the thermodynamic Tk as defined in Eq. (32). The difference
of prefactor in the exponential is certainly related to the
unusual choice of regularization scheme in the SBA.35 The
other possible implication for this different formulation for
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FIG. 4. (Color online) (Top) Zoomed in picture of the differential
conductance vs voltage near zero voltage. The inset shows the
universality in conductance vs voltage scaled by T ∗

k when V

T ∗
k

� 1.

The quadratic behavior occurs for V

T ∗
k

< 0.5 as indicated by the fitted

curve. (Bottom) Differential conductance vs voltage scaled by T ∗
k near

the Kondo peak structure. The inset shows the logarithmic behavior
when V

T ∗
k

� 1. � = 0.5 for all these data sets.

the Kondo scale is also addressed later when we discuss the
experiment done by L. Kouwenhoven et al.5

The small voltage behavior for differential conductance in
symmetric case, that is, εd � −U

2 , is expected to be12,15

dI

dV

∣∣∣
V �T ∗

k

� 2e2

h

[
1 − αV

(
V

T ∗
k

)2 ]

and allows us to identify the constant αV from the quadratic
deviation from 2e2/h. The quadratic fit of the universal curve
around V � 0, as shown in Fig. 4, gives αV � 1. It is also
expected for T ∗

k � V � U
2 that the tail of the peak decays

logarithmically12 as

dI

dV
∼ 2e2

h

1

ln2
(

V
T ∗

k

) .
The latter behavior is observed (see inset of Fig. 4) in
the regime U

�
� 1 for 102 < V

T ∗
k

< 104 with the logarithmic

FIG. 5. (Color online) dI/dV vs V/4� for U = 8, � = 0.25
and various εd from Kondo (εd = −4) to the mixed-valence regime
(εd � 0). (Inset) Comparison of ln(T ∗

k ) − ln(c1) and ln(VHWHM ) as a
function of impurity level εd . Here VHWHM is the voltage difference
estimated at half value of differential conductance at zero voltage.
The constant shift − ln(c1) is chosen to give the best fit in the data
away from εd = −U

2 .

function given by

dI

dV
= e2

h

[
f

(
U

�

)
+ c2

ln2
(

V
T ∗

k

)
]
,

with the parameter c2 = 0.055. Here f (U
�

) is simply a constant
(in V ) shift. As suggested from the bottom plot of Fig. 4 (see
also Fig. 14 for the infinite-U case) the charge fluctuation
side peak does not fall into the same scaling relation but the
strong correlations shift the center of the side peak closer to
V = 0 (see Figs. 3 and 5). In other words, the position of
the resonance in the dI/dV curve naively expected around
V = |εd | is renormalized46 by the presence of interactions.
In the inset of Fig. 5 we show the logarithm of the voltage
obtained at half width at half maximum (HWHM) of the zero
voltage peak and compare it with

ln T ∗
k = εd (εd + U ) + �2

2U�
+ ln

(
c1

√
2U�

π

)

(after subtracting the constant ln c1). What is important and
universal is that both quantities (ln VHWHM and ln T ∗

k ) exhibit
a quadratic behavior in the gate voltage εd . Similar results
had been found experimentally by L. Kouwenhoven et al.5

when they compare the full width at half maximum of dI/dV

(from which they obtain a Kondo scale Tk1 at finite voltage)
with the temperature dependence of the linear response
differential conductance (from which another Kondo scale Tk2

is extracted). It is suggested from our numerical results that
both ln Tk2 (in analogy with our Tk) and ln Tk1 (which is our
T ∗

k ) follow similar quadratic behavior in εd but differ in their
curvatures by a factor of π . In Ref. 5 the curvatures of the
quadratic behavior differ by a factor of around 2 [see Fig. 3(B)
in Ref. 5], which is attributed to dephasing of spin fluctuations
at finite voltage.
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Notice that in all the numerical data shown for current vs
voltage we have chosen U

�
� 8 to explore the scaling relation in

the Kondo regime. Another reason is that our phenomenolog-
ical distribution functions introduced to control the relative
weight for spin- and charge-fluctuation contributions work
much better in the large U

�
regime (cf. Fig. 2).

Next let us study the change in the dot occupation as a
function of the voltage. The extension of the computation of the
dot occupation out of equilibrium is straightforward. Suppose
we find the correct distribution functions fs(λ) and fh(λ);
then we have νSBA(λ) = νs(λ)fs(λ) + νh(λ)fh(λ). Under this
assumption νSBA(λ) retains its form in and out of equilibrium
and the general expression for 〈n̂d〉 is

nd (μ1,μ2) = 〈�,μ1,μ2|n̂d |�,μ1,μ2〉

= 2

(∫ ∞

B1

dλ σb(λ)νSBA(λ) +
∫ ∞

B2

dλ σb(λ)νSBA(λ)

)
.

(39)

As the form for νSBA(λ) is proved to be exact in equilibrium,
we regard Eq. (39) as an exact result for 〈n̂d〉 even out of
equilibrium and valid in all different ranges of U , εd , � under
the assumption that the integrand does not change its form for
in and out of equilibrium, which is the case for general results
of SBA. In the numerical results shown hereafter, we use this
expression [Eq. (39)] for the matrix element of dot occupation
rather than Eq. (36). We adopt the same voltage drive scheme
by fixing μ1 and lowering μ2.

By using this result we do not need to confine ourselves
to large U

�
. The case for different U

�
with εd = −U

2 and for
U = 8,� = 0.25 with different εd are shown in Figs. 6 and 7.
The main features of these plots are a relatively slow decrease
of the dot occupation at low voltage followed by an abrupt
drop of 〈nd〉. The decrease of 〈nd〉 takes place within a range
of voltage on the order of �. Then as we increase the voltage
further another plateau develops. Note that, as expected, the
bigger U is the higher is the voltage needed to drive the system
out of the 〈nd〉 = 1 plateau. In a sense the charge fluctuations
are strongly frozen at large U and it costs more energy
to excite them. The voltage where the abrupt drop in 〈nd〉
occurs corresponds to the energy scale at which the “charge
fluctuation peak” was observed in the conductance plots. This
can be seen by comparing the position of the broader peak in
Fig. 5 with that of the abrupt dot occupation drop in Fig. 7.

Similar to the differential conductance we may define the
nonequilibrium charge susceptibility as

χc(V )|εd
= −∂〈n̂d〉

∂V
,

which we obtain by taking a numerical derivative of the dot
occupation data with respect to the voltage. In the case of U =
−εd/2 there are two features, as can be seen from the inset of
Fig. 6 and main figure of Fig. 7. Near V � 0 we see a first small
peak arising with width and height decreasing with increasing
U
�

. We identify this peak as a small remnant of the charge
fluctuations in the Kondo regime. This statement is confirmed
by noticing that this peak goes away as U

�
increases, vanishing

when U → ∞ as shown in Sec. III, where the infinite U

Anderson model is discussed. The second peak is located at
the same voltage as the charge fluctuation peak observed in the

FIG. 6. (Color online) 〈n̂d〉 vs V/� for different U with εd = −U

2
and the � = 1 case. (Inset) The corresponding nonequilibrium charge
susceptibility. A small peak shows up near V = 0 for all these curves.

conductance plots and is therefore associated with the response
of the renormalized impurity level to the charge susceptibility.
This can be seen when comparing Figs. 5 and 7.

Another interesting quantity, the usual charge susceptibil-
ity, defined by χc(εd )|V = − ∂〈n̂d 〉

∂εd
, can also be qualitatively

described. In Fig. 8 we plot −�〈n̂d 〉
�εd

as a function of εd as we
only have a few points in fixed εd for finite voltage. Notice
that χc(εd )|V tends to be a universal curve in large voltage,
indicating charge on the dot remains at some constant value
in the steady state with large voltage. This constant value at
large voltage, as pointed out by C. J. Bolech, is around 0.65
for the εd = −U

2 case. In preparing this article we noticed
that a similar computation, adopting the same asymmetric
voltage drive protocol as we have here, is carried out by
R. V. Roermund et al.22 for the dot occupation out of

FIG. 7. (Color online) − d〈n̂d 〉
dV

vs V/4� for � = 0.25, U = 8, and
various εd from Kondo to the mixed valence regime. We see that the
small peak near V = 0 only appears when εd → −U

2 . (Inset) The
corresponding 〈n̂d〉 vs V/4�.
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FIG. 8. (Color online) −�〈n̂d 〉
�εd

for various fixed voltages as a
function of εd for � = 0.25, U = 8. (Inset) 〈n̂d〉 vs εd for various
fixed voltages.

equilibrium by using equation-of-motion method. We do get
a similar value for the dot occupation at large voltage. This
value is different from the dot occupation value nd � 0.5 at
large voltage when the interaction U is turned off, as shown in
Fig. 13. This difference might have to do with the 0.7 structure
observed in quantum point contact4 in high temperature
(temperature is high compared with the Kondo scale but still
small compared with phonon modes or electronic level) and
zero magnetic field as the linear response conductance given
by nd = 0.65 by using FSR is around 0.73. In a sense the
voltage seems to play a similar role as the temperature in
the way it influences the dot occupation. Further connection
between these two behaviors could be clarified by computing
the decoherence factor as in Ref. 22. This decoherence factor
is related to the dot correlation function out of equilibrium,
which can be computed in a three-lead setup47 by using our
approach.

E. Comparison with other theoretical and experimental results

In most of the other theoretical approaches17,20–23,31,32 the
symmetric voltage drive (μ1 = −μ2) is usually assumed to
preserve particle-hole symmetry in symmetric case (εd =
−U

2 ). It is thus difficult for us to make any definite comparison
with other theoretical results. The qualitative feature, as shown
by the black curves in Fig. 9 done by D. Matsumoto23 by
using perturbation expansion in U at strong coupling fixed
point, is similar to our results in the sense that the height
of the charge fluctuation side peak and width are almost the
same. The major differences are in the shape of the Kondo
peak and the position of the charge fluctuation side peak.
A clear signature of renormalized dot level εd , as hinted in
renormalization computation,46,48 is clearly seen in our result.
The shape of Kondo resonance near zero voltage deviates from
its quadratic behavior expected from Fermi liquid picture at
smaller voltage in our case, as is expected for asymmetric
voltage drive.14,16

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 9. (Color online) Comparison of our theory with perturba-
tion expansion in U done by D. Matsumoto on dI/dV (y axis in units
of 2e2/h) vs V/U (x axis). Our data (blue, purple, and brown lines
correspond to �

U
= 0.13, 0.083, and 0.063, respectively. � shown in

the inset is � in our notation. EQ in the inset is conductance computed
by equilibrium density of state which is not relevant to our discussion
here.) are shown as the main figure and Fig. 8 in Ref. 23 is shown
in the inset. In Ref. 23 the voltage is driven symmetrically, that is,
μ1 = −μ2, rendering the factor of two difference in the voltage (i.e.,
V

U
= 0.5 in our case corresponds to eV

U
= 1 in the inset; e = 1 in our

convention) in comparing our result with that in Ref. 23.

We can also compare our results with experiments. Shown
in the inset of Fig. 10 is the dI

dV
vs V measured in Co

ion transistor by J. Park et al.6 We rescaled the differential
conductance and superimposed our numerical results on
the data graph. The measurement was done by using an
asymmetric drive of the voltage (by keeping μ1 = 0 and
changing μ2 to be larger or smaller than zero) and thus there is
an asymmetry in the differential conductance as a function of
voltage as illustrated in the data curve. In our numerics we only
compute the scenario for μ1 = 0 and lowering μ2 (only for
V > 0 region of Fig. 10). The V < 0 region is plotted by just
a reflection with respect to the V = 0 axis, which illustrates
the case of μ2 = 0 and lowering μ1. To compare with the
correct voltage setup on the V < 0 side as in experiment will
involve computations within a different parametrization for
the bare Bethe momenta, which is beyond our current scope.
The comparison on the V > 0 region shows good agreement
between our theory and experimental result. The discrepancy
on the width of the charge fluctuation side peak could be due
to the vibron mode.49 To describe these types of transistors
we start with the Anderson-Holstein Hamiltonian. We are
currently exploring the possibility of solving this model by
the Bethe ansatz approach.

III. INFINITE U ANDERSON MODEL

In the limit of U
�

→ ∞ the finite U two-lead Ander-
son impurity Hamiltonian becomes the two-lead infinite U

Anderson model. The latter model is closely related, via
the Schrieffer-Wolff transformation,50 to the famous Kondo
model, a model of spin coupled to a Fermi liquid bath. The
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FIG. 10. (Color online) Comparison of theory with experiment of
dI/dV (y axis in units of e2/h) vs V (x axis in units of mV). (Inset)
The original data graph published in Ref. 6. The red dots are given by
our theory for U

�
= 8 with voltage rescaled to fit with original data in

units of mV. The value of differential conductance (experiment data
in black line) is rescaled from (0.6,1.3) to (0,2) in unit of e2

h
.

reason for that is simple: since U → ∞ the charge fluctuations
are essentially frozen out and only the spin fluctuations
dominate the low-energy physics. The Hamiltonian is given
by

Ĥ =
∑
i=1,2

∫
dx ψ

†
iσ (x)(−i∂x)ψiσ (x) + εdd

†
σ dσ

+ ti[ψ
†
iσ (0)b†dσ + d†

σ bψiσ (0)]. (40)

Here the bosonic operator b is introduced to conserve b†b +∑
σ d†

σ dσ = 1 and by applying the slave boson technique we
project out the phase space of double occupancy occurring in
finite U case. The corresponding Bethe momenta distribution
function for the infinite U Anderson model is given by

2σ (�) = 1

π
−
∫ B2

−∞
d�′K(� − �′)σ (�′)

−
∫ B1

−∞
d�′K(� − �′)σ (�′), (41)

with K(�) = 1
π

2�
(2�)2+(�−�′)2 .

Equation (41) can be derived directly following the proce-
dures in the finite U Anderson model. It can also be derived
from the finite U result [Eq. (6)], by taking the large U limit
(U � εd , U � �):

x(λ)

U
→ 1

2
−

√√√√ λ
U 2 + 1

4 +
√(

λ
U 2 + 1

4

)2 + �2

U 2

2

→ 1

2
−
√

λ
U 2 + 1

4 + ∣∣ λ
U 2 + 1

4

∣∣
2

(42)

→ 1

2
− 1

2

(
1 + 2λ

U 2
+ · · · ) → − λ

U 2
= �

U
,

y(λ)

U
→

√
−(

λ
U 2 + 1

4

) + [(
λ

U 2 + 1
4

)2 + �2

U 2

]1/2

2

→

√√√√√(
λ

U 2 + 1
4

)[ − 1 +
(

1 +
(

�
U

)2(
λ

U2 + 1
4

)2

)1/2]
2

(43)

→
(

1

4

(
�
U

)2

1
4

)1/2

+ O(U−2) � �

U
,

with � ≡ − λ
U

. Similar procedures as in Appendix C give the
matrix element νSBA

∞ (�) for the dot occupation in the infinite
U Anderson model in equilibrium to be

νSBA
∞ (�) = 2�

(� − εd )2 + (2�)2
. (44)

In going to the out-of-equilibrium regime (μ1 �= μ2) we
follow the same phenomenological method as for the finite U

case. The result for the spin-fluctuation and charge-fluctuation
contributions to the dot occupation are given by

νs
∞(�) = 1

�

(
1 − εd − �√

(εd − �)2 + 4�2

)
,

(45)

νh
∞(�) = 2�

(� − εd )2 + (2�)2
.

We again check the consistency with the exact result for the
dot occupation in equilibrium, namely,

〈∑
σ

d†
σ dσ

〉
= 4

∫ B

D

d� σb(�)νSBA
∞ (�)

= 4
∫ B

D

d� σb(�)[νs
∞(�)f ∞

s (�)

+ νh
∞(�)f ∞

h (�)].

Here D is related to the bandwidth and B is determined by the
equilibrium Fermi energy μ1 = μ2 = 0. f ∞

s (�) and f ∞
h (�)

are expressed as

f ∞
s (�) = T ∞

k

/
π

(� − B)2 + (
T ∞

k

)2 ,

f ∞
h (�) = 2�

(� − B − εd )2 + (2�)2
.

Here the Kondo scale T ∞
k used in fs(�) takes the form51

T ∞
k =

√
10|D|�

π
e−π

|εd |
� .

The results for the dot occupation and FSR check in the
infinite U case are shown in Fig. 11. Again we see a
nice match between our phenomenological approach and the
exact result for | εd

�
| �= 0 and some mismatch in the mixed

valence region | εd

�
| � 0. This is consistent with the results for

finite U .
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FIG. 11. (Color online) (Top) 〈n̂d〉 vs εd

�
for exact TBA results

and pSBA. (Bottom) Linear response conductance dI/dV |V →0 vs εd

�

for exact result (FSR) and pSBA in the infinite-U Anderson model.
D

�
= −100. Similar to the case of finite U , the comparison with the

nearby mixed-valence region (εd � 0) is poorer.

The corresponding spin and charge fluctuation matrix
element for current, J s

∞(�) and J h
∞(�), are given by

J s
∞(�) = 1 − εd − �√

(εd − �)2 + 4�2
,

J h
∞(�) = 2�2

(� − εd )2 + (2�)2
. (46)

The current expectation value is given by

〈Î 〉 = 2e

h̄

∫ B1

B2

d�σ (�)
[
J s

∞(�)f ∞
s (�) + J h

∞(�)f ∞
h (�)

]
,

where B1 and B2 are related to μ1 and μ2 by minimizing
charge free energy F

F = 2

(∫ B1

D

d�σ (�)(� − μ1) +
∫ B2

D

d�σ (�)(� − μ2)

)
.

FIG. 12. (Color online) Js(�) and Jh(�) vs Bethe momenta �

(scaled by �) in the infinite-U Anderson model. εd

�
= −4 in this

graph. A similar graph appears for the finite-U case with the x axis
replaced by the real part of Bethe momenta x(λ).

Before we proceed to discuss the numerical results for
current vs voltage in this infinite U model let us look at the
structure of J s

∞(�) and J h
∞(�) as a function of � as shown in

Fig. 12. � here represents the bare energy of the quasiparticle
and plays the same role as x(λ) in the finite U Anderson model.
J s

∞(�) alone would reproduce the main feature in the FSR for
εd � 0. In this region the linear response conductance comes
mainly from the spin fluctuations. The upper plot of Fig. 12
fixes εd and shows J s

∞(�) vs �. We may also fix � = 0 (in
the sense of choosing the equilibrium Fermi surface energy
at � = 0) and plot J s

∞(εd ) vs εd . In this way we can see that
J s

∞(εd ) vs εd reproduces the overall structure of the linear
response conductance from the Kondo region (εd � 0) to the
mixed valence regime (εd � 0). Therefore, we identify the
phase shift

δp++δp−
2 , contributing to J s

∞(�), as the phase shift
related to spin fluctuation.

J h
∞(�) gives a Lorentz shape in bare energy scale �. This

structure is akin to the charge fluctuation side peak with the
peak position at energy scale around εd as seen from the lower
plot of Fig. 12. Thus, we identify the phase shift δp+ + δp− ,
contributing to J h

∞(�), as the phase shift related to charge
fluctuation. These structures also apply to the case of the finite
U Anderson model.

Now let us discuss the out-of-equilibrium numerical results.
The voltage is again driven asymmetrically by fixing μ1 � 0
and lowering μ2. The exact dot occupation vs voltage for
different εd for infinite U and U = 0, εd

�
= −6 case (black

square dots) are shown in Fig. 13. We see again that the dot
occupation decreases slowly at low voltage and develops an
abrupt drop at a voltage scale corresponding to impurity level
εd . Also notice the apparent difference between the U = 0 plot
(black square dots) and the U → ∞ case (red circle dots) and
for the same value of εd

�
. For U → ∞, the dot occupation at

large voltage is around 0.65 for εd

�
� 0 which is consistent

with the result of the finite U case when U
�

is large (cf.
Sec. II D). In contrast, the noninteracting case (U = 0) shows
that 〈nd〉 → 0.5 at large bias.
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FIG. 13. (Color online) 〈n̂d〉 vs V

�
in the infinite-U Anderson

model (for red, blue, and purple symbols corresponding to εd

�
=

−6, − 5, − 4. The black symbols are the U = 0 and εd

�
= −6 case

shown for comparison). D

�
= −100 in this graph.

The phenomenological current vs voltage and the corre-
sponding differential conductance vs voltage are plotted in
the top panel of Fig. 14. Again we see the zero bias anomaly
and a broad charge fluctuation side peak in the differential
conductance vs voltage. The scaling relation of differential
conductance vs voltage expected in the small-voltage region
can also be extracted by rescaling the voltage by T ∞∗

k , as
shown in bottom figure of Fig. 14. Here T ∞∗

k is given by

T ∞∗
k =

√
10|D|�

π
e−π

|εd |
2� .

Notice that this T ∞∗
k differs from T ∞

k with a factor of two
within the exponent. This factor of two difference represents
the difference in the curvature of the parabola as function
of εd (the logarithm of half width at half maximum of the
Kondo peak vs εd shows parabolic curve as in inset of Fig. 6
for finite-U case). This factor of two ratio bears even closer
resemblance to the results shown in Ref. 5. Note that in bottom
panel of Fig. 14 the positions of the side peak are different and
show no universality in that region. It shows universality for
V
T ∗

k

� 1.

IV. CONCLUDING REMARKS

In this article we have explicitly computed the nonequi-
librium transport properties in the Anderson model for all
voltages using the SBA. In the case of equilibrium we have
also shown the equivalence of traditional Bethe ansatz and
SBA by evaluating dot occupation in equilibrium. For the
expression of current we have introduced phenomenological
distribution functions to set the weight for spin-fluctuation
and charge-fluctuation contributions to the current. The result
shows correct scaling relation in Kondo regime as well as
satisfying the FSR for linear response for large U

�
.

Other interesting quantities, such as the nonequilibrium
charge susceptibility or the usual charge susceptibility, are

0.001 0.01 0.1 1 10

V

Tk

0.5

1.0

1.5

dI

dV

FIG. 14. (Color online) (Top) dI

dV
vs V

�
in the infinite-U Anderson

model. The inset shows the I − V curves for these parameters.
D

�
= −100 in this graph. (Bottom) dI

dV
vs V

T ∗
k

shows the scaling

relation near zero voltage for εd

�
= −6, − 5, − 4 (blue, purple,

brown, respectively).

computed numerically via exact expression for dot occupation
as a function of voltage and impurity level. We believe this
report of an exact computation of the dot occupation out-
of-equilibrium may have interesting application in quantum
computing as we understand more the dephasing mechanism.
We have also compared our results with perturbation calcula-
tion and experimental measurement of nonlinear differential
conductance of a quantum dot.

The major difficulty we encounter by using SBA comes
from the single-particle phase shift for complex momenta
which leads to a breakdown of the steady-state condition when
out of equilibrium. One possible issue resulting in this is the
local discontinuity at odd channel sop, the choice we made
to enable us to construct a scattering state with fixed particles
from lead 1 and lead 2. It can be proved that without this choice
we cannot write a fixed number of particles incoming from
each lead36 in this Anderson impurity model and similarly for
IRLM. The other issue in the study of the Anderson model
is whether we shall include all possible bound states in the
ground-state construction. From the mathematical structure
we choose four types of bound states but the results from
charge susceptibility seems to suggest two types of bound
states is the correct choice. To check whether this is in general
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the correct we plan to come back to study the whole spectrum,
which includes the bound state when Bethe energy is higher
than the impurity level, of IRLM as this model bares structure
similarity to the Anderson model described in this article.
Following the SBA on IRLM25 there are lots of numerical
approaches and different exact methods27 developed for this
model and detailed comparison for different approaches
is desired for better understanding its physics and scaling
relation. By learning how to deal with complex momenta in
this model we may also find the rule which may lead us to
the exact expression for current in this Anderson impurity
model.
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APPENDIX A: DISCUSSION OF TWO STRINGS
VS FOUR STRINGS

As we have discussed in the main text the bound pair,
formed by p±(λ) = x(λ) ∓ iy(λ), can be formed by quasimo-
menta from lead 1 or lead 2. We have shown the results for
two types of strings (bound states). Namely, the strings are
formed by {ij} = {11,22}, with i, j denoting incoming lead
indices. In this section we discuss the case of four types of
strings and show their corresponding numerical results in the
out-of-equilibrium regime. (In equilibrium the two strings and
four strings give the same results for dot occupation.)

The density distribution for the Bethe momenta (rapidities)
is denoted by σij (λ) with {ij} = {11,12,21,22} indicating the
incoming electrons from lead i and lead j . The σij (λ) is given
by

4σij (λ) = − 1

π

dx(λ)

dλ
−

∑
i,j=1,2

∫ ∞

Bij

dλ′ K(λ − λ′)σij (λ′).

(A1)

The factor of 4 indicates four types of possible configurations
and the constraint of exclusions in rapidities λ in solving
the quantum inverse scattering problem. The idea is that in
equilibrium four types of distributions are equally possible
for each bound-state bare-energy 2x(λ). The Bij play the role
of chemical potentials for the Bethe ansatz momenta and are
determined from the physical chemical potentials of the two
leads, μi , by minimizing the charge free energy,

F =
∑

i

(Ei − μiNi) =
∑

i

∫ ∞

Bij

dλ [x(λ) − μi]σ(i)(λ)dλ,

FIG. 15. (Color online) dI

dV
vs V

4�
for U = 8, � = 0.25, and

various εd from εd = −U

2 to εd = 1. The inset is the enlarged region
near zero voltage.

with σ(1) ≡ 2σ11 + σ12 + σ21 the lead 1 particle density and
σ(2) ≡ 2σ22 + σ12 + σ21 the lead 2 particle density. In the case
of μ1 > μ2 we have B11 < B12 = B21 < B22 for this finite-U
Anderson model but the equation for σij (λ) is the same for
different combinations of i and j . The reason is we use a
quasihole state, rather than a quasiparticle state, in the integral
equation Eq. (A1) in the treatment of Wiener-Hopf approach.
For example, for B11 < λ < B22 there could be three types
of quasiparticle state {ij} = {11,12,21} and we put the {ij} =
{22} state as the quasihole state. This hole state still counts one
weight of the probability of four distributions and therefore the
factor of 4 on the left-hand side of Eq. (A1) remains even out
of equilibrium. A similar idea is also applied in the two types
of bound state (strings) solution.

Other than their differences in the density distribution the
computations for the current and dot occupation expectation
value are quite similar to the two-strings case. We show their
numerical results in the following.

The differential conductance vs voltage as shown in Fig. 15,
obtained by taking numerical derivative on current vs voltage
data, essentially gives the same picture as in the two-strings
case, namely, a sharp Kondo peak near V = 0 and a broad
side peak corresponding to charge fluctuations. In the case of
〈nd〉 vs V , however, there is an additional feature occurring
at an energy scale higher than the energy scale of the charge
fluctuation side peak (corresponding to the voltage position of
second peak shown in the inset) as shown in Fig. 16. This is
especially apparent if we looked at the nonequilibrium charge
susceptibility as shown in the inset of Fig. 16.

As we do not expect there should be any further charge
fluctuations, we rule out, by physical argument, the possibility
of the four-strings configuration.

APPENDIX B: TWO-PARTICLE SOLUTION
AND CHOICE OF sop

For the two-particle solution we follow a similar construc-
tion as in P. B. Wiegmann and A. M. Tsvelick’s work and the
SBA approach developed by P. Mehta and N. Andrei.24 Since
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FIG. 16. (Color online) 〈nd〉 vs V

4�
for different U , � = 0.25, and

εd = −U

2 . The inset is − ∂〈nd 〉
∂V

|εd
vs V voltage. A third peak shows up

in the U = 4 case.

Eq. (1) is rotational invariant the spin quantum number is
conserved. We show the solution with both particles with spin
singlet incoming from lead 1 as an example in the following.
Spin quantum number in z direction Sz is a good quantum
number and we can write the two-particle solution of the
Sz = 0 state as

|�〉 =
{∫

dx1dx2{Ag(x1,x2)ψ†
e↑(x1)ψ†

e↓(x2) + Ch(x1,x2)

×ψ
†
o↑(x1)ψ†

o↓(x2) + Bj (x1,x2)[ψ†
e↑(x1)ψ†

o↓(x2)

−ψ
†
e↓(x1)ψ†

o↑(x2)]} +
∫

dx[Ae(x)(ψ†
e↑(x)d†

↓

−ψ
†
e↓(x)d†

↑] + Bo(x)[ψ†
o↑(x)d†

↓ − ψ
†
o↓(x)d†

↑)]

+Amd
†
↑d

†
↓

}
|0〉.

Here A,B,C are arbitrary constants to be determined later. To
satisfy Ĥ |�〉 = E|�〉 = (k + p)|�〉 we have

0 = [−i
(
∂x1 + ∂x2

) − E]g(x1,x2)

+t[δ(x1)e(x2) + δ(x2)e(x1)], (B1)

0 = [−i
(
∂x1 + ∂x2

) − E]h(x1,x2), (B2)

0 = [−i
(
∂x1 + ∂x2

) − E]j (x1,x2) + tδ(x1)o(x2), (B3)

0 = (−i∂x − E + εd )e(x) + tg(0,x) + tδ(x)m, (B4)

0 = (−i∂x − E + εd )o(x) + tj (0,x) (B5)

0 = (U + 2εd )m + 2te(0) − Em. (B6)

For U = 0 the model becomes noninteracting and the two-
particle solution becomes a direct product of two one-particle
solutions:

|�〉 = |ψk↑〉 ⊗ |ψp↓〉 + |ψp↑〉 ⊗ |ψk↓〉
=
∫

dx1dx2{[gk(x1)ψ†
e↑(x1) + hk(x1)ψ†

o↑(x1)+ekd
†
↑δ(x1)]

× [gp(x2)ψ†
e↓(x2) + hp(x2)ψ†

o↓(x2) + epd
†
↓δ(x2)]

+ [gp(x1)ψ†
e↑(x1) + hp(x1)ψ†

o↑(x1) + epd
†
↑δ(x1)]

× [gk(x2)ψ†
e↓(x2) + hk(x2)ψ†

o↓(x2) + ekd
†
↓δ(x2)]}|0〉.

Therefore, at U = 0 we have

g(x1,x2) = gk(x1)gp(x2) + gk(x2)gp(x1),

h(x1,x2) = hk(x1)hp(x2) + hk(x2)hp(x1),

j (x1,x2) = gk(x1)hp(x2) + hk(x2)gp(x1),

e(x) = ekgp(x) + epgk(x),

o(x) = ekhp(x) + ephk(x),

m = 2epek.

Now for U �= 0 we derive the solution of this form:

g(x1,x2) = Zkp(x1 − x2)gk(x1)gp(x2)

+Zkp(x2 − x1)gk(x2)gp(x1). (B7)

Plugging Eq. (B7) into Eq. (B1) we get

e(x) = Zkp(−x)gp(x)ek + Zkp(x)gk(x)ep. (B8)

Plugging the above two results and Eq. (B4) into Eq. (B6) we
get for m = 2Z̃kp(0)ekep

[−i∂xZkp(−x)]gp(x)ek + [−i∂xZkp(x)]gk(x)ep

− tZkp(−x)epδ(x)ek − tZkp(x)ekδ(x)ep

+ 2tZ̃kp(0)ekep = 0, (B9)

2Z̃kp(0)ekep = 2t[Zkp(0)gp(0)ek + Zkp(0)gk(0)ep]

p + k − U − 2εd

.

(B10)

Now taking Zkp(x) = e−iφkp θ (−x) + eiφkp θ (x) we get
tan(φkp) = −Ut2

(k−p)(p+k−U−2εd ) and Z̃kp(0) = k+p−2εd

k+p−U−2εd
Zkp(0).

Defining � ≡ t2

2 and B(k) ≡ k(k − 2εd − U ) as in Ref. 8 we
can rewrite tan(φkp) = −2U�

[B(k)−B(p)] .
From Eq. (B2) we can write h(x1,x2) as

h(x1,x2) = Zoo
kp(x1 − x2)hk(x1)hp(x2)

+Zoo
kp(x2 − x1)hk(x2)hp(x1), (B11)

with arbitrary Zoo
kp(x1 − x2). Now write j (x1,x2) as

j (x1,x2) = Zeo
kp(x1 − x2)gk(x1)hp(x2)

+Zeo
kp(x2 − x1)hk(x2)gp(x1), (B12)

again with Zeo
kp(x1 − x2) undetermined. Plugging Eq. (B12)

into Eq. (B3) we get o(x) is written as

o(x) = Zeo
kp(−x)hp(x)ek + Zeo

kp(x)hk(x)ep. (B13)
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Now if we choose Zeo
kp(x1 − x2) = Zkp(x1 − x2) and plug

Eqs. (B12) and (B13) into Eq.(B5) we get

(−k + εd )Zkp(−x)hp(x)ek + (−p + εd )Zkp(x)hk(x)ep

+ t[Zkp(−x)hp(x)gk(0) + Zkp(x)hk(x)gp(0)]

+ (−i)[∂xZkp(−x)]hp(x)ek + (−i)[∂xZkp(x)]hk(x)ep

= −2 sin(φkp)[hp(0)ek − hk(0)ep] = 0. (B14)

To satisfy Eq. (B14) we can set hp(0) = 0 for arbitrary p.
This can be done by choosing sop = −4 in Eq. (2). Now
since Zoo

kp(x1 − x2) is arbitrary we can choose Zoo
kp(x1 − x2) =

Zkp(x1 − x2). Also from Eq. (B10) we have

Z̃kp(0) = p + k − 2εd

p + k − U − 2εd

Zkp(0). (B15)

Since the Hamiltonian in Eq. (1) has rotational invariance
the general form of the scattering matrix for particles with
momentum k,p and spins a1,a2 is given by

S
a

′
1a

′
2

a1a2 (k,p) = b(k,p) + c(k,p)P̂
a

′
1a

′
2

a1a2 , (B16)

where P̂
a

′
1a

′
2

a1a2 = 1
2 (1

a
′
1

a1 · 1
a

′
2

a2 + σa
′
1

a1 · σa
′
2

a2 ) is the permutation op-
erator in spins. For antiparallel spins (singlet state), as shown

above, P̂
a

′
1a

′
2

a1a2 = −1, thus we have

b(k,p) − c(k,p) = Zkp(x > 0)

Zkp(x < 0)

= B(k) − B(p) − i2U�

B(k) − B(p) + i2U�
. (B17)

For the triplet state (P̂
a

′
1a

′
2

a1a2 = 1) the interaction term with the
impurity is absent and the particles passing through each other
without changing their phase,

b(k,p) + c(k,p) = 1. (B18)

Thus, from Eqs. (B17) and (B18) we get the two particle S

matrix as

Ŝ(k,p)
a

′
i a

′
j

aiaj
= [B(k) − B(p)]I

a
′
i a

′
j

aiaj
+ i2U�P

a
′
i a

′
j

aiaj

B(k) − B(p) + i2U�
. (B19)

Thus, the integrability of two leads with the Anderson-type
dot system is the similar to the integrability of one lead in the
Anderson model.

The choice of identical two-particle S matrices (by choosing
sop = −4) enables us to construct the scattering state labeled
by lead indices by choosing appropriate A,B,C in this even-
odd basis. For example, if both particles are coming from
lead 1, we choose (A,B,C) = A0( t2

t2
2
,−t2

t1t2
, t2

t2
1
) such that the

amplitude of the incoming state from lead 2 is zero (A0 being
an overall renormalization constant). We can therefore label
the eigenstate by the incoming state from lead i and/or lead j .
Without this sop term we cannot write back from the even-odd
basis to the lead-indices basis in this two-leads Anderson
model and similarly in IRLM in Ref. 25.

APPENDIX C: EQUIVALENCE OF TBA
AND SBA IN EQUILIBRIUM

Equation (19) can be proved to be exact by comparing
it with the traditional Bethe ansatz where 〈∑σ d†

σ dσ 〉 =
2
∫ ∞
B

dλ σimp(λ) with impurity density σimp(λ) given by

σimp(λ) = δp+ + δp−

2π
−
∫ ∞

B

dλ′ K(λ − λ′)σimp(λ′). (C1)

The driving term (first term) of Eq. (C1) is expressed by
a bare phase shift δp+ + δp− and thus we can view σimp(λ)
as the dressed phase shift across the impurity. By comparing
Eq. (C1) and Eq. (6) in equilibrium [σi(λ) = σb(λ) describing
bulk quasiparticle density when B1 = B2 = B], we get∫ ∞

B

dλ σimp(λ)

(−1

π

dx(λ)

dλ

)

= 2
∫ ∞

B

dλ σb(λ)

(
δp+ + δp−

2π

)
(C2)

by noting that the integration kernel K(λ − λ′) is symmetric
in λ and λ′. Since the equality is true for arbitrary B we can
also rewrite Eq. (C2) as∫ ∞

B

dλ σimp(λ) = 2
∫ ∞

B

dλ σb(λ)

(
δp+ + δp−

−2 dx(λ)
dλ

)

≡ 2
∫ ∞

B

dλ σb(λ)νT BA(λ),

and the resulting νT BA(λ) is given by

νT BA(λ) =
−x̃(λ) y ′(λ)

x ′(λ) − ỹ−(λ)

x̃2(λ) + ỹ2+(λ)
+

x̃(λ) y ′(λ)
x ′(λ) + ỹ+(λ)

x̃2(λ) + ỹ2+(λ)
.

(C3)

Now let us show the computation for νSBA(λ). First we
write the one-particle state of Eq. (1) in the even channel (with
sek = 0 for the moment) as

|k,σ 〉 =
∫

eikxα
†
ek,σ (x)dx|0〉

=
∫

eikx{(θ̄ + Akθ )ψ†
eσ + Bkd

†
σ δ(x)}dx|0〉. (C4)

Solving Ĥ |k,σ 〉 = k|k,σ 〉 we get

−i(−1 + Ak) + Bkt = 0,

εdBk + t
1 + Ak

2
= kBk.

Thus, we get Ak = k−εd−i t2

2

k−εd+i t2
2

and Bk = t

k−εd+i t2
2

. We may

also define gk(x) = eipx(θ̄ + Akθ ) and ek = Bk to have easier
comparison with Wiegmann and Tsvelick’s work. The two-
particle state is obtained by constructing the product of the
two-α†

ep,σ (x)-particle state with the appropriate two-particle S

matrix expressed in Zk+k−(x1 − x2).
In principle, we use |�,N1,N2〉 as the many-body state to

compute expectation value. However, the simplification here,
similar to the case of IRLM in Ref. 25, is that different λ

[corresponding to different p(λ)] are orthogonal to each other
in the L → ∞ limit. Thus, the many-body expectation value
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can be obtained via two-body computation and the rest just get canceled by the normalization factor. To put it more explicitly, let
us denote pi as the real part of the complex pair p±

i . Different |pi〉 is orthogonal to each other under the condition of size of the
leads taken to infinity, or 〈pi |pj 〉

〈pi |pi 〉 → 0 as L → ∞ for i �= j . Thus, the evaluation of the matrix element for operator ô is given by

〈p1,p2, . . . ,|ô|p1,p2, . . .〉
〈p1,p2, . . . ,|p1,p2, . . .〉 =

∑
pi

〈pi |ô|pi〉
〈pi |pi〉 .

Based on this result we demonstrate the explicit computation for dot occupation by two-particle wave functions in the following.
Denote |�〉 as the two particle solution. We may write spin singlet state as

|�〉 =
∫

dx1dx2A{ei(kx1+px2)Zkp(x1 − x2)α†
ek,↑(x1)α†

ep,↓(x2)}|0〉

=
∫

dx1dx2{Zkp(x1 − x2)[gk(x1)gp(x2)ψ†
↑(x1)ψ†

e↓(x2) + gk(x1)epψ
†
↑(x1)d†

↓δ(x2)

+ ekgp(x2)d†
↑δ(x1)ψ†

↓(x2) + ekepd
†
↑d

†
↓δ(x1)δ(x2)] − Zkp(x2 − x1)[gk(x2)gp(x1)ψ†

e↓(x2)ψ†
e↑(x1)

+ gk(x2)epψ
†
e↓(x2)d†

↑δ(x1) + ekgp(x1)d†
↓δ(x2)ψ†

e↑(x1) + ekepd
†
↓d

†
↑δ(x1)δ(x2)]}|0〉

=
{∫

dx1dx2[Zkp(x1 − x2)gk(x1)gp(x2) + Zkp(x2 − x1)gk(x2)gp(x1)]ψ†
e↑(x1)ψ†

e↓(x2)

+
∫

dx[Zkp(x)gk(x)ep + Zkp(−x)gp(x)ek][ψ†
e↑(x)d†

↓ − ψ
†
e↓(x)d†

↑] + 2ekepZ̃kp(0)d†
↓d

†
↑

}
|0〉,

with A denoting antisymmetrization and Z̃kp(0) = k+p−2εd

k+p−U−2εd
Zkp(0).

Solving Ĥ |k,σ ; p, − σ 〉 = (k + p)|k,σ ; p, − σ 〉, we obtain

Zkp(x1 − x2) = θ (x1 − x2) + (k − p)(k + p − 2εd − U ) − iUt2

(k − p)(k + p − 2εd − U ) + iUt2
θ (x2 − x1).

For the case of bound states the two-particle S matrix is given by Zk+k−(x1 − x2) = θ (x1 − x2) ≡ θx
12. The normalization factor

and matrix element of dot occupation given by the even channel two-particle wave function are

〈�|�〉 =
∫

dy1dy2

∫
dx1dx2

[
θ

y

12gk+(y1)gk−(y2) + θ
y

21gk+(y2)gk−(y1)
]∗

×[
θx

12gk+(x1)gk−(x2) + θx
21gk+(x2)gk−(x1)

]
δ(x1 − y1)δ(x2 − y2) + 2

∫
dy

∫
dx[θ (y)gk+ (y)ek−

+ θ (−y)gk− (y)ek+]∗[θ (x)gk+(x)ek− + θ (−x)gk−(x)ek+]δ(x − y)

+ 4[ek+ek−Z̃k+k−(0)]∗[ek+ek−Z̃k+k−(0)],∑
σ

〈�|d̂†
σ d̂σ |�〉 = 2

∫
dy

∫
dx[θ (y)gk+ (y)ek− + θ (−y)gk−(y)ek+]∗[θ (x)gk+(x)ek− + θ (−x)gk−(x)ek+]δ(x − y)

+ 8[ek+ek−Z̃k+k−(0)]∗[ek+ek−Z̃k+k−(0)]

= 2

{∫
dx[θ (x)|gk+(x)ek−|2 + θ (−x)|gk−(x)ek+|2] + 4|ek+ek−Z̃k+k−(0)|2

}
.

Note that the even-channel bound state can be written as sum over the bound state of {11,12,21,22} (four-strings type) or {11,22}
(two-strings type) with the same real part of energy k = x(λ). This can be viewed as the consistency counting from the Fock
basis to the Bethe basis as electrons in lead 1 and lead 2 has fourfold degeneracies in its initial state (two different spins in each
lead). Also note that∫

dx1dx2 θx
12|gk+(x1)gk−(x2)|2 =

∫
dx1dx2|ei(k+x1+k−x2)(θ̄1 + θ1Ak+)(θ̄2 + θ2Ak−)|2θ12

=
∫

dx1dx2 e−2ξk (x1−x2)|θ̄1θ̄2θ12 + θ1θ̄2θ12Ak+ + θ1θ2θ12Ak+Ak−|2

=
(

L

2ξk

− 1 − e−2ξkL

(2ξk)2

) (
1 + |Ak+Ak−|2) +

(
1 − e−2ξkL

2ξk

)2

|Ak+|2,
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∫
dx θ (x)|gk+(x)ek−|2 =

∫
dx θ (x)|ei(k+iξk)x[θ (−x) + Ak+θ (x)]ek−|2 =

∫ L

0
dx e−2ξkx |Ak+ek−|2

= 1

2ξk

∣∣∣∣∣k − εd + iξk − i�

k − εd + iξk + i�

t

k − εd − iξk + i�

∣∣∣∣∣
2

= 1

2ξk

∣∣∣∣∣ t

k − εd + iξk + i�

∣∣∣∣∣
2

,

∫
dx θ (−x)|gk−(x)ek+|2 =

∫
dx θ (−x)|ei(k−iξk )x[θ (−x) + Ak−θ (x)]ek+|2 =

∫ 0

−L

dx e2ξkx |Ak−ek+|2

= 1

2ξk

∣∣∣∣∣ t

k − εd + iξk + i�

∣∣∣∣∣
2

,

with Z̃k+k−(0) = 2(k−εd )
2(k−εd )−U

Zk+k−(0) and Zk+k−(0) = 1
2 based on our regularization scheme. By expressing k = x(λ) and ξk = y(λ)

and taking L → ∞, thus preserving 1
L

terms only, we get

〈�|∑σ d̂†
σ d̂σ |�〉

〈�|�〉 = 1

L
νSBA(λ) (C5)

= 1

L

{
2�

x̃2(λ) + ỹ2+(λ)
+ 16y(λ)�2

[x̃2(λ) + ỹ2−(λ)][x̃2(λ) + ỹ2+(λ)]

(
x̃(λ)

2x̃(λ) − U

)2
}

.

By expressing νT BA(λ) and νSBA(λ) in λ explicitly we see that νT BA(λ) = νSBA(λ). Since 〈∑σ d†
σ dσ 〉 = 2

∫∞
B

dλσimp(λ) in TBA
we have proved that the expectation value evaluated by the state we constructed is exact and the equivalence of SBA and TBA
in equilibrium in this two-lead Anderson model.
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