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Optical Aharonov-Bohm effect on Wigner molecules in type-II semiconductor quantum dots
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We theoretically examine the magnetoluminescence from a trion and a biexciton in a type-II semiconductor
quantum dot, in which holes are confined inside the quantum dot and electrons are in a ring-shaped region
surrounding the quantum dot. First, we show that two electrons in the trion and biexciton are strongly correlated
to each other, forming a Wigner molecule: Since the relative motion of electrons is frozen, they behave as
a composite particle whose mass and charge are twice those of a single electron. As a result, the energy of
the trion and biexciton oscillates as a function of magnetic field with half the period of the single-electron
Aharonov-Bohm oscillation. Next, we evaluate the photoluminescence. Both the peak position and peak height
change discontinuously at the transition of the many-body ground state, implying a possible observation of the
Wigner molecule by the optical experiment.
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I. INTRODUCTION

The electron-electron interaction in small rings is an
important issue in mesoscopic physics.1 This is exemplified
by unsolved problems in the persistent current in normal
metallic rings. When a magnetic flux penetrates the rings,
the persistent current is induced by the Aharonov-Bohm (AB)
effect in the thermal equilibrium state.2,3 The current observed
in experiments4–8 is larger by at least 2 orders of magnitude
than the theoretical prediction for noninteracting electrons.9–12

Besides, the low-flux response is always diamagnetic in
experimental results, whereas it is either diamagnetic or para-
magnetic in theory. To resolve the discrepancies, the theory
should take into account the electron-electron interaction.13

The attractive interaction as well as the repulsive one may
play a role in explaining the diamagnetic response14 and the
magnitude of the persistent current.15

The electron-hole interaction has also been examined in
small rings fabricated on semiconductors. The AB effect
on an exciton, consisting of an electron and a hole, was
theoretically studied when the electron and hole are confined
in small rings of different size.16–18 The AB effect becomes
different in two situations, where the electron and hole move
almost independently, or they tightly form an exciton. The AB
effect on an exciton was observed through photoluminescence
experiments, using quantum rings patterned on InGaAs/GaAs
heterostructure19 and InAs/InP quantum tubes.20 This is called
the optical AB effect.

We focus on the type-II semiconductor quantum dots, such
as InP/GaAs, ZnTe/ZnSe, and Ge/Si.21–25 In these systems,
holes are confined inside a quantum dot and electrons are in a
ring-shaped region surrounding the quantum dot, as depicted
in the inset of 1 (the roles of electron and hole are exchanged
in the case of InP/GaAs). Since the motion of holes is almost
frozen due to the strong confinement, the AB effect on the
electrons can be detected by the photoluminescence. For an
exciton, we can adopt a simple model in which an electron
is confined in a one-dimensional ring with a perpendicular
magnetic field B. The Hamiltonian is given by

H = h̄2

2meR2

(
L̂ − �

h/e

)2

, (1)

where R is the radius of the ring, me is the effective mass of
the electron, and L̂ is the angular momentum operator. � =
πR2B is the magnetic flux penetrating the ring. The energy
levels are shown in Fig. 1, as a function of magnetic flux
�. The quantum number of the angular momentum L̂, l, is
indicated for the respective levels. With an increase in �, the
ground state is changed from l = 0 to l = 1 at � = 0.5(h/e),
from l = 1 to l = 2 at � = 1.5(h/e), and so on. As a result,
the energy of the ground state oscillates as a function of �

with the period of h/e. The magnetic-field dependence of the
photoluminescence peak from an exciton is explained well by
this simple model.18,21–25

In the present paper, we theoretically examine the pho-
toluminescence from a trion (two electrons and a hole) and
a biexciton (two electrons and two holes) in type-II semi-
conductor quantum dots, in order to elucidate the correlation
effect between electrons in a small ring. In our model, the
holes are strongly confined in a harmonic potential, and
thus their motion is almost frozen. This is the experimental
situation of Ge/Si quantum dots.24,25 The electrons are in
a quasi-one-dimensional ring-shaped potential, Ve(r), shown
in Fig. 2. First, we calculate the many-body states of a
few electrons confined in Ve(r) and show the formation of
Wigner molecules owing to the strong correlation effect.26–30

In the Wigner molecules of N electrons, the electrons behave
as a single particle whose mass and charge are N times
of those of an electron. In consequence, the energy of the
ground state oscillates with � by the period of h/(Ne),
the so-called fractional AB effect.31–34 The formation of
Wigner molecules is also seen for electrons in trions and
biexcitons. Next, we examine the photoluminescence from the
electron-hole complexes. We observe that the peak position
and intensity of the photoluminescence, as a function of �,
change discontinuously at the transition of the ground state.
This implies a possible observation of the Wigner molecules
by the optical experiment. We hope that our prediction will
motivate the experimental study of trions and biexcitons in
type-II quantum dots although there have not been such
experiments until now.

We should make a comment on the cylindrical symmetry
in our model as well as in the Hamiltonian in Eq. (1). As

195311-11098-0121/2011/83(19)/195311(9) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.83.195311


RIN OKUYAMA, MIKIO ETO, AND HIROYUKI HYUGA PHYSICAL REVIEW B 83, 195311 (2011)

FIG. 1. Energy levels of an electron confined in a one-
dimensional ring of radius R, as a function of perpendicular magnetic
field B. � = πR2B is the magnetic flux penetrating the ring. The
orbital angular momentum l is indicated for each energy level. Inset:
A schematic drawing of the type-II semiconductor quantum dot, in
which holes are confined inside the quantum dot and electrons are in
a ring-shaped region surrounding the dot.

mentioned above, the peak position of the luminescence from
an exciton can be explained using the Hamiltonian in Eq. (1),
but the peak intensity cannot. For the optical recombination,
the total angular momentum L of an electron and a hole must
be zero because the final state is the vacuum with no electron
or hole. Since the angular momentum of the hole is assumed
to be zero in the ground state, the recombination is possible
only at � � 0.5(h/e) where the angular momentum of the
electron is l = 0.16 This contradicts the experimental results
which observed a finite intensity at � > 0.5(h/e).21,23,25 This
discrepancy could be resolved if the disorder of the system
and finite temperature were taken into account.35–37 In our
study we do not consider the disorder effect, which would
modify our calculated results about the peak intensity of
photoluminescence. On the other hand, our results about the
peak position should not be changed qualitatively by the
disorder. In particular, the discontinuous change of the peak
position, which directly reflects the Wigner molecularization,
can be experimentally observed although it is smeared to some
extent. The discontinuous change of the peak intensity could
be observed if well-shaped samples were fabricated.

The present paper is organized as follows. In Sec. II, we
present our model and calculation method. We adopt the exact
diagonalization method for the many-body states of electrons
and holes. In Sec. III, we begin with the many-body states of

FIG. 2. The confinement potential for electrons, Ve(r), and that
for holes, Vh(r), as a function of the radial coordinate r . R is the
radius at which Ve(r) takes a minimum.

a few electrons confined in the ring-shaped region. No holes
are considered. We show the formation of Wigner molecules,
reflecting the strong correlation effect. In Sec. IV, we calculate
the many-body states of trions and biexcitons, in which two
electrons form a Wigner molecule despite the presence of the
holes. We evaluate the photoluminescence, using the many-
body states obtained by the exact diagonalization method.
Finally the conclusions are given in Sec. V.

II. MODEL AND CALCULATION METHOD

A. Effective-mass Hamiltonian

We consider a type-II semiconductor quantum dot of
cylindrical symmetry in the xy plane. Holes are localized
inside a quantum dot of disk shape, whereas electrons are
confined in a ring-shaped region surrounding the dot. A
magnetic field is applied perpendicularly to the quantum dot.

We adopt the effective-mass approximation, assuming that
the radius of the quantum dot, R � 10 nm, is much larger
than the lattice constant a.21–25 For the holes, only the heavy-
hole band (total angular momentum j = 3/2, jz = ±3/2) is
considered because the confinement in the z direction splits it
from the light-hole band (j = 3/2, jz = ±1/2).38 The wave
functions of the electron and hole are written as

�e,± = ψe(r)uc(r)χ±, (2)

�h,± = ψh(r)u∗
v,∓(r)χ∓, (3)

respectively, where χ± indicates the spin-up (sz = 1/2) or
-down (sz = −1/2). ψe(r) and ψh(r) are envelope functions
for electrons and holes, whereas uc(r) and uv,±(r) are the
Bloch function of the conduction band (s wave) and valence
band (orbital angular momentum lz = ±1) at the � point,
respectively.39

The confinement potential for the holes is given by a
harmonic potential

Vh(r) = 1
2mhω

2
hr

2, (4)

while that for the electrons is

Ve(r) = 1
2meω

2
e r

2 + V0 exp(−αr2), (5)

where mh and me are the effective masses of holes and elec-
trons, respectively. The parameters ωh,ωe,V0, and α are chosen
so that the radius of the electron confinement R at which
Ve(r) takes a minimum is eight times larger than the radius of
hole confinement

√
h̄/mhωh. This choice confirms the strong

confinement of holes in a quantum dot, in accordance with the
experimental situation.24,25 The confinement potentials Vh(r)
and Ve(r) are depicted in Fig. 2.

The envelope functions ψe(r) and ψh(r) are determined
from the effective-mass Hamiltonian. For Ne electrons and Nh

holes, the Hamiltonian is given by

H = He + Hh + He-h, (6)

He =
Ne∑
j=1

{
1

2me

[
−ih̄

∂

∂ re,j

+ eA(re,j )
]2

+ Ve(re,j )

}

+
∑

1�j<k�Ne

e2

4πε|re,j − re,k| , (7)
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Hh =
Nh∑
j=1

{
1

2mh

[
−ih̄

∂

∂ rh,j

− eA(rh,j )
]2

+ Vh(rh,j )

}

+
∑

1�j<k�Nh

e2

4πε|rh,j − rh,k| , (8)

He-h =
Ne∑
j=1

Nh∑
k=1

−e2

4πε|re,j − rh,k| . (9)

The magnetic field B is applied in the −z direction: ∇ ×
A(r) = −Bez. He (Hh) is the Hamiltonian for interacting
electrons (holes), whereas He-h describes the electron-hole
interaction. We assume that the dielectric constant ε is identical
for electrons and holes. The spin Zeeman effect is neglected.

In He-h, the exchange-type interaction between an electron
and a hole is disregarded for the following reason. For the
wave functions in Eqs. (2) and (3), the matrix element of

〈� ′
e,σ � ′

h,−σ |He-h|�h,−σ�e,σ 〉

=
∫ (3D)

d r1d r2�
′∗
e,σ (r1)� ′∗

h,−σ (r2)
−e2

4πε

× 1

|r1 − r2|�h,−σ (r1)�e,σ (r2),

for σ = ±,39 involves the integral of u∗
c (r1)uv,σ (r1), which

oscillates with the period of the lattice constant a. In
consequence, the matrix element is smaller by the order of
(a/R)2 ∼ 10−4 than the exchange interaction between two
electrons or that between two holes. Therefore we only
consider the matrix elements of 〈� ′

e,σ � ′
h,σ ′ |He-h|�e,σ �h,σ ′ 〉

for He-h:

〈� ′
e,σ � ′

h,σ ′ |He-h|�e,σ�h,σ ′ 〉

=
∫

d r1d r2ψ
′∗
e (r1)ψ ′∗

h (r2)
−e2

4πε

× 1

|r1 − r2|ψe(r1)ψh(r2)

after the integrations of |uc(r1)|2 and |uv(r2)|2 over the unit
cell of the lattice.

The strength of the magnetic field is measured by the
flux penetrating the ring of radius R, � = πR2B. The ratio
of the strength of the Coulomb potential to the kinetic
energy is characterized by the parameter of R/aB , where
aB = 4πεh̄2/(mee

2) is the effective Bohr radius for electrons.
We assume that R/aB � 1, considering the experimental
situations.21–25

B. Exact diagonalization method

The many-body states of electrons and holes are calculated
by the exact diagonalization method, taking full account
of the Coulomb interaction. As a basis set, we adopt the
eigenfunctions of the one-body part of He in Eq. (7) for
electrons and those of Hh in Eq. (8) for holes.40 They are
denoted by ψe,l,n(r) and ψh,l,n(r), respectively, with quantum
number of orbital angular momentum (l = 0, ± 1, ± 2, . . .)
and that of radial motion (n = 1,2,3, . . .).

Note that the effective-mass Hamiltonian in Eq. (6) has
an axial symmetry in space and that the electron spins are
decoupled from the hole spins. Therefore, the total orbital
angular momentum L, total electron spin (Se,Se,z), and total
hole spin (Sh,Sh,z) are good quantum numbers. The energy
eigenvalues do not depend on Se,z and Sh,z. Hence we
diagonalize the Hamiltonian in the subspace with given values
of L, Se,z, and Sh,z, the dimensions of which are less than
104.41 The truncation of the Hamiltonian matrix leads to an
inaccuracy of 0.1% for the total energy and of 1% for the
intensity of the photoluminescence.

C. Photoluminescence

We evaluate the photoluminescence from a trion and a
biexciton, using the many-body states obtained by the exact
diagonalization method. We assume that the initial state is the
ground state of the trion or biexciton.

When an electron with spin-up (�e,+) recombines with
a hole with spin-down (�h,+), a right-circular photon is
emitted. Similarly, when an electron with spin-down (�e,−)
recombines with a hole with spin-up (�h,−), a left-circular
photon is emitted. The recombination rate is evaluated by
Fermi’s golden rule with the dipole approximation.42,43 The
interband dipole-moment operator is given by

d̂ =
∑

l,n1,n2

∑
σ=±

dl,n1,n2 êl,n1,σ ĥ−l,n2,σ + h.c., (10)

where êl,n,σ [ĥl,n,σ ] is an annihilation operator of an electron
[a hole] in the state of ψe,l,nχσ [ψh,l,nχ−σ ] and

dl,n1,n2 = dvc

∫
d rψe,l,n1 (r)ψh,−l,n2 (r), (11)

dvc =
∣∣∣∣
∫ (3D)

unit cell
d ru∗

v,σ (r)(−er)uc(r)

∣∣∣∣ . (12)

dvc is independent of σ = ±. The transition rate from the initial
state |init〉 with energy Einit to the final state |fin〉 with energy
Efin is written as44

I = 4

3

E3

4πε0h̄
4c3

|〈fin|d̂|init〉|2, (13)

which is accompanied by the photon emission of energy
E = Einit − Efin (	Egap, band gap). Note that the total angular
momentum L and the total spin Se,z + Sh,z should be conserved
during the transition, as seen in Eq. (11). The intensity of the
photoluminescence is evaluated by I , with E being replaced
by Egap.

III. WIGNER MOLECULES OF FEW ELECTRONS

We begin with the many-body states of a few electrons
confined in a ring-shaped potential Ve(r) in Eq. (5), to illustrate
the Wigner molecularization. The number of electrons is Ne =
1 to 3. No holes are assumed in this section. The many-body
states and energies are obtained using the exact diagonalization
method for the Hamiltonian He in Eq. (7).

The calculated results of the energies are shown in Fig. 3
as a function of magnetic flux �, for (a) Ne = 1, (b) 2, and
(c) 3. R/aB = 1. The total angular momentum L is indicated
for respective states. For one electron, the transition of the
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FIG. 3. Low-lying energies for (a) one, (b) two, and (c) three
electrons confined in a ring-shaped potential, Ve(r), as a function of
the magnetic flux �. The radius R at which Ve(r) takes a minimum
equals the effective Bohr radius aB . � = πR2B. Solid and broken
lines indicate spin-singlet and -triplet states, respectively, in (b), and
spin-quartet and -doublet states in (c).

ground state takes place at � 	 0.5 and 1.5 in units of h/e.
The angular momentum increases by one at each transition.
The � dependence of the energies is similar to that in Fig. 1 for
an electron in a one-dimensional ring although the diamagnetic
shift of the energies is seen in Fig. 3(a). Therefore, the energy
of the ground state oscillates with the period of approximately
h/e, reflecting the one-dimensional motion along the ring.

Note that the state of L in Fig. 3(a) corresponds to ψe,L,1

introduced in Sec. II B. The energies of the excited states in
the radial motion, ψe,L,n (n � 2), are larger by more than 2h̄ωe

than those of the lowest states. In the low-lying states of two
and three electrons, shown in Figs. 3(b) and 3(c), the weight
of ψe,L,n (n � 2) is of the order of 10−3. Therefore, electrons
possess a one-dimensional nature in our model.

In Figs. 3(b) and 3(c), we observe the change of the
ground state for two and three electrons. If the diamagnetic
shift is disregarded, the energy of the ground state oscillates
quasiperiodically with the period of h/(2e) for two electrons
and h/(3e) for three electrons. This implies the formation of
Wigner molecules as explained below.

In order to elucidate the correlation effect, we examine
many-body states for two electrons with changing R/aB .
Figure 4 shows low-lying energies in the case of R/aB = 0.01,
0.1, 1, and 10. When the Coulomb interaction is very weak

FIG. 4. Low-lying energies for two electrons confined in a ring-
shaped potential, Ve(r), as a function of the magnetic flux �. R/aB =
0.01, 0.1, 1, and 10, where R is the radius at which Ve(r) takes a
minimum and aB is the effective Bohr radius. � = πR2B. Solid and
broken lines indicate spin-singlet and -triplet states, respectively.

(R/aB = 0.01), two electrons occupy the lowest orbital shown
in Fig. 3(a) in the ground state. Consequently, the total angular
momentum is always even and the total spin is a singlet. As the
strength of the Coulomb interaction increases with R/aB , the
exchange interaction lowers the energy of the spin-triplet states
with L = 1 and 3. For R/aB � 1, spin-singlet and -triplet
states appear alternatively as � increases by approximately
h/(2e). Thus the fractional period of the energy oscillation is
ascribable to the strong correlation effect. Note that the period
of the energy oscillation in the case of R/aB = 10 is slightly
shorter than that of R/aB = 1. This is because the Coulomb
repulsion between electrons increases the expectation value of
the electron radius.

To examine the correlation effect further, we calculate the
two-body density

ρ(r|r0) = 1

2

∑
σ,σ0

〈
ψ̂†

e,σ (r)ψ̂†
e,σ0

(r0)ψ̂e,σ0 (r0)ψ̂e,σ (r)
〉
, (14)

where ψ̂e,σ (r) and ψ̂
†
e,σ (r) are the field operators of electron

with spin σ . Figure 5 shows ρ(r|r0) for two electrons in the
ground state at the magnetic flux � = 0. r0 is fixed at the posi-
tion indicated by an open circle. R/aB is changed in the same
way as in Fig. 4. For R/aB � 1, two electrons maximize their
distance by being localized at the other side of each other
in the ring. This clearly indicates the formation of the Wigner
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FIG. 5. Gray scale plots of the two-body density for two electrons
confined in a ring-shaped potential, Ve(r). The magnetic field is B =
0. R/aB = 0.01, 0.1, 1, and 10, where R is the radius at which Ve(r)
takes a minimum and aB is the effective Bohr radius. One electron is
fixed at the point indicated by an open circle.

molecule. Since the relative motion is frozen, the two electrons
behave as a composite particle whose mass and charge are
twice those of an electron. In consequence the ground-state
energy oscillates with � by the period of h/(2e).

For three electrons, a similar formation of the Wigner
molecule is observed for R/aB � 1. Figure 6 shows the
two-body density for three electrons in the ground state
at � = 0. The electrons are localized around apices of an
equilateral triangle in the ring. The molecularization explains
the energy oscillation with the period of h/(3e) in Fig. 3(c).

FIG. 6. Gray scale plots of the two-body density for three
electrons confined in a ring-shaped potential, Ve(r). The magnetic
field is B = 0. R/aB = 0.01, 0.1, 1, and 10, where R is the radius
at which Ve(r) takes a minimum and aB is the effective Bohr radius.
One electron is fixed at the point indicated by an open circle.

We make a comment on the total spin S of the ground
state. The spin S changes with the total angular momentum
L at the transition of the ground state shown in Fig. 3. For
two electrons, as we mentioned above, S = 0 (S = 1) when
L is an even (odd). For three electrons, S = 3/2 if L is a
multiple of 3 and S = 1/2 otherwise. This was explained by
the Ne-fold rotational symmetry of Ne-electron configuration
in the Wigner molecule.45–47

IV. ELECTRON-HOLE COMPLEXES AND OPTICAL
RESPONSE

In this section, we examine the many-body states of
electron-hole complexes, that is, exciton, trion, and biexciton.
We consider the case of R/aB = 1, in which two electrons
form a Wigner molecule in the cases of trion and biexciton.
First, the low-lying states are analyzed as a function of
magnetic flux �. Then the photoluminescence is examined
from the ground state in trion and biexciton.

A. Low-lying states

Figure 7 shows the low-lying energies for (a) exciton, (b)
trion, and (c) biexciton, as a function of magnetic flux �.
For an exciton in Fig. 7(a), the angular momentum of the

FIG. 7. Low-lying energies for (a) exciton, (b) trion, and (c)
biexciton, as a function of the magnetic flux �. The radius R, at
which Ve(r) takes a minimum, equals the effective Bohr radius aB .
� = πR2B. In (b) and (c), solid and broken lines indicate the spin
states of electrons: spin-singlet and -triplet states, respectively.
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FIG. 8. (a) The peak position and (b) intensity of the photolumi-
nescence from an exciton, as a function of the magnetic flux �. The
radius R, at which Ve(r) takes a minimum, equals the effective Bohr
radius aB . � = πR2B.

ground state changes at � ≈ 0.5(h/e) and 1.5(h/e), which is
qualitatively the same as in Fig. 3(a) for an electron confined in
Ve(r). This is because the hole occupies the lowest state with
angular momentum l = 0 and is insensitive to the magnetic
field.

For the trion and biexciton in Figs. 7(b) and 7(c), the ground
state changes in a similar manner to that for two electrons
confined in Ve(r) [Fig. 3(b)]. A hole or two holes occupy the
lowest state with angular momentum l = 0, which is hardly
influenced by the magnetic field. Two electrons in a trion and
a biexciton form a Wigner molecule, which is reflected by the
energy oscillation with the period of h/(2e).

Precisely speaking, the magnetic flux � at the transition of
the ground state is slightly shifted to the larger values for the
trion [Fig. 7(b)] and biexciton [Fig. 7(c)], compared with the
two-electron case [Fig. 3(b)]. This is because one hole or two
holes inside the quantum dot decrease the effective radius of
electrons. Although the screening by the holes should weaken
the electron-electron interaction, its effect is invisible: The
screening effect on the Wigner molecule is negligible unless it
is so large as to break the molecule.

B. Photoluminescence

Now we discuss the photoluminescence from the electron-
hole complexes. Figure 8 shows the � dependence of (a) peak
position and (b) intensity of the photoluminescence from an
exciton. The peak position coincides with the ground-state
energy shown in Fig. 7 because the final state is the vacuum.
The optical recombination of the exciton is possible when the
angular momentum of the electron is l = 0 since that of the
hole is always l = 0. In consequence the exciton gets dark
after the first transition of the electronic state at � 	 0.5(h/e),
as mentioned in Sec. I.

FIG. 9. (a) The peak position and (b) intensity of the photolu-
minescence from a trion, as a function of the magnetic flux �. The
radius R, at which Ve(r) takes a minimum, equals the effective Bohr
radius aB . � = πR2B.

In the photoluminescence from a trion, there are two
electrons and a hole in the initial state, and an electron in
the final state. If the ground state of the trion has the angular
momentum L, it changes to a one-electron state of ψe,L,n

(n = 1,2, . . .). The transition to ψe,L,1 is dominant because
the weight of ψe,L,n (n � 2) is very small in the ground
state. The transition to the higher states is neglected since
the intensity is 10−3 times as small as that of the dominant
transition.

The position and intensity of the dominant peak from a
trion are shown in Fig. 9, as a function of magnetic flux
�. The peak position increases with an increase in �, and
suddenly drops when the angular momentum L is changed in
the ground state of the trion. At the transition of L, the final
state is changed. As a result, the energy of the final state, Ee,
is discontinuously changed, whereas the energy of the initial
state, E2e, is continuous as shown in Fig. 7(b).

As seen in Fig. 9(b), the intensity of the photoluminescence
from a trion shows a plateau structure as a function of �: While
the angular momentum L is not changed in the ground state, the
intensity is almost constant. At the transition of L, the intensity
decreases abruptly. The height of the plateaus indicates a ratio
of 4 : 3 : 1 : 0 approximately.

The simple ratio of the intensity is explained in the
following. The strongly correlated two-electron states can be
approximated by a few electronic configurations:

|L=0〉=
[√

2

3
ê
†
0,+ê

†
0,−−

√
1

6
(ê†1,+ê

†
−1,−−ê

†
1,−ê

†
−1,+)

]
|0〉,

(15)

|L = 1〉 = 1√
2

(ê†0,+ê
†
1,− + ê

†
0,−ê

†
1,+)|0〉, (16)
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FIG. 10. (a) The peak position and (b) intensity of the photolu-
minescence from a biexciton, as a function of the magnetic flux �.
The radius R, at which Ve(r) takes a minimum, equals the effective
Bohr radius aB . � = πR2B.

|L = 2〉=
[√

2

3
ê
†
1,+ê

†
1,−−

√
1

6
(ê†2,+ê

†
0,− − ê

†
2,−ê

†
0,+)

]
|0〉,

(17)

where ê
†
l,σ is the creation operator of an electron in state

ψe,l,1χσ (see the Appendix). These expressions are an ex-
tension of the Heitler-London wave function for two electrons
in a hydrogen molecule.48 From the wave functions in Eqs.
(15)–(17), we obtain the intensity ratio of 4 : 3 : 1 : 0, as
explained in the Appendix.

Finally, we present the photoluminescence from a biexciton
in Fig. 10. In this case, the final state is an excitonic state
of the same angular momentum as the ground state of the
biexciton. The � dependence of the peak position and intensity
is qualitatively the same as that for the photoluminescence
from a trion.

V. CONCLUSIONS

We have examined the magnetoluminescence from a trion
and a biexciton in a type-II semiconductor quantum dot,
in which holes are confined inside the quantum dot and
electrons are in a ring-shaped region surrounding the quantum
dot. First, we have calculated the many-body states by the
exact diagonalization method. We have shown that the two
electrons in trions and biexcitons form a Wigner molecule,
reflecting a large correlation effect. The electrons behave
as a composite particle whose mass and charge are twice
those of a single electron. In consequence, the ground-state
energy of the trion and biexciton oscillates as a function
of magnetic flux � with a period of approximately h/(2e).
Next, we have evaluated the photoluminescence from the
electron-hole complexes as a function of �. Both the peak
position and peak intensity of the photoluminescence change

discontinuously at the transition of the ground state. This in-
dicates a possible observation of Wigner molecules by optical
experiment.
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APPENDIX: APPROXIMATE WAVE FUNCTIONS OF TWO
ELECTRONS IN A RING

In a trion and a biexciton, two electrons are strongly
correlated to each other, forming a Wigner molecule. In this
appendix, we present a simple wave function to describe the
two-electron state, neglecting the hole state. Using the wave
function, we derive an intensity ratio of the photoluminescence
shown in Figs. 9(b) and 10(b).

We construct a wave function by a few electronic configu-
rations in which electrons occupy the lowest states in the radial
motion, ψe,l,1χσ . In general, ψe,l,n is written as

ψe,l,n(r) = Re,l,n(r)eilθ , (A1)

where Re,l,n is determined by the equation{
h̄2

2me

[
− ∂2

∂r2
− 1

r

∂

∂r
+

(
l

r
− eBr

2h̄

)2
]

+ Ve(r)

}
Re,l,n

= εe,l,nRe,l,n, (A2)

with εe,l,n being the energy eigenvalue for the one-electron
state. Since the electron is confined around r = R by Ve(r),
both the centrifugal potential, h̄2l2/(2mer

2), and diamagnetic
term, (eBr)2/(8me), are ineffective. Hence, (i) we replace
Re,l,1 by Re,1, disregarding its l dependence hereafter. (ii)
The B dependence of Re,1 is small. This explains the plateau
structure of photoluminescence intensity, shown in Figs. 9(b)
and 10(b), in which the intensity is almost constant as long as
the angular momentum l does not change.

Let us begin with the lowest state with the total angular
momentum L = 0. Without the Coulomb interaction, the
lowest state is ê

†
0,+ê

†
0,−|0〉, where ê

†
l,σ is the creation operator

of state ψe,l,1χσ . The total spin is a singlet. The wave function
becomes

〈r1,r2|ê†0,+ê
†
0,−|0〉

= Re,1(r1)Re,1(r2)
χ+(1)χ−(2) − χ−(1)χ+(2)√

2
.

This has a finite value at θ1 = θ2 since no correlation effect
is taken into account. We mix the second lowest state with
L = 0, (ê†1,+ê

†
−1,− − ê

†
1,−ê

†
−1,+)|0〉/√2, as

|L=0〉=
[√

2

3
ê
†
0,+ê

†
0,− −

√
1

6
(ê†1,+ê

†
−1,− − ê

†
1,−ê

†
−1,+)

]
|0〉.

(A3)
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Then its wave function is given by

〈r1,r2|L = 0〉 = Re,1(r1)Re,1(r2)
1 − cos(θ1 − θ2)√

3/2

×χ+(1)χ−(2) − χ−(1)χ+(2)√
2

,

which vanishes at θ1 = θ2. Thus this is an appropriate state
to describe the strongly correlated electrons in the Wigner
molecule.

We proceed to the lowest state with L = 1. In the absence
of Coulomb interaction, it is

|L = 1〉 = 1√
2

(ê†0,+ê
†
1,− + ê

†
0,−ê

†
1,+)|0〉. (A4)

The total spin is a triplet. The orbital part of the wave function
is

Re,1(r1)Re,1(r2)
eiθ1 − eiθ2

2
,

the amplitude of which is zero at θ1 = θ2. In the spin-triplet
states, the exchange correlation reduces the Coulomb energy
between electrons. Hence we adopt the state in Eq. (A4) as an
approximate state for the Wigner molecule.

For the state with L = 2, we mix two electronic con-
figurations, ê

†
1,+ê

†
1,−|0〉 and (ê†2,−ê

†
0,− − ê

†
2,+ê

†
0,+)|0〉/√2, in

such a way that the wave function vanishes at θ1 = θ2. We
obtain

|L = 2〉=
[√

2

3
ê
†
1,+ê

†
1,− −

√
1

6
(ê†2,−ê

†
0,− − ê

†
2,+ê

†
0,+)

]
|0〉.

(A5)

The intensity of the photoluminescence from the states in
Eqs. (A3)–(A5) is evaluated using Eq. (13). The hole state
is ĥ

†
0,+|0〉 or ĥ

†
0,−|0〉 in trion and ĥ

†
0,+ĥ

†
0,−|0〉 in biexciton,

where ĥ
†
0,σ is the creation operator of ψh,0,1χ−σ ≡ Rh,1(r)χ−σ .

From |L = 0〉, |L = 1〉, and |L = 2〉, the intensity is given by
(2/3)I0, (1/2)I0, and (1/6)I0, respectively, for the trion (they
are twice for the biexciton). Here,

I0 = 4

3

E3
gap

4πε0h̄
4c3

∣∣∣∣dvc

∫
2πrdrRe,1(r)Rh,1(r)

∣∣∣∣
2

, (A6)

where Egap is the band gap and dvc is given by Eq. (12).
The lowest states with L > 2 do not include the one-

electron state with l = 0 (ψe,0,1χσ ) in our approximation. As
a result, the intensity of the photoluminescence becomes zero.
In conclusion, the ratio of the intensity is

I (L = 0) : I (L = 1) : I (L = 2) : I (L > 2) = 4 : 3 : 1 : 0.

(A7)
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