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Electron traps in semiconducting polymers: Exponential versus Gaussian trap distribution
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The low electron currents in poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives and their steep voltage
dependence are generally explained by trap-limited conduction in the presence of an exponential trap distribution.
Here we demonstrate that the electron transport of several PPV derivatives can also be well described with a
trap distribution that is Gaussianly distributed within the band gap. In contrast to the exponential distribution the
trap-limited electron currents can now be modeled using the same Gaussian trap distribution for the various PPV
derivatives.
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I. INTRODUCTION

Semiconducting polymers have received considerable at-
tention due to their potential use in polymer light-emitting
diodes1,2 (PLEDs), solar cells,3 and field-effect transistors4

(FETs). Especially for PLEDs, a balanced electron and
hole transport is important for optimal device performance.
Poly(dialkoxy-p-phenylene vinylene) (PPV) derivatives have
been used as a model system for studying the charge transport
in conjugated polymers.5 The hole current in PPV is space-
charge limited with a mobility depending on both the electric
field and charge-carrier density. Initially, in FETs the density
dependence has been described using the Vissenberg and Mat-
ters expression, originating from hopping in an exponential
density of states (DOS).6 This description has been used
to unify the charge transport in FETs and LEDs.7 Later, a
description for the mobility incorporating both the density
and field dependence was obtained, based on charge-carrier
hopping within a Gaussian DOS.8 The fact that both models
provide a consistent description of the diode current-voltage
(J-V) curves originates from the fact that the section of the
Gaussian DOS that is being filled during a J-V scan may also
be approximated by an exponential, or vice versa.7

II. THEORY

The electron current in most conjugated polymer diodes
is observed to be strongly reduced as compared to the hole
current.9 Moreover, steeper voltage dependence and stronger
layer-thickness dependence are observed. This characteristic is
generally explained by a trap-limited electron current (TLC),
with an exponential distribution of trap states in the band gap
according to

Dt (E) = Nt

kTt

exp

[
− (Ec − E)

kTt

]
, (1)

with Nt the total concentration of electron traps, Tt a
characteristic temperature specifying the decay of the expo-
nential distribution, and Ec−E the energy below the lowest
unoccupied molecular orbital (LUMO) of the polymer.10,11

Neglecting diffusion, the current can then be expressed
analytically as12

J = Ncqμ

(
ε0εr

qNt

)r (
2r + 1

r + 1

)r+1 (
r

r + 1

)r
V r+1

L2r+1
, (2)

with q the elementary charge, ε0εr the dielectric constant, μ

the trap-free mobility, V the applied voltage, L the sample
thickness, and r = Tt/T. From Eq. (2), the trap temperature Tt

can be directly estimated from the thickness and voltage
scaling of the electron transport. However, since the charge
transport in conjugated polymers is generally described by
hopping in a Gaussian DOS that is broadened due to disorder,13

it would be obvious that the broadening of the trap states is
also described by a Gaussian distribution, centered at a depth
Et below the LUMO, according to

Dt (E) = Nt√
2πσt

exp

[
− [E − (Ec − Et )]2

2σ 2
t

]
, (3)

with σt the width of the distribution and Ec−Et the trap energy.
However, the applicability of a model based on a TLC in
the presence of Gaussian-distribution trap states has not been
investigated so far. In literature, a number of approximations
have been reported for a TLC with Gaussian trap states, but
these are only valid in a limited voltage regime.14 Hwang and
Kao obtained a description for the case of a shallow Gaussian
trap, given by15

J = 9

8
ε0εrμθ

V 2

L3
. (4)

Equation (4) is essentially the expression for trap-free
space-charge-limited current (SCLC) given by the Mott-
Gurney square law16 scaled with a factor θ given by

θ = Nc

Nt

exp

[
− Et

kT
− 1

2

( σt

kT

)2
]

, (5)

with Nc the effective density of states in the LUMO. For a
narrow trap distribution, Eq. (5) reduces to the expression for
a single discrete trap level.17 In the derivation of Eq. (5) it
is assumed that only the tail of the Gaussian is filled and it
is therefore only valid when the Fermi energy lies below the
center of the trap DOS (shallow trap). For the case where the
Fermi energy is above the center of the trap DOS, defined
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as a deep Gaussian trap, another approximation was obtained
by Nešpu◦ rek and Smejtek18 and later by Hwang and Kao.15

Remarkably, in this case the obtained approximation for the
current-voltage characteristic is equal to Eq. (2), but now with
the exponent r given by

r ′ =
√

1 + 2π
( σt

4kT

)2
(6)

and involving an effective trap density N ′
t according to

N ′
t = Nt

2
exp

[
Et/r ′kT

]
. (7)

Both approximations for the case of a Gaussian trap
distribution are essentially the equations for an exponential
trap DOS and a single discrete trap level. This means
that the current-voltage characteristics of the trap-limited
transport in the presence of a Gaussian trap distribution can
be approximated by a single discrete trap level at low trap
occupancies, meaning low voltages, and an exponential trap
distribution level at high occupancies and thus high voltages.

However, in the approximations leading to Eqs. (2) (shallow
traps) and (4) (deep traps) several assumptions and simplifica-
tions are made. For instance, in all cases diffusion is neglected
and a constant mobility is assumed. More importantly, these
approximations are only valid in the range where the free-
carrier density is much smaller than the density of trapped
charges (n � nt ). For a more accurate description of the
trap-limited current a numerical device model has to be used,
which includes diffusion and allows for the use of a density-
and field-dependent mobility. In such a device model only
the free charges contribute to the current, while both free and
trapped carriers influence the electric field via the Poisson
equation. To numerically calculate the trap-limited current it
is therefore required to separate the total carrier density into
free and trapped carriers. This relation can be calculated by
assuming local thermal equilibrium.19 The occupancy of the
trap distribution is then calculated using Fermi-Dirac statistics.
While the occupancy of an exponential trap distribution
or a single-level trap can be relatively easily calculated
analytically, the occupancy of a Gaussian trap distribution,
given by the product of the trap DOS and the Fermi-Dirac
function is not straightforward. Only very recently an accurate
approximation of the Gauss-Fermi integral was reported by
Paasch and Scheinert.20 In this study we have used their
approximation to evaluate the effect of Gaussianly distributed
traps on the transport and compare it with the approximations
of exponentially distributed traps and a discrete level trap.
We demonstrate that the numerical device model including
Gaussian traps well describes the temperature-dependent
electron transport in three PPV derivatives. As a result the
trap-limited currents in PPV, previously described with an
exponential trap distribution, can also be explained with the
Gaussian trap model.

III. ANALYSIS

As stated above, the calculation of trap-limited currents
requires a separation of the total carrier density into free (n)
and trapped (nt ) carriers. For a single trap level the relation is
simply linear nt ∝ n, whereas for an exponential distribution

FIG. 1. (Color online) Dependence of nt on n for a Gaussian,
exponential, and single-level trap distribution at room temperature.
The total trap density is Nt = 1×1024 m−3, Et = 0.2 eV, and
σt = 0.10 eV. The effective density in the LUMO Nc is set at
3×1026 m−3. The parameters for the single level and the exponential
are chosen such that Eqs. (2) and (4) should give a correct description.
For the exponential trap DOS N ′

t and Tt are given by Eqs. (6) and
(7) as N ′

t = 1.9×1025 m−3 and Tt = 785 K. The effective trap
depth for the single-level trap is Et = 0.40 eV. The inset shows a
schematic representation of a discrete single-level trap, an exponential
distribution, and a Gaussian distribution.

of traps, n and nt are related via a power law given by
nt ∝ n1/r, with r = Tt/T. More generally, a dependence
of the form nt ∝ n1/r leads to J ∝ V r+1/L2r+1 [giving J
∝ V 2/L3 for a single trap level (r = 1)]. Figure 1 shows the
approximation between n and nt as obtained by Paasch and
Scheinert for a Gaussian distribution, as well as the relations
for the exponential and single trap level distribution. The trap
parameters for the latter two are calculated using Eqs. (5)–(7),
such that Eqs. (2) and (4) are valid approximations of the
trap-limited current for the case of a Gaussian trap DOS. It
can be observed from Fig. 1 that the nt (n) relation of the
Gaussian trap DOS asymptotically reaches a slope equal to 1
in the log-log plot for small densities, which corresponds to
the behavior of a discrete trap level. Accordingly, the current
in this low-density regime will have a slope of 2 and the
current density can then be well approximated with Eq. (4).
The exponential trap distribution gives a constant and smaller
slope of the nt (n) dependence (higher r), leading to stronger
voltage and thickness dependence. However, the nt (n) relation
for the Gaussian trap DOS does not have a constant slope. In
the low trap density limit, the slope equals 1, and when the
Gaussian is filled up further, the slope of nt (n) changes. It can
therefore be expected that the slope of the J-V characteristics
in a log-log plot is not constant but depends on the part of the
Gaussian trap DOS being filled during a voltage sweep.

As a next step, we have implemented the Gaussian
trap distribution of trap states in a numerical drift-diffusion
model.21 To evaluate the charge transport in the presence of
a Gaussian trap distribution we simulate a number of metal-
semiconductor-metal sandwich devices, using a mobility of
1×10−11 m2/V s, and symmetric Ohmic contacts (Vbi = 0).
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FIG. 2. (Color online) Simulated J-V plots for L = 300 nm, Nt =
2×1023 m−3, Et = 0.4 eV, and varying values of σt . The prediction
from Eq. (4) is shown for σt = 0.05 eV.

To keep the calculations as transparent as possible we
have chosen to perform these simulations with a constant
mobility, so that the effects of the trap parameters can be
independently distinguished from the influence of a field- or
density-dependent mobility. Since the single-level trap can be
regarded as a limiting case of the Gaussian distribution with
σt = 0, it is interesting to compare the calculated currents
for varying values of σt (Fig. 2). The trap-limited current
in the case of a single discrete trap level can be described
by a quadratic behavior up to the trap-filled limit given by
VTFL = qNtL

2/2ε0εr .22 At this point the traps are completely
filled and all additional injected carriers contribute to the
transport, causing a rapid increase of the current towards the
trap-free SCLC. For the Gaussian trap distribution, this change
is more gradual due to the broadness of the trap distribution
and for a broad distribution (large σt ), this transition region
becomes indiscernible from the rest of the J-V characteristic.
Furthermore, for the broader trap distributions the quadratic
part can also no longer be discerned at low voltages. The range
where the current is quadratic depends on the trap density, the
sample thickness, and the width of the Gaussian distribution.
Equation (4) is therefore only applicable to thick devices with
a high trap density and a narrow trap distribution.

An interesting feature can be seen in Fig. 2. All the
calculated J-V curves cross at V ≈ 24 V. At this bias,
the Fermi level passes through the middle of the Gaussian
trap distribution and exactly half of the traps are occupied,
independently of the width of the Gaussian distribution.
Analogous to the calculation of the trap-filled limit, this voltage
can be calculated as

Vhalf = qL2

4ε0εr

(Nt − nt0), (8)

with nt 0 the density of trapped electrons in the absence of
applied voltage.

In Fig. 3 the dependence of the J-V curve on the trap depth
is depicted. It follows that a deeper trap results in steeper
J-V. As the voltage passes Vhalf = 50 V, the Gaussian trap
distribution gradually fills up, and the density of free electrons

FIG. 3. (Color online) Simulated J-V curves for L = 300 nm,
Nt = 4×1023 m−3, σt = 0.2 eV, and varying trap depths. Also shown
is approximation equation (2) for the case of Et = 0.3 eV, with r ′ and
N ′

t given by Eqs. (6) and (7).

increases rapidly so that it surpasses the density of trapped
electrons. The current then eventually becomes limited by the
trap-free SCLC. For deeper trap levels, the trap-limited current
is lower, so the transition towards the trap-free SCLC is steeper.
It should be noted that this behavior is fundamentally different
as compared to an exponential distribution of traps. In the
latter case the slope of the J-V curve is only determined by
r = Tt/T, and is independent of the trap depth. As is clear
from Figs. 2 and 3 the slope of the J-V curve for Gaussian
traps is both dependent on the shape of the distribution (σt ) as
well on the trap depth (Ec−Et ). The approximation according
to Eq. (2) is also shown in Fig. 3 for Et = 0.3 eV. It is clear that
Eq. (2) gives a poor description of the numerically calculated
J-V’s as expected from the different dependence of nt in Fig. 1
and as was previously shown by Paasch and Scheinert.23 The
slope of the J-V differs significantly, while the currents start
to deviate beyond Vhalf . This is due to a critical simplification
made in the derivation of Eq. (2). The concentration of free
carriers is assumed to be small compared to the concentration
of trapped carriers. In effect this implies that it is assumed that
the Gaussian is never filled up beyond the center. Accordingly,
in Eq. (2) the trap distribution is never filled up completely, and
nt eventually exceeds the total trap density Nt , while in the
numerical simulation the concentration of trapped electrons
asymptotically approaches Nt .

Equations (2) and (4), as well as the simulations shown
in Figs. 2 and 3, are derived and carried out using the
band transport formalism, based on Boltzmann statistics for
the density of free charges. However, as mentioned before,
the charge transport in organic semiconductors is generally
described by hopping in a Gaussian DOS, in which case
Boltzmann statistics are not valid. Assuming that only the tail
of the Gaussian LUMO is filled, the density of free electrons is
given by the nondegenerate limit.24 This equation has the same
functional form as the Boltzmann approximation, only shifted
by a temperature-dependent factor σ 2

LUMO/kT. This makes it
possible to take into account the Gaussian distribution of the
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FIG. 4. Temperature dependence of the electron current for three
PPV derivatives. The lines are numerical fits incorporating a Gaussian
trap with trap parameters for (a) OC1C10-PPV: Nt = 1.3×1023 m−3,
σt = 0.10 eV; (b) MEH-PPV: Nt = 1.1×1023 m−3, σt = 0.10 eV: and
(c) NRS-PPV: Nt = 1.1×1023 m−3, σt = 0.10 eV.

LUMO by introducing an effective trap depth, analogous to
the correction for the case of an exponential trap distribution.25

Incorporating the effect of energetic disorder for the mobile
carriers into the model leads to an effective trap depth,

Et,eff = Et,abs − σ 2
LUMO

2kT
. (9)

By plotting Et ,eff against 1/kT, the absolute trap depth Et ,abs

and the width of the Gaussian of the LUMO σLUMO can be
obtained.

IV. EXPERIMENTAL RESULTS

Having evaluated the transport in the presence of a Gaussian
trap distribution we apply the model to electron-transport mea-
surements of three PPV derivatives: poly[2-methoxy-5-(3′,
7′-dimethyloctyloxy)-p-phenylene vinylene] (OC1C10-PPV),
poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene]
(MEH-PPV), and poly[{2-[4-(3′,7′-dimethyloctyloxy-
phenyl)]}-co-{2-methoxy-5-(3′,7′-dimethyloctyloxy)}-1, 4-
phenylene vinylene] (NRS-PPV). The electron transport was
measured using sandwich-type devices with an aluminum
bottom contact functioning as a hole-blocking anode.10

The PPV layers were spincoated from a toluene solution
in a nitrogen environment. The anode and cathode were
evaporated using a shadow mask at a pressure of ∼10−6 mbar.
The cathode consisted of a 5 nm barium layer capped with a
100 nm aluminum layer.

For MEH-PPV it has been recently demonstrated by Zhang
et al. that the electron transport is consistently described
by the concept of free electrons in combination with deep
traps.26 The free-electron mobility was shown to be equal to
the mobility of free holes by deactivating the electron traps
through n-type doping. As a result the dependencies of the
mobility on electric field and density are known.27 As shown
in Fig. 4 the electron transport of the three polymers can be
well described with a broad Gaussian trap with parameters
σt = 0.1 eV and Nt = 1.1×1023 m−3 (MEH-PPV and
NRS-PPV) and Nt = 1.3×1023 m−3 for OC1C10-PPV. Figure 5
shows the dependence of Et ,eff on temperature. For all three
polymers the dependence can be well described by Eq. (9)
with σLUMO = 0.13 eV for OC1C10-PPV, σLUMO = 0.12 eV for

FIG. 5. (Color online) Dependence of the effective trap depth
Et ,eff on temperature. The lines are fits of Eq. (9) with Et ,abs =
0.71 eV and σLUMO = 0.13 eV for OC1C10-PPV, Et ,abs = 0.69 eV
and σLUMO = 0.12 eV for MEH-PPV, and Et ,abs = 0.82 eV and
σLUMO = 0.14 eV for NRS-PPV. The inset shows a schematic
representation of the Gaussian LUMO and trap DOS. The trap density
is exaggerated for clarity.
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MEH-PPV, and σLUMO = 0.14 eV for NRS-PPV. These values
of the width of the Gaussian DOS are in good agreement
with previous reported values for these polymers.8,28,29 The
absolute trap depth amounts to ∼0.7 eV for OC1C10-PPV
and MEH-PPV, respectively, and to 0.82 eV for NRS-PPV.
Remarkably, the trap-limited electron transport for the three
PPV derivatives can be described with one and the same trap
distribution: A total amount of traps of Nt ≈ 1.0×1023 m−3,
Gaussianly distributed with a width of σt = 0.1 eV and with
its center located 0.7–0.8 eV below the LUMO. The electron
transport of these materials has been previously described with
the exponential trap model.25 That this is also possible can be
understood from Fig. 1: During a J-V scan, only a part of
the trap DOS is being filled up, which can alternatively be
approximated by an exponential trap DOS. However, for each
PPV derivative the trap parameters Nt and Tt had to be adjusted
individually to get agreement with experiment. When the traps
in PPV have a common physical origin, i.e., an oxygen-related
defect, it is far more realistic that the trap-limited currents in
the various PPV derivatives can be described with a single
(Gaussian) trap distribution.

V. CONCLUSIONS

In conclusion, we have investigated the trap-limited cur-
rent in disordered semiconductor diodes for the case of a
Gaussian trap distribution. The Gaussian trap distribution
was implemented in a numerical drift-diffusion model for
device simulation and the numerical results were compared
to previously reported analytical approximations for shallow
and deep traps. We show that the Gaussian trap model
can be used to describe the temperature-dependent electron
transport in three PPV derivatives. These experimental data,
which had previously been described using an exponential
trap distribution, can also be explained with the Gaussian
trap model using the same trap distribution for the three
derivatives.

ACKNOWLEDGMENTS

The authors would like to thank G. Paasch for his help and
stimulating discussions. We acknowledge the financial support
of the European Community’s Seventh Framework program
under grant agreement No. 213708 (AEVIOM).

*Present address: Department of Applied Physics, Eindhoven
University of Technology, P.O. Box 513, 5600 MB Eindhoven, The
Netherlands.
1J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks,
K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature
(London) 347, 539 (1990).

2R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes,
R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. D. Santos,
J. L. Bredas, M. Logdlund, and W. R. Salaneck, Nature (London)
397, 121 (1999).

3C. J. Brabec, N. S. Saricifci, and J. C. Hummelen, Adv. Funct.
Mater. 11, 15 (2001).

4J. H. Burroughes, C. A. Jones, and R. H. Friend, Nature (London)
335, 137 (1988).

5P. W. M. Blom and M. C. J. M. Vissenberg, Mater. Sci. Eng., R 27,
53 (2000).

6M. C. J. M. Vissenberg and M. Matters, Phys. Rev. B 57, 12964
(1998).

7C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw, Phys.
Rev. Lett. 91, 216601 (2003).

8W. F. Pasveer, J. Cottaar, C. Tanase, R. Coehoorn, P. A. Bobbert,
P. W. M. Blom, D. M. de Leeuw, and M. A. J. Michels, Phys. Rev.
Lett. 94, 206601 (2005).

9P. W. M. Blom, M. J. M de Jong, and J. J. M. Vleggaar, Appl. Phys.
Lett. 68, 3308 (1996).

10M. M. Mandoc, B. de Boer, and P. W. M. Blom, Phys. Rev. B 73,
155205 (2006).

11S. L. M. van Mensfoort, J. Billen, S. I. E. Vulto, R. A. J. Janssen,
and R. Coehoorn, Phys. Rev. B 80, 033202 (2009).

12P. Mark and W. Helfrich, J. Appl. Phys. 33, 205 (1962).
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