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Detection of Majorana edge states in topological superconductors through non-Fermi-liquid effects
induced in an interacting quantum dot
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It is shown that the presence of the continuum of Majorana fermion edge states along the perimeter of a
chiral topological superconductor can be probed using an interacting quantum dot coupled to three terminals:
the lead supporting the Majorana edge states and two spin-polarized (ferromagnetic) measurement leads. The
hybridization with the Majorana states induces a particular type of the Kondo effect with non-Fermi-liquid
properties which can be detected by performing linear conductance measurements between the source and drain
measurement leads: the temperature and magnetic-field dependence of the conductance is characteristically
different from that in the conventional Kondo effect.
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I. INTRODUCTION

Two-dimensional (2D) electron systems with gapped bulk
states and gapless edge states have been intensely studied
ever since the discovery of the quantum Hall effect1 and
the emergence of the theories which brought to light the
topologically non-trivial nature of the quantum Hall state.2 In
recent years, this line of research has significantly intensified
with the prediction and the subsequent experimental discovery
of the time-reversal-invariant generalizations of the quantum
Hall state where the role of the external magnetic field is
played by the strong spin-orbit coupling.3–8 These systems,
now known as the “two-dimensional topological insulators,”
are insulating in the bulk but support helical edge states, i.e.,
a pair of one-dimensional propagating modes connected by
the time-reversal symmetry (Kramers’ pairs) and propagating
in the opposite directions for the opposite (pseudo)spins.5

The edge states have dispersion along the edge, but they
are confined along the direction perpendicular to the edge.
These states are robust against perturbations which preserve
the time-reversal (TR) invariance, since their presence is
guaranteed by the nontrivial topological properties of the bulk
states. In addition to 2D topological insulators (TI), there are
also three-dimensional TIs with insulating bulk states and
topologically protected gapless chiral surface states, which
have Dirac spectrum. Such materials are also known as “strong
topological insulators.”

In a metal with a Dirac spectrum Majorana fermion bound
states can be induced by the s-wave superconductivity through
the proximity effect.9,10 Majorana fermions can be described as
real fermions (η† = η) and have half the degrees of freedom as
the complex Dirac fermions. In other words, a set of fermionic
creation and annihilation operators can be rewritten using a
pair of Majorana operators as ψ = (η1 + iη2)/

√
2 and ψ† =

(η1 − iη2)/
√

2. This is more than a simple change of basis,
since Majorana states may be spatially separated. Especially
important are the situations where the Majorana modes have
zero energy, as this implies the degeneracy of the ground state11

and it allows the system to support excitations with non-
Abelian statistics (i.e., particles which are neither fermions
nor bosons).12 Such systems would allow reliable nonlocal

storage of quantum information13 and they would provide the
building blocks for topological quantum computers.14 While
the non-Abelian states of matter have not been observed yet,
there is now an intensive search for Majorana excitations in
various condensed-matter systems.12,15

As the dispersion of the surface-state electrons on a
strong TI forms a Dirac cone, an interesting state has been
predicted to emerge by bringing in contact a TI with a
(s-wave) superconductor.16 A linear junctions between a
superconductor and a magnet in contact with a TI may namely
form a one-dimensional wire for Majorana fermions.16,17 Such
a “Majorana quantum wire” can be described as “half a regular
1D Fermi gas.”16 A number of related systems may also
support Majorana edge modes: regular semiconductors with
spin-orbit coupling in proximity to a superconductor and a
magnetic insulator,18,19 edge states of 2D TIs,20 junctions with
ferromagnetic insulators,21 etc.

Unfortunately, Majorana fermions are, by their very nature,
rather elusive and it is difficult to assert their existence in
a given system. Majorana fermions in superconductors are
electrically neutral and do not couple to external fields. One
approach for their detection has been, for example, to combine
two Majorana fermions into a single Dirac fermion in order
to allow probing with charge transport.17,22 Various detection
schemes have already been proposed for Majorana modes
in topological insulators. Some of them are only capable
of detecting the presence of Majorana modes (either single
localized levels or continua of propagating modes), while
others can actually measure the state of the system (they are,
thus, read-out schemes) and could be used to demonstrate
the non-Abelian statistics associated with the Majorana zero-
energy modes. The detection schemes are based on the
detection via the Josephson current,20 on interferometry,17,22–24

“teleportation” (nonlocal electron transfer process which
maintains the phase coherence),25 flux qubit interferometry,26

or noise measurements.10

In this paper a further Majorana mode detection scheme
is described. It is a simple detection scheme, not a read-out
scheme. It makes use of the effect of the Majorana modes on
the screening of the impurity spin if an interacting quantum
dot is coupled to the Majorana quantum wire on one side and
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FIG. 1. (Color online) An interacting quantum dot QD is coupled
to a spin-up Majorana fermion edge channel of a chiral topological
superconductor TSC with hopping VT and to two ferromagnetic probe
leads (source S and drain D electrodes) which are fully spin polarized
in the spin-down direction with hoppings VS and VD . Instead of
ferromagnetic probe leads, one may also use two systems in the
quantum anomalous Hall state which have fully spin-polarized edge
states. The hybridization with the Majorana modes localized along the
perimeter of the topological superconductor will induce a non-Fermi-
liquid Kondo effect which can be probed using the ferromagnetic
contacts by measuring the temperature dependence of the (spin-down)
linear conductance through the dot. To tune the system to the non-
Fermi-liquid point, one can change the gate voltage on the dot, apply
an external magnetic field, and change the coupling constants VS , VD ,
and VT . Dashed line denotes Majorana electrons, full line indicates
Dirac electrons, while the shades of gray (colors online) distinguish
spin-up and spin-down polarization.

to two normal (but spin-polarized) measurement wires on the
other side, as shown in Fig. 1. The idea here is that Majorana
fermions and the non-Fermi-liquid variants of the Kondo effect
(for instance, the two-channel Kondo effect, which is relevant
here) go hand in hand. It will be shown that the coupling of
the quantum dot to an additional Majorana mode will modify
the transport properties of the quantum dot probed by the
additional leads. In particular, it will change the temperature
dependence of the linear conductance. Some aspects of the
proposed scheme are related to the work on quantum dots
coupled to the edge states of the ν = 5/2 fractional quantum
Hall effect (FQHE).27–29 The two cases differ in the origin of
the degrees of freedom which are necessary (in addition to the
Majorana modes) to generate the two-channel Kondo effect: in
the FQHE, they are the bosonic edge states [field φ in Eq. (1) in
Ref. 27], while here we make use of the spin-polarized probing
leads. The two cases also differ in the measurement scheme: in
the FQHE case, one measures the charge susceptibility of the
dot using capacitively coupled probes, while here we propose
to perform transport experiments.

The description of the generalized Kondo problems with
non-Fermi-liquid fixed points in terms of Majorana modes has
been very fruitful and it allows for a simple interpretation of the
finite-size excitation spectra.30,31 A well-known example is the

two-channel Kondo (2CK) effect which has been intensively
discussed theoretically32–42 and was recently experimentally
realized using semiconductor quantum dots.43 This type of the
Kondo effect occurs when a single spin-1/2 quantum impurity
is equally coupled to two independent screening channels
(there must be no charge transfer between the channels44,45);
this leads to an overscreening effect in which the localized spin
forms a new spin-1/2 state by coupling to two neighboring
spins from the leads, this new spin-1/2 collective state is then
coupled to the two next-nearest-neighbor spins from the leads
into another spin-1/2 state, and so forth, generating a complex
nonlocal screening cloud state. The non-Fermi-liquid state
associated with the two-channel Kondo effect can be described
using conformal field theories in which an odd number of
Majorana modes have their boundary conditions twisted due
to the presence of the magnetic impurity.30

Quantum impurities (either in the form of quantum dots or
magnetic impurity atoms) in contact with topological insula-
tors have already been studied in different contexts. The Kondo
effect due to a magnetic impurity in the helical edge liquid
may be affected by the interactions in the one-dimensional
chiral channel,46 although the experiments indicate that the
interactions in known systems appear to be rather weak, with
a Luttinger parameter K ∼ 1.46,47 For a quantum dot coupled
to two helical edge states a variant of the two-channel Kondo
effect may occur.48 It has also been shown that a quantum
impurity coupled to Majorana edge fermions49 may be mapped
to a two-level system with ohmic dissipation. This last problem
is somewhat related to the one discussed in this work, but there
is crucial difference: the model proposed here allows particle
exchange with the Majorana wire, while the model studied
in Ref. 49 considers only the exchange coupling (without
discussing its microscopic origin). As commonly observed in
other impurity problems, an exchange-only effective model
may behave rather differently than a model with hopping
terms; this appears to be the case here, too.

We discuss a quantum dot coupled to a Majorana channel
on one side and two spin-polarized leads on the other. When
the spin-polarization of the probe leads is opposite to that of
the Majorana channel, the impurity couples to three Majorana
modes, while the fourth mode of the full Anderson impurity
model is absent (or fully decoupled). It has to be emphasized
that the spin-polarized leads are not only “probe” leads to
measure the transport properties of the system, but they are
crucial for the emergence of the (two-channel) Kondo effect,
i.e., they participate in the formation of the Kondo state. The
full details of the model considered will be presented in Sec. II,
where the numerical techniques will also be briefly described.
The results of numerical calculations will be given in Sec. III
and we conclude with a brief discussion of the possible issues
in the experimental realization of the proposed scheme. In the
Appendix, we solve exactly the noninteracting resonant-level
model with different couplings to the Majorana modes of a
single conductance channel.

II. MODEL AND METHOD

For definiteness, we consider the physical realization of a
system supporting a one-dimensional Majorana edge channel
as proposed in Ref. 50. The system is a hybrid device made of
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an insulator layer in the quantum anomalous Hall (QAH) state
and a fully gapped superconducting layer. Its phase diagram
supports a chiral topological superconductor (TS) phase with
an odd number of chiral Majorana edge modes.50 The QAH
state can be induced by magnetic doping of topological
insulators:50–52 as the magnetization increases, the spin down
(for example) edge states penetrate deeper in the bulk until
they disappear by merging with the bulk states, while the spin
up edge states remain bound to the edge. The QAH system
thus has spin-polarized single chiral edge states. When this
system then experiences the superconducting proximity effect,
it may be tuned to become a TS.50 The single edge mode
decomposes into two chiral Majorana edge modes, one of
which penetrates deeper in the bulk and disappears, while the
remaining one persists bound to the edge.50 We are thus left
with a single spin-polarized (we choose it as spin-up) chiral
Majorana fermion edge state, with the effective Hamiltonian

Hedge =
∑
p>0

vp(η−pηp), (1)

where v is the Fermi velocity, p the momentum, and ηp

the Majorana fermion operators which satisfy the canonical
Majorana anticommutation rules {ηp,ηp′ } = δp,p′ .

The quantum dot is described as a single impurity level d:

Hdot =
∑

σ

εnσ + Un↑n↓ + gμBB
1

2
(n↑ − n↓). (2)

Here nσ = d†
σ dσ is the spin-σ occupancy operator, the energy

level ε can be controlled by the gate voltage, U is the on-site
charge repulsion, g is the gyromagnetic ratio, μB the Bohr
magneton, and B the external magnetic field. The dot is
coupled to two ferromagnetic leads (assumed to be fully
spin-polarized in the opposite direction compared to the edge
states of the TSC) with parallel alignment of the magnetization
in both leads. The hybridization with these two leads can then
be described as

H1 =
∑

k,a={S,D}
Vk(c†a,k↓d↓ + H.c.), (3)

where a denotes the lead (source and drain) and k is the
momentum, and c

†
a,kσ is the creation operator for electrons in

the leads. The total hybridization for spin-down electrons can
be characterized by a single quantity 	↓ = ∑

a πρa|Va,kF
|2,

where kF is the Fermi momentum. It should be noted that the
dot couples only with a definite combination of modes in both
leads, thus there is effectively a single channel of spin-down
electrons.

We now consider the coupling of the quantum dot to the
edge of the TSC. The microscopic Hamiltonian in principle
takes the form analogous to Eq. (3):

H2 =
∑

k

VT,k(f †
k↑d↑ + H.c.), (4)

since the electrons which tunnel are true (Dirac) electrons.
Nevertheless, in vicinity of the Fermi level, i.e., inside the
gap of the TSC, the only propagating modes are the Majorana
fermions, thus the operators f

†
k↑ and fk↑ are not independent,

but may be expressed in terms of the Majorana operators ηp.
The impurity level d thus hybridizes only with the ηp Majorana

modes which have half the degrees of freedom of the regular
Dirac electrons.

To make the discussion more general, we will nevertheless
consider both Majorana modes which constitute the full
complex Dirac electron (we name them η1 and η2), so that

f
†
↑ = (η1 + iη2)/

√
2, f↑ = (η1 − iη2)/

√
2, (5)

but we will allow for different hybridization of η1 and η2. We
decompose the hopping term as

f
†
↑d↑ + d

†
↑f↑ = 1√

2
[(η1 + iη2)d↑ + d

†
↑(η1 − iη2)] (6)

and introduce separate couplings t1 and t2 for the two modes:

1√
2

[t1(η1d↑ + d
†
↑η1) + t2(iη2d↑ − id

†
↑η2)]. (7)

The different hybridizations correspond to different spatial
localization of the Majorana modes as the QAH state makes
the transition to the TSC state and one of the two modes
penetrates deeper into the bulk. We then rewrite η1 and η2 in
terms of the original Dirac operators and find that the coupling
Hamiltonian is proportional to (see also Ref. 53)

V (f †
↑d↑ + H.c.) + A(f †

↑d
†
↑ + H.c.), (8)

where

V = (t1 + t2)/2, A = (t1 − t2)/2. (9)

The limit t1 = t2 (A = 0) corresponds to the QAH state, while
the limit t1 �= 0, t2 = 0 (V = A) describes the coupling of the
quantum dot to the edge states of a system in the TSC state.
In the following it will be shown that as t2 is reduced starting
from the initial value of t1, the system makes a transition from
the regular Kondo regime to a non-Fermi-liquid regime with
ln 2/2 residual impurity entropy.

The impurity model considered is very closely related to
the O(3) symmetric Anderson model31,54–56 which has been
proposed to study some aspects of the two-channel Kondo
model fixed point. The idea in the cited works is to couple the
same spin impurity degree of freedom to both spin and isospin
degrees of freedom of the same conduction channel, which
takes into account the property of the spin-charge separation
in one-dimensional systems. The isospin degree of freedom
(also known as the axial charge or the particle-hole degree of
freedom57) for some orbital d is defined by the operators

Ix = 1
2 (d†

↑d
†
↓ + d↓d↑), Iy = 1

2 (−id
†
↑d

†
↓ + id↓d↑),

(10)
Iz = 1

2 (d†
↑d↑ + d

†
↓d↓ − 1),

which fulfill the SU(2) relations [Ii,Ij ] = iεijkIk , just like
the spin operators. In other words, a single channel provides
two sets of SU(2) degrees of freedom, associated with charge
and spin, respectively, which become separated on low-energy
scales. The spin-isospin Kondo model is then defined as54

H = Hband + [J1σ + J2τ ] · S, (11)
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where

σ = (ψ†
↑,ψ

†
↓) ·

(
1

2
�σ
)

·
(

ψ↑
ψ↓

)
,

(12)

τ = (ψ†
↑,ψ↓) ·

(
1

2
�σ
)

·
(

ψ↑
ψ

†
↓

)
.

Here ψ†
σ is the particle creation operator at the position of

the impurity, �σ is the vector of Pauli matrices, and S is the
impurity spin operator. The O(3) symmetric Anderson model
is a variation of the standard symmetric Anderson model31,55

H = Hband+
∑

σ

V1(ψ†
σ dσ + H.c.) + U (n↑ − 1/2)(n↓ − 1/2),

(13)

with an additional anomalous hybridization term

H ′ = −V2(d†
↓ψ

†
↓ + ψ↓d↓ + d

†
↓ψ↓ + ψ

†
↓d↓). (14)

This model maps to the spin-isospin Kondo model via
a Schrieffer-Wolff transformation31,55 with J1 = 4V1(V1 −
V2)/U and J2 = 4V1V2/U . The parameter V2 in Refs. 31
and 55 is essentially equivalent to the parameter A in Eq.
(8). In particular, the special point V = A corresponds to the
special point V2 = V1/2.

The relation of the 2CK model to the Majorana modes also
plays an important role in the bosonization and refermioniza-
tion approach by Emery and Kivelson who have shown that
the 2CK model maps to a Majorana resonant-level model;35–37

one Majorana component remains decoupled from the rest
of the system and it leads to the fractional residual impurity
entropy.35,58 Similar mechanism is at play in the present model.

A quantum dot coupled to the TSC and ferromagnetic
electrode will not, in general, exhibit the full O(3) symmetry
(as defined, for example, in Ref. 56), thus one of the crucial
questions is whether the non-Fermi-liquid (NFL) fixed point
exists under more general conditions. The NRG calculations
(described below) show that a sufficient condition for obtaining
the NFL state is that one of the impurity Majorana modes is
fully decoupled and remains uncompensated at low temper-
atures: the asymptotic approach to the T = 0 fixed point is
then always found to correspond to that in the two-channel
Kondo model. This is in line with the observation made in
Ref. 56 which emphasizes the presence of the zero mode
which results in the singular scattering of the renormalized
Majorana fermions; the decoupled mode is important for the
emergence of the NFL state, not the O(3) symmetry on high
energy scales. To tune the system to the NFL fixed point, one
may change the gate voltage and apply an external magnetic
field (similar procedure is applied in quantum dots coupled to
ferromagnetic leads, where tuning is necessary to restore the
Kondo effect, see Refs. 59–61). If the system is not fully tuned
to the NFL fixed point, but it is near it, there will be a finite
temperature range where the NFL behavior can be observed,
before the crossover to the FL ground state.42

We study the resulting quantum impurity problem using
the numerical renormalization group (NRG).62–65 The method
consists of discretizing the continuum of the conduction band
electrons, tridiagonalizing the resulting discrete Hamiltonian
so that it takes the form of a semi-infinite tight-binding chain

with geometrically decreasing hopping constants (Wilson
chain), and diagonalizing this chain Hamiltonian in an iterative
fashion by taking into account one further site in each
renormalization-group transformation step. The discretization
is controlled by a parameter � > 1, so that the discretization
intervals are (�−(n+1) : �−n); in this work, � = 3 in most
calculations. The results are improved by performing twist
averaging with Nz = 4 different discretization meshes.66–68

The spectral functions are computed using the density-matrix
approach with complete Fock space,69–71 and the conductance
curves at finite temperatures are obtained using the Meir-
Wingreen formula from the spectral data:72–74

G↓(T ) = e2

h
π	↓

∫ ∞

−∞
dω

(
− ∂f

∂ω

)
A↓(ω,T ), (15)

where f (ω) = [1 + exp(βω)]−1 is the Fermi function, β =
1/kBT and the chemical potential has been fixed at zero
energy, while A↓(ω,T ) is the spin-down spectral function
on the impurity site. Note that we are only considering
the linear conductance for the spin-down electrons which
corresponds to the spin-polarized transport flowing from the
ferromagnetic source to the ferromagnetic drain electrode. The
spin-down electrons are conserved and there is no mixing
between the spin-up and spin-down electrons (in the absence
of the magnetic field in the transverse direction, i.e., in the
x-y plane). In general, the Hamiltonian has no symmetries
which could be used to simplify the calculations by the
Wigner-Eckart theorem. It is thus necessary to diagonalize
one large matrix in each NRG step. It is important to keep
enough states in the NRG truncation to prevent spurious
symmetry breaking. The NRG implementation has been tested
by performing calculations for a noninteracting Majorana
resonant-level model; see also the Appendix. An excellent
agreement is found between the numerical and the exact
analytical results.

III. RESULTS

A. Thermodynamics

We first study the impurity contribution to the total
electronic entropy, defined as

Simp(T ) = S(T ) − S(0)(T ), (16)

where S(T ) is the entropy for the full problem while S(0)(T ) is
the entropy for the problem without the impurity. Thus Simp(T )
measures the effective degrees of freedom on the impurity site
on the temperature scale T . We use the parametrization

t1 = t cos α, t2 = t sin α, (17)

where α = π/4 corresponds to the regular Anderson impurity
model (A = 0) and α = 0 to the model with one fully decou-
pled Majorana channel (V = A). The overall hybridization t

is chosen so that 	↑ = 	↓ in the t1 = t2 limit.
The resulting impurity entropy curves are shown in Fig. 2.

At T ∼ U the system crosses over from the high-temperature
free-impurity fixed point (where the impurity level can be
found in either of the four states with equally probability,
hence the ln 4 impurity entropy) to the local-moment fixed
point (where only the spin can fluctuate, since the charge
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FIG. 2. (Color online) The impurity contribution to the electron
entropy as a function of the temperature for different values of
the parameter α which quantifies the ratio of Majorana hopping
rates. The model parameters are U = 0.2, 	↑ = 	↓ = 0.01 (for the
t1 = t2 limit), and ε + U/2 = 0. The arrow indicates the direction of
increasing α.

fluctuations are frozen, hence the ln 2 impurity entropy). For
α = π/4 = 45◦, the system then undergoes the conventional
single-channel spin-1/2 Kondo effect at T ∼ TK in which the
impurity spin degree of freedom is fully screened; here TK is
approximately given by the Haldane formula63,64,75,76

TK = 0.182U
√

ρJK exp

(
− 1

ρJK

)
, (18)

with ρJK = 8	/πU . This expression is valid for ε + U/2 =
0, i.e., when the system is at the particle-hole symmetric
point, and 	 = 	↑ = 	↓. If 	↑ �= 	↓, one has to use the
theory for the Kondo effect in the presence of the itinerant-
electron ferromagnetism,59–61 the main effect of which is the
modification of the exponential factor to

exp

(
− 1

ρJK

arctanhP

P

)
, (19)

where P = (	↑ − 	↓)/(	↑ + 	↓) is the spin polarization, thus
the Kondo scale is accordingly reduced. The results in Fig. 2
show that the Kondo scale is also reduced if the ratio between
the hopping parameters for the two Majorana modes of spin-up
electrons is detuned from the symmetric t1 = t2 case. For a
wide range of parameters α, the entropy curves simply follow
the universal single-channel S = 1/2 Kondo model entropy
curve, the only effect is the reduced Kondo temperature. In
other words, the curves overlap if shifted horizontally (on the
logarithmic scale). Only for α < 4◦ can one observe different
behavior: while the asymptotic tails (T � TK ) still follow
the universal curve, the crossover curves (T ∼ TK ) exhibit
slower temperature variation. For very small α < 0.2◦ one
can observe a two-stage behavior: the system first goes to a
non-Fermi-liquid fixed point with ln 2/2 entropy, but since
this fixed point is unstable, there is another crossover to a final
Fermi-liquid ground state at some lower temperature.42 Only
for exactly α = 0 is the NFL fixed point stable and the system
has residual entropy down to zero temperature. As expected,
the entropy curves can be fitted with the entropy curves
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FIG. 3. (a) Charge fluctuations as a function of the parameter α.
(b) The low-temperature scale of the problem, defined as S(TL) =
3 ln 4/4. In the regime where the regular Kondo effect scaling is
observed (roughly α > 5◦), TL approximately corresponds to the
Kondo temperature TK .

calculated for the two-channel Kondo model with channel
asymmetry (J1 �= J2); the channel-symmetric case (J1 = J2)
corresponds to the α = 0 limit of the present model.31

In Fig. 3 we show charge fluctuations and the low-
temperature scale TL of the problem as a function of α (for
small α, there are actually two different low-temperature
scales, one associated with the Kondo screening and the
other with the crossover from the NFL to the Fermi-liquid
(FL) state; the results for TL are actually meaningful only
for large α > 5◦, where they roughly correspond to the
Kondo temperature of the conventional Kondo screening).
We see that reducing α leads to a small reduction of charge
fluctuations (by approximately 7%); this corresponds to the
gradual freezing-out of the fluctuations of one of the Majorana
modes. The low-temperature scale of the problem decreases
accordingly. This behavior is similar to that found in the
ferromagnetic Kondo problem, where with the increasing
polarization P the charge fluctuations of both spin species are
reduced [even though the average hybridization (	↑ + 	↓)/2
remains constant, thus the hybridization of one spin species
decreases while that of the other actually increases] and the
Kondo temperature is exponentially lowered.

The Kondo temperature in the NFL regime (t2 = 0) can be
tuned by changing either of the two hybridization parameters,
	↑ (that is, the coupling to the TS) or 	↓ (the coupling to the
probe leads). In both cases the dependence is exponential, see
Fig. 4. We reiterate in passing that 	↑ and 	↓ by no means
have to be equal for the two-channel Kondo effect to emerge.

B. Transport properties

In Fig. 5 we plot one of the main results of this work, the
temperature dependence of the linear conductance as measured
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FIG. 4. (Color online) The temperature scales as a function of
the hybridization with the Majorana mode (	↑) and the measurement
leads (	↓). In each case one of the hybridization parameters is held
fixed at a value of 	σ = 0.01, while the other is varied. U = 0.2,
εd = −U/2.

between the probe source and drain electrodes. The subfigures
b,c,d show the results of a fit using an empirical function77,78

G(T ) = G0[1 + (21/s − 1)(T/TK )p]−s , (20)

where TK is defined as G(TK ) = G(0)/2, p describes the
exponent of the asymptotic behavior for small T (Fermi liquid
behavior corresponds to a T 2 finite-temperature correction,
while for the two-channel Kondo model NFL fixed-point
one expects a linear finite-temperature correction), while
the parameter s controls the shape of the crossover part of
the curve. We find that the parameter TK varies similarly
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FIG. 5. (Color online) (a) Temperature dependence of the con-
ductance through the quantum dot for different values of α. The
arrow indicates the direction of increasing α. (b),(c), and (d) The
variation of the fit parameters TK , p, and s as a function of α.

as the low-temperature scale TL discussed previously. The
shape parameter s is at first decreasing, but in the low-α
regime where the two-stage behavior starts to emerge (roughly
α < 5◦) the conductance curves start to strongly reflect the
non-Fermi-liquid behavior at low temperature scales. This
is most strikingly visible in the behavior of the exponent
parameter p which rapidly decreases toward the expected
limiting value of p = 1. It is interesting to note that in the case
of regular Anderson impurity model (i.e., for α = 45◦), the best
fit is not obtained for the standard values p = 2, s = 0.22, but
rather for p ≈ 1.8, s ≈ 0.25. This is due to the fact that the
true T 2 behavior only emerges asymptotically for T � TK ,
where the conductance is very close to the unitary limit, while
in the crossover regime a better description is obtained with
an effective exponent different from 2. This is an important
message for the experimentalists: a deviation of the extracted
parameter p from the value of 2 does not immediately imply
non-Fermi-liquid properties of the system at low temperatures,
especially if the fit is performed in the crossover region. An
extracted value approaching p = 1 would, however, constitute
a “smoking gun” that the system is near the two-channel Kondo
model fixed point. Since the transport curves are universal,
the proposed transport experiment would thus consist of
measuring the conductance across one or two decades of
temperatures (around and below TK , for example) and fitting
with the G(T ) curves. It is not necessary to go to very low
temperatures (T � TK ) and try to extract the T 2 or T scaling
behavior; even on the scale of T ∼ TK the universal G(T ) in
both cases are sufficiently different that one should be able
to distinguish the two situations [a comparison between the
measured G(T ) curves and the NRG calculations, for example,
shows good agreement and has been used to distinguish
between the Kondo and the mixed-valence regimes,77 or
between the Kondo effects with different impurity spins78].

Finally, we must address the role of the gate voltage
and the magnetic field. Both types of operators are relevant
(in the renormalization group sense), since in the language of
the Majorana fermions they correspond to various coupling
terms such as d†

σ dσ = −iξ1σ ξ2σ where ξiσ are the Majorana
modes of the impurity. Strictly speaking, the non-Fermi-liquid
fixed point is only stable at the particle-hole symmetric point
(ε + U/2 = 0) and for zero external magnetic field (B = 0),
thus the system needs to be tuned appropriately to observe
the two-channel Kondo effect. Note, however, that we have
assumed particle-hole symmetric flat bands. In general, the
bands will have some non-trivial density of states. In this
case, the NFL fixed point will be shifted away from the
ε + U/2 = 0, B = 0 point and the condition for observing
the 2CK effect is such that the induced magnetic and electric
field in the quantum dot are compensated. This is similar to the
physics of the Kondo effect in the presence of ferromagnetic
leads.59–61,79

It is worth noting that the two-channel Kondo effect may,
in principle at least, be easier to achieve in this system than
in the semiconductor quantum dot implementation of Ref. 43.
In the latter system, the NFL fixed point is achieved by using
a larger (but interacting) quantum dot to effectively play the
role of the second channel (interchannel particle exchange is
dynamically prohibited by the penalty of the charging energy);
this then requires a subtle tuning to obtain equal coupling
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to both channels, J1 = J2. In the proposed system, there are
always only three Majorana channels, and one solely needs
to tune the quantum dot parameters such that one of the local
Majorana modes decouples. (In this respect the problem is
similar to the case of a QD coupled to the edge states of
the FQHE,27 where one also needs to tune solely the QD
parameters. The required channel symmetry is automatically
present.)

C. Magnetic field effects

The system may also be probed at constant temperature
by applying an external magnetic field (which is assumed to
couple only to the dot spin without perturbing other parts of
the system). In the standard Kondo effect, the magnetic field
reduces the linear conductance at T = 0 quadratically for small
B.76,80 In fact, one may use a fitting function similar to Eq.
(20):

G(T = 0,B) = G0[1 + (21/s ′ − 1)(B/TK )p
′
]−s ′

, (21)

where B is expressed in temperature units (gμB/kB). When a
fit is performed for a FL regime over an interval of magnetic
fields from B = 0 to B = TK , one obtains for the exponent
p′ = 2 and for the shape parameter s ′ = 0.5. Performing the
same calculation for our system in the NFL regime, we obtain,
instead, the exponent p′ = 1.3 and the shape parameter s ′ =
0.36. More extensive set of results for the conductance at finite
temperature and magnetic field are shown in Fig. 6. The results
in the FL and NFL regimes are characteristically different and
allow for an additional measurement approach.
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FIG. 6. (Color online) Temperature and magnetic-field depen-
dence of the conductance through the quantum dot. Model parameters
are U = 0.2, ε = −U/2, 	↑ = 0.03, and 	↓ = 0.01.

IV. CONCLUSION

It was shown that if a quantum impurity described as a single
interacting level is coupled to three independent Majorana
channels, but is decoupled from the fourth, a non-Fermi-liquid
state emerges which can be probed by performing linear
conductance measurements. By tuning the system parameters
(in particular the gate voltage) the non-Fermi-liquid regime
can be obtained even in situations which do not have the full
O(3) symmetry between the three Majorana channels. The
experimental realization of the predicted effect could make use
of two QAH systems to provide fully spin-polarized complex
fermions, and one TSC system to provide the Majorana
fermions of the opposite spin. The experimental challenge
thus consists—in the first place—in actually creating the QAH
and TSC systems, and in establishing the electrical contacts
between the quantum dot and these systems. The non-Fermi-
liquid state should then naturally emerge and it should be
rather robust (as robust as the edge states themselves). Further
complications might arise from the interactions between the
electrons in the one-dimension channels, since they might
drive the system to a different fixed point.
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APPENDIX: MAJORANA RESONANT-LEVEL MODEL

For reference purposes (and for testing the numerical
method) we now solve exactly the resonant-level model
with different couplings to the two Majorana modes of a
single-channel continuum. The spin index plays no role in
a noninteracting model, thus we omit it in writing. The
Hamiltonian is composed of the following terms:

H0 = εnσ , H1 =
∑

k

εkc
†
kck,

(A1)
H2 =

∑
k

(V c
†
kd + Ac

†
kd

† + H.c.).

We assume that the hopping coefficients V and A do not
depend on k, and for simplicity we take them to be real. We
will use the notation 〈〈A; B〉〉z for a correlator between the
operators A and B, and at the end the argument z will be
chosen as z = ω + iδ to obtain the retarded Green’s functions
(δ → 0). We are particularly interested in the Green’s function
G(ω) = 〈〈d; d†〉〉ω+iδ which gives the spectral function as
A(ω) = (−1/π )ImG(ω). We use the equation of motion
method:

z〈〈A; B〉〉z = 〈[A,B]η〉 − 〈〈A; [B,H ]−〉〉z, (A2)

where η = + (anticommutator) if A and B are both fermionic
operators, and η = − (commutator) in all other cases.

We introduce the notation g = 〈〈d; d†〉〉z and h = 〈〈d; d〉〉,
as well as gk = 〈〈d; c†k〉〉 and hk = 〈〈d; ck〉〉. The equations of
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motion then give

(z − ε)g = 1 + V
∑

k

gk − A
∑

k

hk,

(z − εk)gk = Vg + Ah,
(A3)

(z + ε)h = −V
∑

k

hk + A
∑

k

gk,

(z + εk)hk = −Ag − V h.

We introduce γ1(z) = ∑
k 1/(z − εk) and γ2(z) = ∑

k 1/(z +
εk), whose imaginary parts for argument z = ω + iδ are

proportional to the density of states in the lead, ρ(ω). For
a particle-hole symmetric band, γ1 and γ2 are fully equivalent.
Expressing gk and hk in terms of g and h, inserting them in
the equations of motion for g and h, then solving the resulting
equations for g, we obtain

g = ε + z − (A2γ1 + V 2γ2)

(cγ1 − ε)(cγ2 + ε) − d(γ1 + γ2)z + z2
, (A4)

where c = A2 − V 2 and d = A2 + V 2. In the wide-band limit,
γ1,2 → −iπρ, where ρ is the constant density of states. The
spectral function is then

A(ω) ≈ 1

π

πρd[(πρc)2 − (ω + ε)2]

[(πρc)2 + ε2]2 + 2[(πρ)2(A4 + 6A2V 2 + V 4) − ε2]ω2 + ω4
. (A5)

In the particle-hole symmetric case (ε = 0), the half-width
at half-maximum of the spectral function is

	 = πρ[(A8 − 4A6V 2 + 70A4V 4 − 4A2V 6 + V 8)1/2

− 8A2V 2]1/2. (A6)

For A = 0, this expression reduces to the expected result 	 =
πρV 2. In the V = 0 limit, the result is 	 = πρA2. For |A| →
|V | the width of the resonance goes to zero and a δ peak
emerges in the spectral function at ω = 0, see also Ref. 56.
This corresponds to the case of a fully decoupled Majorana
mode. Strictly speaking, the system is then in a NFL state
with ln 2/2 residual entropy (per spin). The δ peak carries
half the spectral weight and there is a broader background
peak associated with the hybridized Majorana partner of the
decoupled mode; this broad spectral peak carries the remaining
half of the spectral weight.

If the problem is not particle-hole symmetric (ε �= 0) the
two Majorana modes remain coupled through the charge term
(since d†d = −iη1η2). In this case there can be no decoupled
Majorana mode and at zero temperature the system is in a FL
state for all values of A and V . As |A| → |V |, the spectral
function will have a maximum at ω ≈ ε (with a shift of the
order of the spectral peak width 	) and will touch zero exactly
at ω = −ε.

The anomalous Green’s function h(z) = 〈〈d; d〉〉z is

h = AV (γ1 + γ2)

(cγ1 − ε)(cγ2 − ε) − d(γ1 + γ2)z + z2
. (A7)

It is proportional to A, thus it vanishes in the absence
of the anomalous hybridization. In the wide-band limit,
the anomalous spectral function B(ω) = (−1/π )Imh(ω + iδ)
is

B(ω) ≈ −1

π

2πρAV [(πρc)2 + (ε − ω)(ε + ω)]

[(πρc)2 + ε2]2 + 2[(πρ)2(A4 + 6A2V 2 + V 4) − ε2]ω2 + ω4
. (A8)

In the particle-hole symmetric case (ε = 0) this spectral
function has an inverted (negative) peak at ω = 0 superim-
posed on a broader positive resonance. In the |A| → |V |
limit, the inverted peak narrows down until it becomes a delta
peak. This feature thus corresponds to the decoupled Majorana
mode, while the positive broad resonance corresponds to its
Majorana partner state.

For ε �= 0, the spectral function B(ω) goes through zero
always at ω = ±ε, i.e., |ε| sets the scale of the inverted spectral
peak. As |A| → |V | only the weight of this peak saturates,
while the width remains roughly constant, since the Majorana
mode does not decouple.
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