
PHYSICAL REVIEW B 83, 195136 (2011)

Gradient corrections to the kinetic energy density functional of a two-dimensional
Fermi gas at finite temperature

B. P. van Zyl,1 K. Berkane,2 K. Bencheikh,2 and A. Farrell1
1Department of Physics, St. Francis Xavier University, Antigonish, Nova Scotia, Canada B2G 2W5,
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We examine the leading-order semiclassical gradient corrections to the noninteracting kinetic-energy density
functional of a two-dimensional Fermi gas by applying the extended Thomas-Fermi theory at finite temperature.
We find a nonzero von Weizsäcker-like gradient correction, which in the high-temperature limit goes over to
the functional form (h̄2/24m)(∇ρ)2/ρ. Our work provides a theoretical justification for the inclusion of gradient
corrections in applications of density-functional theory to inhomogeneous two-dimensional Fermi systems at any
finite temperature.
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I. INTRODUCTION

In 1966 Fower et al.1 performed transport measurements on
a Si-metal-oxide-semiconductor structure in which a degener-
ate gas of electrons was electrostatically induced. Their work
demonstrated for the first time that the density of states in the
n-type electron inversion layer had the expected behavior for a
two-dimensional electron gas (2DEG). Since Fowler’s seminal
work, the exploitation of the electronic properties of III-V
semiconductors has led to the realization of high-quality, high-
mobility 2DEGs at the interface of epitaxially grown III-V
structures, such as GaAs/AlGaAs heterostructures.2 Through
electrostatic and/or etching techniques, the 2DEG found in the
III-V semiconductor interface can be manipulated to create
experimental realizations of low-dimensional electron systems
such as quantum wires, quantum dots, and quantum antidots.

By far, the workhorse for a theoretical understanding of the
bulk electronic properties of such low-dimensional electronic
systems is the zero-temperature (T = 0) density-functional
theory (DFT) of Hohenberg, Kohn, and Sham (HKS).3,4

The key element in the HKS approach is the definition of
the kinetic energy (KE), corresponding to a system of N

noninteracting fermions moving in some effective one-body
potential. The HKS scheme treats the KE exactly at the
independent particle level, and so the development of explicit,
orbital-free functionals for T [ρ], the KE density functional,
is an important objective. Ideally the appropriate functional
should yield both the correct energy and the correct density
profile.

To this end, the simplest approach for the construction
of the KE density functional, T [ρ], is the local-density
approximation (LDA), sometimes referred to as the Thomas-
Fermi (TF) approximation.5,6 In this approximation, the known
form for KE density functional of the uniform electron gas
is also used locally for the KE density functional of the
inhomogeneous system. One would then expect the LDA to
be applicable only in cases where the density in the system is
a slowly varying function of position. In fact, this is not the
case, and even in highly inhomogeneous systems, the LDA is
found to work reasonably well.7,8

Although the LDA for the KE density leads to reasonable
results for the energy, the calculated density profile in a
self-consistent DFT scheme does not exhibit the desired

quantum mechanical tunneling into the classically forbidden
region. To overcome this issue, the so-called von Weizsäcker
(vW) gradient correction,9 ∝ (∇ρ)2/ρ, is added to the KE
functional. In three dimensions the vW gradient correction can
be rigorously justified within the extended TF (ETF) theory,
originally developed in the context of nuclear physics.10,11

The inclusion of the vW term leads to smooth and continuous
densities while improving the quality of the KE functional by
taking into account the inhomogeneity of the system.

An application of the ETF theory to 2D systems, however,
leads to the conclusion that there are no gradient corrections
to the 2D KE density functional.12–14 This, of course, makes
no physical sense since the LDA cannot be variationally exact
for an inhomogeneous system. Thus in DFT applications to
systems derived from the inhomogeneous 2DEG discussed
above, a phenomenological approach must be taken in which
a vW-like gradient correction is put in “by hand.”15 Although
the vW-like correction term is entirely ad hoc for a 2D system,
its use has been justified by the facts that (1) the KE reduces to
the TF limit for slowly varying densities and (2) it allows one
to represent strongly inhomogeneous densities in a quantum
mechanically reasonable way.

To date, there has been no formal justification for the
inclusion of a vW-like term for 2D systems at zero temperature.
In this paper we establish the existence of a vW-like gradient
correction to the 2D KE density functional at finite tempera-
tures. Our approach parallels the earlier work of Brack,16 in
which the ETF theory was developed in the context of “hot”
nuclear matter (ETFT). Given the recent work of Eschrig,17

which aims at providing a rigorous foundation for DFT at
finite temperature, the results presented in this paper are
immediately relevant to future applications of T > 0 DFT in
low-dimensional electronic systems.

This paper is organized as follows. In the next section we
provide a brief review of the general ETFT approach, followed
by an explicit calculation of the T > 0 second-order gradient
correction to the 2D KE functional. In Sec. III we numerically
investigate the quality of the gradient corrected functional
by comparing it to known, exact results, for an isotropic 2D
harmonic oscillator at finite temperature. The paper concludes
in Sec. IV with a brief summary and suggestions for future
investigations.
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II. EXTENDED THOMAS-FERMI THEORY AT FINITE
TEMPERATURE

In this section we provide a brief review of the ETFT
approach. See Ref. [ 11] for a detailed discussion of the ETFT
and the Wigner-Kirkwood semiclassical expansion.

A. Semiclassical spatial density

At the heart of the ETFT approach is the Wigner-Kirkwood
(WK) semiclassical expansion of the zero temperature, diago-
nal Bloch density matrix (BDM), which in two dimensions is
given by11

C0(r; β) =
(

1

λ

)2

e−βV (r)

×
{

1 − h̄2β2

12m

[
∇2V − β

2
(∇V )2

]
+ · · ·

}
, (1)

where V (r) is a local one-body potential, and for our purposes,
we have shown terms only up to relative order h̄2 and
λ ≡ (2πh̄2β/m)1/2. Note that β is to be viewed as a complex
parameter here, and not the inverse temperature 1/(kBT ).
In order to incorporate finite temperatures into the WK
semiclassical theory, the finite-temperature BDM is defined
by16

CT (r; β) ≡ C0
πβkBT

sin(πβkBT )
. (2)

The finite-temperature spatial density is then obtained from an
(all two-sided) inverse Laplace transform (ILT) of the finite-
temperature BDM, viz.,

ρ(r; T ) = L−1
μ

[
2
CT (r; β)

β

]
, (3)

where the factor of 2 in Eq. (3) accounts for the spin degeneracy
after the spin trace has been taken, and μ has the physical
significance of the chemical potential. It should be noted that
if the exact CT (r; β) is known, then Eq. (3) will yield the
exact, quantum mechanical, finite-temperature spatial density.
Of course, here we are using a semiclassical expansion for
CT (r; β), so the resulting ρ(r; T ) will be the semiclassical
spatial density.

In what follows, we will make use of the following ILTs:

L−1
μ

[
βne−βV πkBT

sin (πβkBT )

]

=
∫ ∞

−∞
δ(n)(τ )

1

eτ/kBT z−1 + 1
dτ (n � 0), (4)

L−1
μ

[
β−1e−βV πkBT

sin (πβkBT )

]

=
∫ ∞

0

1

eτ/kBT z−1 + 1
dτ = kBT ln (1 + z), (5)

L−1
μ

[
β−2e−βV πkBT

sin (πβkBT )

]

=
∫ ∞

0

τ

eτ/kBT z−1 + 1
dτ = −(kBT )2Li2(−z), (6)

where Li2(·) is the polylog function18 and z ≡ exp[(μ −
V )/kBT ]. Using Eq. (3), along with Eqs. (4)–(6), readily

leads to the following second-order expression for the finite-
temperature spatial density:

ρ(r; T ) =
(

mkBT

πh̄2

)
ln (1 + z) − (∇V )2

24πk2
BT 2

z(z − 1)

(z + 1)3

− ∇2V

12πkBT

z

(z + 1)2

= ρ(0)(r; T ) + ρ(2)(r; T ). (7)

The ETFT density in Eq. (7) is well defined throughout all
space, with the last two terms, denoted by ρ(2)(r; T ), being
relative order h̄2 greater than the first term, ρ(0)(r; T ). Note that
in Eq. (7), for V (r) < μ, z → ∞ exponentially as T → 0, so
that the T → 0 limit is well defined only within the classical
region; the nonanalytic behavior of the zero-temperature ETF
densities at the turning point, μ = V (r), is well known.11 What
we find here is that the singular behavior of the T = 0 densities
cannot be avoided by first formulating the semiclassical
theory at finite temperature and then performing the T → 0
limit.19 We have, however, confirmed that the T → 0 limit of
Eq. (7) with V (r) < μ correctly reduces to the known (albeit
problematic) T = 0 result.11

B. Semiclassical KE density

The KE density may be obtained from knowledge of
the finite-temperature first-order density matrix (FDM). To
this end, it is useful to introduce the center-of-mass, q =
(r + r′)/2, and relative coordinates, s = r − r′, so that we may
write three variants of the KE density:20,21

T (r; T ) = − h̄2

2m

(
1

4
∇2

q + ∇2
s

)
ρ(q,s; T )|s=0, (8)

T1(r; T ) = h̄2

2m

(
1

4
∇2

q − ∇2
s

)
ρ(q,s; T )|s=0, (9)

ξ (r; T ) = T (r; T ) + T1(r; T )

2

= − h̄2

2m
∇2

s ρ(q,s; T )|s=0. (10)

Again, if the exact finite-temperature expression for the FDM
is known, then Eqs. (8)–(10) will yield the exact, quantum
mechanical finite-temperature KE density.

While all three of the above expressions for the KE density
integrate to the exact same KE, T1(r) is strictly positive
definite and is therefore sometimes preferred in applications of
density functional theory. It has already been shown long ago
that T (r; T ) and T1(r; T ) generally have oscillations exactly
opposite in phase, so that their mean, ξ (r; T ), is a smooth
function. In this paper we focus on T (r; T ) in order to make
contact with earlier theoretical work done at zero temperature,
where the exactT (r; T = 0) was investigated [see also Eq. (26)
in Sec. III].22

The KE density in Eq. (8) may also be expressed in terms
of only local quantities, viz.,16

T (r; T ) = −ρ(r; T )V (r) + F(r; T ) + T σ (r; T ), (11)
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where

F(r; T ) = μρ(r; T ) − L−1
μ

[
CT

β2

]
(12)

is the free energy density, and

σ (r; T ) = ∂

∂T
L−1

μ

[
CT

β2

]
(13)

is the entropy density. The semiclassical approximation to
T (r; T ) may easily be determined to second order by em-
ploying the semiclassical approximation to CT (r; β), as in
Sec. II A for the spatial density. A straightforward calculation
results in the following expression for the finite-temperature,
semiclassical KE density

T (r; T ) = −mk2
BT 2

πh̄2 Li2(−z) − z(∇V )2

12πkBT (z + 1)2

+∇2V

12π

z

z + 1

≡ T (0)(r; T ) + T (2)(r; T ), (14)

where, following Eq. (7), the last two terms in Eq. (14) are
denoted collectively by T (2)(r; T ). As in Eq. (7), the T → 0
limit of Eq. (14) is well defined only within the classical region.
Finally, it follows immediately from Eqs. (8) and (9) that

T1(r; T ) = T (r; T ) + h̄2

4m
∇2ρ. (15)

C. Second-order KE density functional

For the special case of two dimensions, the elimination of
z and V in T (r; T ) above, in favor of the spatial density ρ, is
quite straightforward.19,23,24 To begin we define Ṽ ≡ μ−V

kBT
, so

that z = exp(Ṽ ). Thus, the density [Eq. (7)] is a function of
Ṽ , ∇Ṽ and ∇2Ṽ . Calculating from Eq. (7) ∇ρ and ∇2ρ and
consistently neglecting higher than second derivatives of the
potential, we have ρ = ρ(Ṽ ,∇Ṽ ,∇2Ṽ ), ∇ρ = ∇ρ(· · ·), and
∇2ρ = ∇2ρ(· · ·), which can be solved for Ṽ ,∇Ṽ , and ∇2Ṽ ;
inserting this into Eq. (14) yields the finite-temperature KE
density functional up to O(h̄2), viz.,

TETFT[ρ] = −AT kBT Li2(1 − eρ/AT ) − h̄2

12m
∇2ρ

− h̄2

12m
f1(r; T )∇2ρ + h̄2

24m
f2(r; T )

(∇ρ)2

ρ

= TTFT[ρ] + T (2)
ETFT[ρ], (16)

where

f1(r; T ) = ρ

AT (eρ/AT − 1)
, (17)

f2(r; T ) = eρ/AT [f1(r; T )]2, (18)

and AT ≡ mkBT/(πh̄2). The first term in Eq. (16) is the finite-
temperature 2D TFT KE density functional, TTFT[ρ], while
the other three terms represent the O(h̄2) gradient corrections.
As advertised, the last term in Eq. (16) has the vW form
∼(∇ρ)2/ρ.

An explicit expression for the T1[ρ] KE functional may also
be given by making use of Eq. (15), viz.,

T1,ETFT[ρ] = −AT kBT Li2(1 − eρ/AT ) + h̄2

6m
∇2ρ

− h̄2

12m
f1(r; T )∇2ρ + h̄2

24m
f2(r; T )

(∇ρ)2

ρ
.

(19)

Recall that TETFT[ρ] and T1,ETFT[ρ] both integrate to the same
total KE for finite systems since the Laplacian term is the
divergence of a vector field that vanishes at infinity and by
Gauss’s theorem will not contribute the KE.

To investigate the low-temperature behavior of Eqs. (16)
and (19) we use

lim
ρ/AT →∞

Li2(−eρ/AT ) = −1

2

(
ρ

AT

)2

, (20)

along with the fact that f1(r; T ) → 0, and f2(r; T ) → 0 as
T → 0, to write

TETFT[ρ] → h̄2

2m

(
πρ2 − 1

6
∇2ρ

)
(21)

T1,ETFT[ρ] → h̄2

2m

(
πρ2 + 1

3
∇2ρ

)
. (22)

Equations (21) and (22) agree with the known results for the
T = 0 2D KE functionals T [ρ] and T1[ρ], respectively.11 As
mentioned above, for physical densities, integration over ∇2ρ

vanishes. Therefore, in any practical implementation of self-
consistent T = 0 DFT, the Laplacian term may be ignored,
and we can write

TETFT[ρ] = T1,ETFT[ρ] = h̄2

2m
(πρ2) (23)

as T → 0. We see that there is no vW-like gradient correction
at T = 0, leading to the incorrect conclusion that for an
inhomogeneous 2D Fermi gas, the TF KE functional (at least
to second order) is exact.25 We would like to stress again that
the nonuniqueness of the KE density does not alter the result
that there are no vW-like gradient corrections at T = 0; the
only differences between the T = 0 semiclassical KE densities
obtained from Eqs. (8)–(10) are Laplacian terms, which, as we
have already stated, are of no consequence since they vanish
upon integration for physical (i.e., finite) systems.

It is readily found that as T → ∞, f1(r; T ) → 1 and
f2(r; T ) → 1, so that up to O(h̄2), the 2D KE functionals
go over to

TETFT[ρ] → TB[ρ] = kBTρ − h̄2

6m
∇2ρ + h̄2

24m

(∇ρ)2

ρ
(24)

and

T1,ETFT[ρ] → T1,B [ρ] = kBTρ + h̄2

12m
∇2ρ + h̄2

24m

(∇ρ)2

ρ
.

(25)

Therefore, at high temperature, the second-order gradient
corrections take a functional form analogous to what is
found in 3D ETF, although the numerical prefactors are
different. It is also interesting to note that the high-temperature
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limit of the TFT term is linear in the density, kBTρ, in
contrast to the quadratic dependence, πρ2/2, exhibited in
the zero-temperature limit. We have also checked that the
high-temperature limit of the 2D KE functional may be
obtained by performing an analogous calculation assuming
a Boltzmann, rather than a Fermi, gas.

III. COMPARISON WITH EXACT RESULTS

In a previous study, Brack and van Zyl22 examined the
T = 0 2D TF KE functional by comparing its global (i.e.,
integrated) and local (i.e., spatially dependent) properties
with the known analytical expressions for the 2D harmonic
oscillator (HO) potential. They found the remarkable result
that at T = 0, the 2D TF KE functional (without gradient
corrections), when using the exact spatial density of the 2D
HO, gives the exact quantum mechanical KE. This result is
highly nontrivial because the TF functional is simply the LDA
to the true KE and, therefore, cannot be variationally exact.
More surprising, however, is how well the local behavior of
the exact KE density is reproduced by the TF approximation, as
illustrated in Fig. 3 of Ref. 22. The purpose of this section is to
perform an analogous calculation for the finite-temperature KE
density functionals presented in this paper. In our numerical
calculations, we have scaled all energies and lengths by h̄ω,
and �osc = √

h̄/mω, respectively. We have also restricted our
attention to relatively small particle numbers, N , since it
can be shown rigorously that in the large-N limit, the TF
approximation becomes exact.26

The exact finite-temperature KE density is given by [see
also Eq. (8)]

Texact(r; T ) = −1

2

(
1

4
∇2

q + ∇2
s

)
ρexact(q,s; T )|s=0, (26)

where specializing to the case of the 2D HO,

ρexact(q,s; T ) = 2

π

∞∑
n=0

∞∑
k=0

(−1)nLn(2q2)Lk(s2/2)e−(q2+s2/4)

× 1

exp( n+1+k−μ

T
) + 1

(27)

is the exact finite-temperature first-order density matrix.
Putting s = 0 in Eq. (27) gives the exact finite-temperature
particle density for the 2D HO, viz.,

ρexact(r; T ) = 2

π

∞∑
n=0

∞∑
k=0

(−1)nLn(2r2)e−r2 1

exp( n+1+k−μ

T
) + 1

.

(28)

In Table I, we present a numerical comparison of the kinetic
energies as obtained from

Kexact =
∫

Texact(r)d2r [cf.Eq.(23)], (29)

KTFT =
∫

TTFT[ρexact]d
2r [cf.Eq.(12)], (30)

KETFT =
∫

TETFT[ρexact]d
2r [cf.Eq.(12)], (31)

for N = 42 particles, with Table II providing the same
calculation for N = 420 particles.

TABLE I. A comparison of the total KE at various temperatures as
determined from Eqs. (29–31) with N = 42 particles. All quantities
are measured in scaled units, as discussed in the text. The largest
relative percentage errors in our tabulated data are KTFT ∼ 0.5%
and KETFT ∼ 0.2%.

T Kexact KTFT KETFT

0.5 93.8984 93.4202 93.6977
0.8 97.8489 97.3152 97.7439
1.0 101.3291 100.7624 101.2613
2.0 125.9995 125.3372 125.9854
3.0 157.9066 157.2537 157.9007
4.0 193.5600 192.9616 193.5591
5.0 231.2762 230.6358 231.1417

It is clear that the TFT KE, KTFT, is always lower than the
exact KE density, Kexact, while the gradient corrections serve
to improve the agreement with the exact result. This makes
sense given that the gradient corrections take into account
the curvature of the system imposed by the external potential,
thereby increasing the KE of the system. It is nevertheless quite
surprising how well the TFT functional does in describing
the kinetic energy of the strongly inhomogeneous 2D HO at
finite temperature, even for small particle numbers. From our
numerical calculations, we observe that a tenfold increase in
the number of particles reduces the largest relative percentage
error by roughly a factor of ten; the better agreement between
the TFT, ETFT, and the exact KE, is in keeping with the
expected result that in the large-N limit, the TF approximation
becomes exact.

In Figs. 1 and 2, we present the KE densities, Texact(r),
TTFT[ρ], and TETFT[ρ] with N = 42 particles, at T = 0.2 and
2, respectively. As in Tables I and II, the exact spatial density
[Eq. (28)] has been used as input for the KE functionals.

We have focused on a small number of particles, viz.,
N = 42, since deviations between the exact, TFT, and ETFT
densities are more pronounced for N � O(102), particularly
at low temperatures.

Figure 1 reveals several interesting aspects of the level of
approximation at low temperatures. First, we note that the TFT
(dot-dashed curve, black online) and the exact KE density
(solid curve, red online) are almost indistinguishable within
0 < r � 3. However, near the tail region (see figure inset),
it is clear that the two KE densities are quite different; the
TFT density is strictly positive definite, whereas the exact

TABLE II. As in Table I, but with N = 420 particles. The largest
relative percentage errors in our tabulated data are KTFT ∼ 0.06%
and KETFT ∼ 0.03%.

T Kexact KTFT KETFT

0.5 2879.2573 2877.8822 2878.3566
0.8 2892.3488 2890.9642 2891.7668
1.0 2904.3701 2902.9579 2903.9484
2.0 3002.5299 3000.9349 3002.4338
3.0 3158.2817 3156.5131 3158.2465
4.0 3361.6954 3359.7806 3361.6754
5.0 3603.0235 3601.0015 3603.0076
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FIG. 1. (Color online) A plot of the exact [Eq. (26)] TFT, i.e.,
the first term in Eq. (16), and the ETFT [Eq. (16)] KE densities for
N = 42 particles and T = 0.2. The solid (red online) curve is the
exact KE density, the dot-dashed (black online) curve is the TFT KE
density, and the dashed (blue online) curve is the ETFT KE density.
Inset: Magnification of the tail region, where deviations between the
three curves are most pronounced. The arrow indicates the classical
turning point. Scaled units are used as discussed in the text.

KE density falls below zero, before coalescing with the TFT
density for r � 4.5. The ETFT KE density (dashed curve,
blue online), on the other hand, does a relatively poor job
of quantitatively capturing the behavior of the exact KE
density in the interior, but for the tail region more accurately
reproduces the exact result. Indeed, for r � 3.5, the ETFT
and exact KE densities are indistinguishable on the scale
of the inset. Moreover, in spite of the differences between
the exact and ETFT densities for r � 3, the ETFT is still
a better approximation for the total KE, as evidenced by
the data presented in Table I. Therefore, while the gradient
corrections are important for improving the total (i.e., inte-
grated) KE, they are essential for describing the correct low-

0 1 2 3 4 5 6
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2

3

4

5

6

7

4 4.2 4.4 4.6 4.8 5
0

0.1

0.2

0.3

0.4

FIG. 2. (Color online) As in Fig. 1, but with T = 2.0. Note that at
this temperature, the shell oscillations are already completely washed
away. Inset: Magnification of the tail region, clearly illustrating that
the exact (solid curve, red online) and ETFT (dashed curve, blue
online) curves are indistinguishable on the scale of the plot. The
arrow indicates the classical turning point.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

FIG. 3. A plot of the coefficient of the von Weizsäcker term
[Eq. (18)] for N = 420 particles. The curves correspond, from lowest
to highest, to T = 2 and 18, respectively, in steps of T = 2. Note
that by T = 18, f2(r; T ) is already approaching its Boltzmann value,
f2(r; T ) = 1, represented by the dashed line. Inset: As in the main
figure, but for N = 42 particles at temperatures T = 1,3,5,7. Scaled
units have been used, as discussed in the text.

temperature behavior of the exact KE past the classical turning
point.

Figure 2 presents the same data as in Fig. 1, but with
T = 2.0. At this temperature, the shell oscillations are already
completely washed out, and the exact and ETFT KE densities
are indistinguishable from each other, including the tail region;
in the inset, there are actually three curves plotted, but the
difference between the solid (red online) and dashed (blue
online) curves cannot be resolved. Thus, at temperatures for
which the shell effects are absent (i.e., T � 1), the ETFT
is an excellent approximation to the exact finite-temperature
KE density. Near the tail region, we see that the TFT KE
density (dot-dashed curve, black online) is consistently too
large, thereby emphasizing the importance of the gradient
corrections for a faithful description of the local behavior of
the exact KE density, even for small particle numbers.

Finally, in Fig. 3, we illustrate the temperature and spatial
dependence of the vW coefficient, f2(r; T ) given by Eq. (18),
for N = 420 particles and N = 42 (inset). As the temperature
is increased, we see that the vW coefficient approaches the
constant value f2(r; T ) = 1, confirming our analytical results
above for the Boltzmann regime. Figure 3 establishes that T �
18 is a sufficiently high temperature for the N = 420 particle
system to be treated as Boltzmann gas. The inset illustrates the
expected result that for smaller particle numbers, one enters
the Boltzmann regime at much lower temperatures.

IV. CONCLUSIONS AND OUTLOOK

We have provided a formal justification for the inclusion of
gradient corrections to the 2D KE density functional of an ideal
Fermi gas at finite temperatures. Our numerical calculations
have examined the quality of the TFT and ETFT functionals
by comparing them against exact, analytical results for the
2D HO potential. We find that gradient corrections lead to an
improved agreement for total KE when compared to the TFT
approximation and are necessary to correctly reproduce the
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quantum mechanical tunneling into the classically forbidden
region exhibited by the exact KE density. Unfortunately, the
nonanalytic behavior of the T = 0 semiclassical densities at
the classical turning point cannot be remedied within the
present formalism.

An extension of this work would be to develop the finite-
temperature Dirac exchange functional, which could then be
used in a fully self-consistent, finite-temperature Thomas-
Fermi-Dirac von Weizsäcker (TFDW) DFT calculation similar
to what has already been done at T = 0 for low-dimensional
Fermi systems.15 It would be interesting to see whether the
optimal, ad hoc, T = 0 vW coefficient of 1/8 could be
motivated from a finite-temperature self-consistent TFDW
calculation.

Finally, we wish to point out that the results presented here
may also find relevance in current experiments on ultracold,

trapped Fermi gases, in which interatomic interactions may be
tuned from essentially zero, to very strong, via the Feshbach
resonance.27 It is possible that the low-temperature shell oscil-
lations, and their suppression as the temperature is increased,
may be directly observable in cold atoms experiments on
low-dimensional systems.
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