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Jiřı́ Klimeš,1 David R. Bowler,2 and Angelos Michaelides1,*

1London Centre for Nanotechnology and Department of Chemistry, University College London, London WC1E 6BT, UK
2London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, UK

(Received 1 February 2011; revised manuscript received 15 April 2011; published 25 May 2011)

The van der Waals density functional (vdW-DF) of M. Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)] is
a promising approach for including dispersion in approximate density functional theory exchange-correlation
functionals. Indeed, an improved description of systems held by dispersion forces has been demonstrated in the
literature. However, despite many applications, standard general tests on a broad range of materials including
traditional “hard” matter such as metals, ionic compounds, and insulators are lacking. Such tests are important not
least because many of the applications of the vdW-DF method focus on the adsorption of atoms and molecules on
the surfaces of solids. Here we calculate the lattice constants, bulk moduli, and atomization energies for a range
of solids using the original vdW-DF and several of its offspring. We find that the original vdW-DF overestimates
lattice constants in a similar manner to how it overestimates binding distances for gas-phase dimers. However,
some of the modified vdW functionals lead to average errors which are similar to those of PBE or better. Likewise,
atomization energies that are slightly better than from PBE are obtained from the modified vdW-DFs. Although
the tests reported here are for hard solids, not normally materials for which dispersion forces are thought to be
important, we find a systematic improvement in cohesive properties for the alkali metals and alkali halides when
nonlocal correlations are accounted for.
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I. INTRODUCTION

London dispersion interactions are a ubiquitous phe-
nomenon which contribute to the stability of a wide variety
of systems ranging from biomolecules to molecules adsorbed
on surfaces. However, the origin of the dispersion forces—
nonlocal electron-electron correlations—makes their accurate
theoretical description challenging. This is especially true for
density functional theory (DFT) where local or semilocal
functionals lack the necessary ingredients to describe the
nonlocal effects. In fact, developing methods that include
dispersion, at least approximately, has been one of the most
important fields of development in DFT in the last decade.
Out of the various schemes that have been proposed to add
dispersion to current DFT approximations,1–11 the van der
Waals density functional (vdW-DF) method3 is very appealing
since it is based directly on the electron density. In this
functional the exchange-correlation energy takes the form of

Exc = EGGA
x + ELDA

c + Enl
c , (1)

where the exchange energy EGGA
x uses the revPBE

generalized-gradient approximation (GGA) functional,12 and
ELDA

c is the local density approximation (LDA) to the
correlation energy. Enl

c is the nonlocal energy term which
accounts approximately for the nonlocal electron correlation
effects. Although Enl

c is obtained using a relatively simple
double space integration, this still represents an improvement
compared to local or semilocal functionals.

Although the vdW-DF method greatly improves the inter-
action energies of dispersion bonded systems, its accuracy has
been shown13–15 to be inferior to certain GGAs for a range of
systems where hydrogen bonds are present.16–18 This has lead
to modifications of the method that have focused on both the
exchange and correlation parts.15,19–23 With several functional
forms proposed, it is important to test the methods on general
reference test sets to uncover strengths and weaknesses and

help further development. To this end we assess here the func-
tionals using a test set of solid-state properties of materials.24

Apart from method assessment, this is also important since
many of the applications of the vdW functionals lie outside
of “soft matter,” involving, for example, adsorbates on solid
surfaces. Indeed there has recently been a surge of interest in
the application of vdW-DF to adsorption processes, including
adsorption of water or hydrocarbons on various surfaces.25–34

In such studies an adequate description of the substrate with
a given functional should, in principle, be a prerequisite.35 It
would, for example, be unsatisfactory to improve the descrip-
tion of the adsorbate-substrate interaction and, at the same
time, compromise the bonding within the substrate. However,
without tests of the properties of the substrate and solids in gen-
eral it remains unclear how suitable vdW-DF is for adsorption
studies. Indeed, the PBE lattice constant is often employed
in adsorption studies using revPBE-vdW; however, as we
show, the PBE and revPBE-vdW lattice constants can differ by
several percent and the surface is therefore artificially strained.

There is at least one more reason to perform the tests
reported here: Nonlocal correlations are thought to be impor-
tant for solid-state materials where the core electron densities
have relatively large polarizability. For example, copper and
gold have been subject to several studies,36–38 with the vdW
contribution to binding estimated to be 0.2–0.6 eV for Cu and
0.6–1.2 eV for Au (i.e., up to ∼30% of the total atomization
energy of bulk Au). There are only a handful of studies
concerning heavy alkali metals (see, e.g., Ref. 39), but it was
found that dispersion needs to be included to make the bcc
structure the most stable. More recently, the need to include
nonlocal correlation in DFT semilocal functionals has been
discussed for the heavy alkalis.40

Here we test the performance of several vdW functionals
using a standard test of lattice constants, bulk moduli, and
atomization energies of solids. Our test set is similar to the test
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of Csonka et al.41 and includes metals and ionic and covalent
materials. We include the original vdW-DF (referred to as
revPBE-vdW herein), the recently proposed vdW-DF221,42

(referred to as rPW86-vdW2 herein), and two vdW functionals
developed recently by us, optPBE-vdW and optB88-vdW.15

We also propose a new exchange functional based on the B86b
exchange43 which gives an accuracy similar to the optB88
based vdW-DF on the S22 reference set of weakly bonded gas
phase dimers16 and has an improved asymptotic behavior.42

See Appendix A for more details of the optB86b exchange
functional. This test, together with our previous study,15

should give the reader a broad overview of the strengths and
deficiencies of the vdW functionals that will hopefully lead to
further developments.

The main outcomes of this study are that the revPBE-
vdW and rPW86-vdW2 functionals significantly overestimate
the lattice constants for most materials considered and that
the average absolute error is more than twice that of the
optB88-vdW and optB86b-vdW functionals. The optB88-
vdW and optB86b-vdW functionals give errors between that
of PBEsol and PBE with optB86b-vdW giving smaller errors
than optB88-vdW. This is because the exchange enhancement
factor (Fx) of the optB88-vdW and optB86b-vdW functionals
is between the Fx of PBEsol and PBE for small reduced density
gradients (s). The optB88-vdW and optB86b-vdW functionals
also almost halve the errors of PBE in atomization energies.
optPBE-vdW improves over revPBE-vdW but not as much
as optB88-vdW does. This behavior for the lattice constants
is similar to that of binding curves and bond lengths; in all
three cases the functionals with rapidly growing enhancement
factors give on average longer equilibrium distances and agree
less with the reference values than the functionals where Fx

follows the slowly varying gas limit for small s.
In the next section we discuss the implementation of the

vdW-DF method and details of the computational setup. The
results are summarized in Secs. III, IV, and V for lattice
constants, bulk moduli, and atomization energies, respectively.
We study the differences between local, semilocal, and
nonlocal correlation functionals in Sec. VI. And finally in
Sec. VII we discuss the implications of this study for further
development of the vdW-DF methods.

II. COMPUTATIONAL SETUP

We have used the VASP44,45 code with our implementation
of the vdW-DF correlation using the efficient algorithm of
Román-Pérez and Soler.46 The vdW-DF term is calculated
on the sum of the pseudo–valence and partial electronic
core charge densities, i.e., on the same density that is used
to calculate the valence exchange-correlation energy in the
projector-augmented wave (PAW)47,48 method in VASP. The
use of the PAW method means that the calculation is all-
electron frozen core (with PBE orbitals) for the exchange and
the LDA correlation part of the exchange-correlation energy.
The evaluation of the vdW correlation energy is done in a
pseudopotential approximation. We test this approximation in
Appendices B and C and find that it is very accurate. For
example, the error in lattice constant is usually below 0.1%,
slightly higher for materials with very small bulk moduli. Such
differences are much smaller than the intrinsic errors of the

exchange-correlation functionals themselves and smaller or
comparable to differences between different codes41,49–51 or
potentials.52 While to obtain high accuracy within the Román-
Pérez and Soler scheme using the all-electron density a careful
choice of parameters is required (discussed in Appendices B
and C), the VASP calculations are accurate using less tight
settings. For VASP calculations we use 30 interpolation points
for the q0 function with a saturation value qcut

0 = 10. The
vdW kernel uses a hard setting for the kernel short-range
softening which eliminates the need for the soft correction
term (see Ref. 46). Finally, we note that the algorithm utilizes
the fine FFT grid and, except for the FFTs and summing of the
energy, there is no other communication needed between the
processes.

We employ a standard approach to calculate the solid
properties. The energy is calculated for a set of lattice constant
values and for each functional at least seven points around
the lowest energy are used to fit the Murnaghan equation of
state. The plane-wave basis cutoff is set to 750 eV (900 eV
for solids containing C or F). To reduce errors, we have used
the latest hard PAW potentials supplied with VASP53 with the
highest number of valence electrons. For semiconductors and
ionic solids (metals) an 8×8×8 (16×16×16) Monkhorst-Pack
k-point grid is used in the conventional unit cell. Our PBE
lattice constants agree well with the VASP calculations of Paier
et al.49 as well as with the all-electron reference PBE and
PBEsol values of Haas et al.50 The reference calculations for
atoms were performed in a large 12 × 14 × 16 Å3 box; for
spin-polarized atoms we evaluate the Enl

c term on the sum
of the two spin densities. The experimental reference values,
corrected for zero-point energy effects in the case of lattice
constants and atomization energies, are taken from Refs. 41
and 54. The statistical values that we use to quantify the
errors of the functionals are the mean error (ME) and the
mean absolute error (MAE), as well as the relative versions of
these quantities, namely mean relative error (MRE) and mean
absolute relative error (MARE).

III. LATTICE CONSTANTS

The lattice constants calculated with VASP are given in
Table I and shown as relative errors in Fig. 1. For comparison
we also give the errors of LDA, PBE, and the PBEsol
functional, one of the GGA functionals55–58 devised for solid-
state calculations. We also include the results of the adiabatic-
connection fluctuation-dissipation theorem (ACFDT) in the
random-phase approximation (RPA)59–61 from Ref. 51, which
represents the state of the art for solid-state calculations. Before
discussing the results in detail, let us just point out a striking
feature of the results: The errors are not random and clear
periodic trends are observed. All methods shown tend to give
larger lattice constants for the transition metals, ionic solids,
and semiconductors while the alkali and alkali-earth lattices
are too short. This seems to correspond to the tendency of
functionals to give larger lattice constants when going from
left to right in the periodic table.50 This behavior does not
seem to be improved by hybrid functionals49,62 and is also
present to some extent in the RPA lattice constants, although
from the alkali and alkali-earth metals only the data for Na
have been published.51 In fact, even the functionals designed
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TABLE I. Lattice constants in Å of different solids calculated using VASP for different vdW functionals
and two GGA functionals (PBE and PBEsol). In addition, we show the LDA values taken from Ref. 41.
The values are compared to the experimental values corrected for zero-point energy effects (indicated
by “ZPEC”) also taken from Ref. 41. While both optPBE-vdW and optB88-vdW give mean absolute
errors similar to those of PBE, this value for the optB86b-vdW functional is between those of PBE and
PBEsol. The original revPBE-vdW gives lattice constants that are too large.

Exchange revPBE rPW86 optPBE optB88 optB86b LDA PBEsol PBE Exp.
Correlation vdW vdW2 vdW vdW vdW LDA PBEsol PBE (ZPEC)

Cu 3.708 3.757 3.655 3.632 3.605 3.517 3.569 3.635 3.595
Ag 4.254 4.331 4.174 4.141 4.101 4.010 4.059 4.154 4.056
Pd 4.014 4.086 3.960 3.941 3.909 3.836 3.876 3.943 3.875
Rh 3.882 3.945 3.843 3.831 3.805 3.755 3.780 3.830 3.793

Li 3.453 3.396 3.440 3.432 3.452 3.363 3.436 3.437 3.449
Na 4.233 4.156 4.195 4.169 4.191 4.054 4.174 4.200 4.210
K 5.293 5.177 5.225 5.168 5.202 5.046 5.216 5.284 5.212
Rb 5.672 5.550 5.584 5.506 5.541 5.373 5.572 5.671 5.576
Cs 6.141 5.987 6.022 5.899 5.945 5.751 6.015 6.160 6.039
Ca 5.555 5.493 5.502 5.450 5.465 5.328 5.461 5.533 5.553
Sr 6.052 6.005 5.979 5.917 5.921 5.782 5.913 6.019 6.045
Ba 5.073 5.058 4.987 4.917 4.906 4.747 4.894 5.028 4.995
Al 4.084 4.084 4.058 4.054 4.036 3.985 4.018 4.041 4.020

LiF 4.116 4.080 4.067 4.033 4.037 3.913 4.010 4.068 3.964
LiCl 5.223 5.204 5.153 5.114 5.103 4.968 5.067 5.152 5.056
NaF 4.752 4.693 4.693 4.647 4.658 4.502 4.636 4.708 4.579
NaCl 5.750 5.694 5.673 5.622 5.627 5.465 5.609 5.701 5.565
MgO 4.281 4.282 4.252 4.231 4.230 4.168 4.222 4.257 4.184

C 3.600 3.608 3.585 3.577 3.572 3.532 3.557 3.574 3.543
SiC 4.406 4.424 4.386 4.375 4.369 4.329 4.354 4.377 4.342
Si 5.507 5.523 5.476 5.460 5.447 5.403 5.429 5.465 5.416
Ge 5.864 5.934 5.793 5.762 5.725 5.623 5.680 5.766 5.640
GaAs 5.851 5.908 5.783 5.751 5.717 5.605 5.667 5.752 5.638

ME (Å) 0.105 0.088 0.050 0.012 0.010 −0.100 −0.006 0.061
MAE (Å) 0.105 0.116 0.064 0.066 0.049 0.100 0.033 0.067
MRE (%) 2.3 2.0 1.1 0.4 0.3 −2.0 −0.1 1.3
MARE (%) 2.3 2.6 1.4 1.4 1.0 2.0 0.7 1.4

for solids do not lead to a qualitative improvement of the lattice
constants. For example, the difference between the largest and
the smallest relative errors is similar for LDA, AM05, PBEsol,
and PBE.50

Let us now discuss the results of the vdW functionals. The
two van der Waals functionals proposed by the Langreth and
Lundqvist groups (revPBE-vdW and rPW86-vdW2) tend to
give larger lattice constants (ME = 0.105 Å for revPBE-vdW
and ME = 0.088 Å for rPW86-vdW2). While revPBE-vdW
overestimates all values, rPW86-vdW2, rather surprisingly,
underestimates the lattice constants of the alkali and alkali-
earth metals. The errors are as large as 5.0% (6.8%) for
revPBE-vdW (rPW86-vdW2) in the case of Ag and large
for other transition metals included as well as for Ge and
GaAs. The large errors are similar to the overestimation of
the binding distance that has been observed before for many
systems.3,26,63,64 This has been related to the too steep behavior
of the exchange enhancement factor for small reduced density
gradients which can be seen in Fig. 2. Although originally
both revPBE and rPW86 exchange functionals were selected
because they give similar binding to Hartree-Fock for some
gas-phase dimers, at short separations these functionals are

too repulsive,42 which is important in hydrogen bonding and
here for lattice constants.

The repulsion is largely decreased by utilizing an exchange
functional that has a less steeply rising Fx and thus is
less repulsive for short interatomic separations, such as the
exchange functionals proposed in Ref. 15 (see Fig. 2). The
optPBE-vdW is based on the PBE functional and it gives
similar lattices to PBE for all the systems except for the
alkali and alkali-earth metals. For these metals, the vdW
correlation term gives better agreement with the reference
than the semilocal PBE correlation. The average errors are
further reduced by using the optB88-vdW or optB86b-vdW
functionals. However, for the alkalis the lattice constants
become too short and this worsens progressively as the ion
size increases. This might be caused by overestimation of the
dispersion energy in the vdW functional20 or by the lack of
higher order terms.65 The optB88-vdW functional yields a
mean error of 0.012 Å. The mean absolute error of 0.066 Å is
comparable to the error of optPBE-vdW (MAE = 0.064 Å).
The optB86b-vdW which, like PBEsol, follows the limit
of slowly varying density for small s, further improves the
agreement with the reference (MAE = 0.049 Å) and performs
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FIG. 1. (Color online) Comparison of the relative errors in the lattice constants calculated with different vdW-DF functionals, LDA (from
Ref. 41), PBE, PBEsol, and recent data using the RPA (Ref. 51). The vdW methods are shown in the left panel while the right panel contains
the results of the (semi)local functionals and RPA, as well as the optB86b-vdW results for comparison. All the methods overestimate the lattice
constants for ionic solids and semiconductors and tend to give shorter lattices for alkali and alkali-earth metals. As with the S22 set, both the
revPBE-vdW and rPW86-vdW2 yield equilibrium distances that are too long in most cases. This is improved by the functionals with optimized
exchange: optPBE-vdW, optB88-vdW, and optB86b-vdW.

in between PBEsol (MAE = 0.033 Å) and PBE (MAE =
0.067 Å). Interestingly, optB86b-vdW gives smaller lattice
constants than optB88-vdW for transition metals while the
opposite is true for alkali metals. We attribute this to the
behavior of Fx in two regions of s. The Fx of optB86b-vdW
is less steep than Fx of optB88-vdW for s < 1 and slightly
steeper for s ∼ 2 (see Fig. 2). The s < 1 region has been
identified to be of importance for the lattice constants of
transition metals while s ∼ 2 affects the lattice constants of
alkali metals.41,66

Although it might be surprising at first sight that functionals
optimized on interaction energies of gas-phase dimers give

0 2 4 6
s

1

1.5
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F
x(s

)

PBE
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revPBE
rPW86
optPBE
optB88
optB86b

FIG. 2. (Color online) The exchange enhancement factors Fx of
the functionals employed in this study: PBE, PBEsol, and revPBE,
which share the same functional form but differ in the values of
parameters; rPW86, which is used in the rPW86-vdW2 (Ref. 21)
functional; and three exchange functionals (optPBE, optB88, and
optB86b) optimized for use with the vdW correlation (Ref. 15).
The steepness for small reduced density gradients (s) is of crucial
importance in determining the lattice constants.

very good lattice constants, it just highlights the connection
between the influence of the exchange part on lattice constants,
molecular bonds, and intermolecular binding curves.67,68 In all
these cases the small s behavior is able to alter the properties,
and by following the slowly varying electron gas limit all these
three measures tend to be improved.

IV. BULK MODULI

It is known that the results of a given functional for bulk
moduli are related to the behavior for lattice constants. The
shorter the predicted lattice constant, the higher the bulk
modulus. The vdW functionals tend to follow this trend as can
be seen from the data in Table II and the relative errors shown
in Fig. 3. The revPBE-vdW and rPW86-vdW2 functionals give
too soft lattices, with the bulk moduli smaller by more than
30% for Ag, Pd, Ge, and GaAs. This correlates well with the
overestimation of the lattice constant by more than 3% for
these materials with revPBE-vdW and rPW86-vdW2.

There are several trends that one can observe; perhaps the
clearest is the tendency of PBE and PBEsol to underestimate
the bulk modulus with the increase of the ion size. This is most
prominent for semiconductors, where it is clear that none of
the vdW functionals alter this trend. On the other hand the RPA
results do not suffer this deficiency. Importantly, this softening
trend for alkali metals is improved by the vdW functionals. The
reference experimental values were not adjusted for zero-point
energy effects which would slightly increase the reference
values (up to ∼3% in the case of Li41). Let us then conclude that
here again the optimized vdW functionals improve upon the
original methods and they follow the trend expected from the
errors in the lattice constants. Specifically, the average absolute
errors increase in order PBEsol < optB86b-vdW < optB88-
vdW ≈ PBE ≈ optPBE-vdW < revPBE-vdW < rPW86-vdW.
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TABLE II. Bulk moduli in GPa of the selected solids using different exchange-correlation
functionals with the LDA values taken from Ref. 41. The experimental data are shown as well;
these are not, however, corrected for zero-point energy effects, which would lead to a slight increase
of the values (see Ref. 41).

Exchange revPBE rPW86 optPBE optB88 optB86b LDA PBEsol PBE
Correlation vdW vdW2 vdW vdW vdW LDA PBEsol PBE Exp.

Cu 111 97 129 138 149 190 165 139 142
Ag 67 61 85 95 104 139 116 89 109
Pd 137 119 161 172 187 227 203 168 195
Rh 221 193 248 258 276 320 295 256 269

Li 13.7 14.7 13.9 13.8 13.4 15.2 13.6 13.9 13.3
Na 7.39 7.96 7.73 7.81 7.65 9.50 7.86 7.71 7.5
K 3.58 3.97 3.80 3.95 3.79 4.60 3.71 3.56 3.7
Rb 2.82 3.14 3.02 3.21 3.05 3.54 2.93 2.79 2.9
Cs 2.07 2.28 2.04 2.30 2.01 2.58 2.00 1.98 2.1
Ca 16.4 17.7 16.9 17.6 17.3 19.1 17.4 17.2 18.4
Sr 11.4 12.5 12.3 13.2 13.0 14.8 12.9 11.5 12.4
Ba 9.04 9.77 9.59 9.92 9.64 10.9 9.33 8.95 9.3
Al 66.5 60.1 71.9 70.6 77.0 83.8 82.1 78.6 79.4

LiF 63.4 68.9 68.2 71.7 70.2 86.5 72.6 66.9 69.8
LiCl 30.3 32.3 32.9 34.5 34.3 40.8 35.0 31.6 35.4
NaF 43.6 48.8 46.9 49.4 47.5 61.2 48.0 44.6 51.4
NaCl 23.6 26.0 25.7 27.0 26.2 32.4 25.8 22.8 26.6
MgO 148 148 153 157 156 172 159 148 165

C 404 395 418 424 431 467 446 429 443
SiC 200 191 208 212 215 225 221 212 225
Si 82.8 79.6 86.9 88.7 91.2 96.8 93.8 88.3 99.2
Ge 48.7 42.8 54.7 57.3 61.5 72.6 67.0 58.6 75.8
GaAs 51.4 47.1 57.3 60.2 63.6 74.2 68.9 60.2 75.6

ME (GPa) −15.9 −19.5 −9.4 −6.2 −3.2 10.3 1.6 −7.4
MAE (GPa) 15.9 19.8 9.5 6.7 4.5 10.9 4.8 7.4
MRE (%) −13.8 −12.2 −7.2 −3.1 −2.7 15.5 0.2 −7.8
MARE (%) 14.0 16.2 8.8 7.6 5.1 15.3 4.8 8.4
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FIG. 3. (Color online) Relative errors in the bulk moduli for the methods considered in this study. Results of the vdW functionals are
shown on the left, results of the other methods on the right, where also the optB86b-vdW results were added. The original revPBE-vdW and
rPW86-vdW2 methods underestimate the moduli by up to 45% and the optimized vdW functionals reduce the errors.
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V. ATOMIZATION ENERGIES OF SOLIDS

The calculated atomization energies for our selection of
solids are presented in Table III, and the relative errors are
shown in Fig. 4. Again we include for comparison LDA,
PBE, PBEsol, and RPA data in Fig. 4. As can be seen the
revPBE-vdW and rPW86-vdW2 functionals underestimate the
atomization energies with average relative errors of −11.0%
and −15.9%, respectively. This underestimation is similar to
the overestimation of LDA (ME = 15.1%). The optimized
optPBE-vdW, optB88-vdW, and optB86b-vdW functionals
give much improved results with the average relative errors
of −3.0%, −1.3%, and 2.1%, respectively. In most cases the
optimized functionals tend to give larger atomization energies
and increase in the order optPBE-vdW, optB88-vdW, and
optB86b-vdW. Only in the case of the alkali metals does
optB88-vdW give less binding than optPBE-vdW which for
these materials agrees well with the reference values.

Interestingly, when one compares the GGA and vdW
correlation functionals, there seems to be some systematic
improvement as well, most notably for the alkali metals. While
the PBE atomization energies get progressively worse with the
increase of the ion size, all the vdW functionals give errors of

a similar magnitude. While one can observe a similar trend
for PBE atomization energies of semiconductors, which is
decreased by the optimized vdW functionals, PBEsol seems
to improve over PBE as well. The atomization energies of the
alkali halides calculated using the optimized vdW functionals
are also in better agreement with the reference data than either
PBE or PBEsol. The effect of different correlation functionals
will be discussed more in the next section.

VI. THE EFFECT OF NONLOCAL CORRELATION

Although we know that the vdW-DF correlation form
is only approximate, it is interesting to see what changes
occur when semilocal correlation such as the PBE correlation
(referred to as “PBEc”) is replaced by the nonlocal form of
vdW. (The “vdW correlation” is the ELDA

c + Enl
c correlation

energy). To study this change we have calculated the lattice
constants using the PBE exchange functional (referred to as
“PBEx”) and LDA, PBE, and vdW correlation functionals.
This way we can directly compare the effect of adding PBE
semilocal or vdW nonlocal corrections. Let us first present
the results for the lattice constants in Fig. 5. At first sight,

TABLE III. Atomization energies in eV for various solids calculated using VASP for different exchange-correlation functionals.
We show the data of the revPBE-vdW and rPW86-vdW2 functionals, the optimized vdW functionals, and results of LDA, PBEsol,
and PBE. The values are compared to the experimental values corrected for zero-point energy effects taken from Ref. 41. All three
optimized functionals give better results than either PBE or PBEsol. The LDA values were taken from Ref. 51 for semiconductors,
ionic solids, transition metals, and Al. The atomization energies of alkali and alkali-earth metals were taken from Ref. 54.

Exchange revPBE rPW86 optPBE optB88 optB86b LDA PBEsol PBE Exp.
Correlation vdW vdW2 vdW vdW vdW LDA PBEsol PBE (ZPEC)

Cu 2.93 2.81 3.35 3.52 3.70 4.55 4.04 3.49 3.52
Ag 2.16 2.15 2.57 2.76 2.90 3.64 3.06 2.50 2.97
Pd 3.18 3.13 3.71 3.96 4.16 5.08 4.43 3.71 3.92
Rh 5.12 4.92 5.81 6.10 6.40 7.67 6.73 5.82 5.78

Li 1.52 1.47 1.61 1.57 1.63 1.79 1.68 1.60 1.67
Na 1.01 0.90 1.09 1.04 1.10 1.24 1.15 1.08 1.13
K 0.84 0.75 0.91 0.88 0.92 1.01 0.93 0.86 0.94
Rb 0.76 0.69 0.84 0.81 0.85 0.92 0.83 0.77 0.86
Cs 0.72 0.66 0.80 0.79 0.81 0.87 0.77 0.70 0.81
Ca 1.62 1.40 1.82 1.88 1.99 2.21 2.11 1.90 1.86
Sr 1.36 1.13 1.56 1.61 1.73 1.90 1.81 1.61 1.73
Ba 1.68 1.52 1.90 1.99 2.08 2.24 2.12 1.88 1.91
Al 2.96 2.56 3.30 3.34 3.61 4.04 3.86 3.50 3.44

LiF 4.36 4.48 4.49 4.53 4.50 4.94 4.47 4.32 4.47
LiCl 3.47 3.51 3.58 3.61 3.60 3.83 3.55 3.42 3.59
NaF 3.89 3.95 4.00 4.02 4.00 4.38 3.95 3.82 3.98
NaCl 3.23 3.21 3.32 3.33 3.32 3.50 3.25 3.15 3.34
MgO 4.83 4.85 5.08 5.21 5.23 5.88 5.29 4.97 5.27

C 7.09 6.95 7.54 7.70 7.88 9.01 8.26 7.70 7.58
SiC 6.02 5.82 6.37 6.52 6.67 7.45 6.88 6.44 6.49
Si 4.35 4.05 4.60 4.74 4.87 5.34 4.95 4.62 4.68
Ge 3.43 3.09 3.76 3.90 4.01 4.62 4.15 3.72 3.86
GaAs 2.90 2.73 3.27 3.36 3.44 4.09 3.55 3.15 3.39

ME (eV) −0.34 −0.46 −0.08 0.00 0.10 0.56 0.20 −0.11
MAE (eV) 0.34 0.46 0.09 0.07 0.12 0.56 0.22 0.13
MRE (%) −11.0 −15.9 −3.0 −1.3 2.1 15.1 4.8 −4.4
MARE (%) 11.0 16.0 3.1 2.9 3.2 15.1 6.0 5.0
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FIG. 4. (Color online) Relative errors in atomization energies calculated using different DFT approaches. Data for various flavors of vdW
functionals are shown in the left panel. Data for LDA, semilocal PBE and PBEsol, the RPA method, and the optB86b-vdW functional are shown
in the right panel. The ZPE was subtracted from the experimental data. The optB88-vdW and optB86b-vdW tend to give values between those
of PBE and PBEsol for transition metals and semiconductors, in agreement with the behavior of their exchange enhancement factor. However,
they agree better with the reference for alkali halides, where even PBEsol underbinds. Moreover, they give consistent errors for alkali metals
where both PBE and PBEsol increasingly underbind with the increasing size of the ion.

the PBEx-PBEc and PBEx-vdWc give rather similar results,
consistently decreasing the PBEx-LDAc lattice constant.69

This means that an exchange functional which gives good
results for solids with PBE correlation will tend to give
good results with the vdW correlation as well. As we noted
before, there is, however, a clear difference for the alkali
metals, where the PBEx-PBEc gives progressively worse
lattice constants with the increase of the ion size. This is even
more pronounced for the atomization energies, shown in Fig. 6,
where PBEx-PBEc underbinding starts at only −3% for Li
but worsens to ∼−15% for Cs. This trend is clearly reversed
by the vdW correlation, although too much. The tendency to
underbind larger ions by semilocal functionals is analogous to
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FIG. 5. (Color online) Comparison of the relative errors in the
lattice constants for the PBE exchange functional with LDA, PBE,
and vdW correlation functionals.

the behavior of semilocal functionals for noble-gas dimers in
the gas phase.70 The interaction energy is obtained only from
the region of electron density overlap and therefore does not
scale in the same way as the size of the ion.

Careful observation reveals that the differences between
PBE and vdW correlations are qualitatively similar for tran-
sition metals and semiconductors. With the vdW correlation
the lattice constants are larger by ∼1% (except for C, SiC,
and Si, where the difference is less) while the atomization
energies have a smaller range of errors. For example, in
the Rh, Pd, Ag group, the nonlocal correlations will be
relatively the most important for Ag which has a closed d

shell and the smallest atomization energy. And indeed, the
range of errors in atomization energies decreases for this
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FIG. 6. (Color online) Relative errors in the atomization energies
for the PBE exchange functional combined with LDA, PBE, and vdW
correlation functionals.
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TABLE IV. Summary of the results for lattice constants and atomization energies obtained using
PBE, the revPBE-vdW and rPW86-vdW2 functionals of Langreth and Lundqvist and co-workers,
and the vdW functionals with optimized exchange.

PBE revPBE-vdW, rPW86-vdW2 Optimized Exchange

Lattice constants Worse than PBE Similar to or better than PBE
MARE 1.4% 2.3% (revPBE-vdW) 1.4% (optB88-vdW)

Atomization energies Worse than PBE Better than PBE
MARE 5.0% 11.0% (revPBE-vdW) 2.9% (optB88-vdW)

group, although the trend is not cured completely. Note that
the trend in lattice constants is not improved and it would be
actually worsened by using a hybrid functional.49 Thus the
semilocal PBE or nonlocal vdW correlation with semilocal
or hybrid exchange seems to be unable to describe the
delicate balance of the interactions in the late transition metals.
For semiconductors PBEx-vdWc further increases the lattice
constants compared to PBEx-PBEc. Since for these systems
the nonlocal correlation is less important than the semilocal
contribution, the results suggest that the semilocal part of
the vdW correlation is effectively less attractive than PBEc.
However, PBEx-PBEc worsens the atomization energies for
solids with larger atoms where the vdW correlation improves
the trend. This again demonstrates the main trend observed
in this study, that nonlocal correlations become increasingly
important with the increase of the ion size.

VII. DISCUSSION AND CONCLUSIONS

In this study we have compared solid-state properties
obtained with different semilocal and nonlocal exchange-
correlation functionals and we summarize the main results

TABLE V. Lattice constants in Å of Ge evaluated using various
approximations for the Enl

c for the optB86b-vdW functional. Three
PAW potentials were used: Ge has four valence electrons, Ge d and
Ge h fourteen, and Ge h has a smaller core radius. The FFT grid
contains 120 points in each direction, so that the grid spacing in the
cell is ∼0.05 Å. All the calculations used qcut

0 = 10 and Nα = 30 to
allow for a comparison between VASP and the all-electron results.
The differences in the optB86b-LDA lattice constants represent the
error given by the PAW potential. One can see that the all-electron
based evaluations of the vdW energy (�cut 20

ae and �no soft
ae ) give almost

the same differences in lattice constants between the different PAW
potentials as optB86b-LDA. The optB86b-vdW lattice constant
calculated with VASP agrees well with the all-electron calculations
for the hard potential; the agreement is worse for the Ge and
Ge d potentials. However, in the worst case of the Ge potential
this deviation is 0.018 Å, much smaller than the difference of
∼0.07 Å when only the real valence density (�val) is used.

Ge Ge d Ge h

optB86b-LDA 5.857 5.842 5.845
optB86b-vdW 5.764 5.714 5.726
�val 5.814 5.735 5.738
�cut 20

ae 5.746 5.729 5.732
�no soft

ae 5.740 5.723 5.726

in Table IV. The purpose of this study is mainly to understand
how the vdW-DF method performs for hard matter, beyond
the traditional soft matter and van der Waals bonded systems
to which it is primarily targeted. We have found that the
particular choices of exchange functionals made by Langreth
and Lundqvist and co-workers for the revPBE-vdW and
rPW86-vdW2 functionals (i.e., revPBE and rPW86) lead to
large overestimations of lattice constants and underestimations
of bulk moduli and atomization energies for most of the
solids considered. In addition, the errors have a wide range;
e.g., rPW86-vdW2 underestimates the lattice constant of Li
by 1.5% but overestimates the value for Ag by 6.7%. The
atomization energies are underestimated by more than 0.3 eV
on average. The optimized exchange functionals introduced in
Ref. 15 (i.e., optPBE-vdW and optB88-vdW) and the optB86b-
vdW functional introduced here improve over revPBE-vdW
and give lattice constants that are similar to those of PBE.
This leads to similar improvements for the bulk moduli. From
our study it seems that the vdW correlation functional does
not improve dramatically over PBE except for the lattice
constants of the alkali metals. This means that there is still
some spread of the errors in the lattice constants which
is not improved compared to PBE or PBEsol and further
developments are required to reduce this range of errors.
Importantly, the atomization energies seem to be qualitatively
improved when a nonlocal correlation functional is used. This
is most notable for the alkali metals, where PBE and PBEsol
increasingly underbind with the increasing size of the ion but
the vdW functionals suffer no such deficiency. Moreover, the
atomization energies of ionic solids are in very good agreement
with the experimental values.

Let us now discuss the results obtained here in a broader
context. First, after the local and semilocal approximations,
the nonlocal density functionals are the next logical step

TABLE VI. Dependence of the Ge lattice constant on the
number Nα of q0 interpolation points and the qcut

0 . The electron
density was smoothed above 20 a.u. and a very fine FFT grid with
200 points in each direction was used (corresponding to 0.03 Å
spacing).

Nα

qcut
0 20 30 40 50

5 5.751 5.749 5.748 5.748
10 5.740 5.734 5.731 5.730
18 7.505 5.733 5.732 5.732
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before the orbitals are introduced in the exchange-correlation
energy such as is done in the RPA or hybrids. In this
sense the nonlocal correlation functionals offer great promise.
However, both revPBE-vdW and rPW86-vdW2 suffer from
too much repulsion at short distances, a well-known feature
of revPBE-vdW for systems like the gas-phase dimers.3,21,63

In this study we have shown that lattice constants of solids
are subject to similar errors. This is a significant problem
since accurate lattice constants are crucial for the predictive
power of theory.35 One possible way to alleviate the problems
is to change the exchange functional. We have shown that
functionals with less steeply rising exchange enhancement
factors for small s will improve both results on the S22 set
and, in this study, the lattice constants of solids. However, it
is known from studies of GGA functionals that this change
will reduce the accuracy for molecular atomization energies.
Although accurate atomization energies are often not crucial
for studies of surface adsorption, improved accuracy could
be gained by using a meta-GGA or hybrid-GGA functional
if necessary. We stress that the observed differences between
PBE correlation and vdW correlation discussed in Sec. VI will
be similar for GGA or hybrid functionals since both employ
GGA correlation.

At a more fundamental level, the question of what form
of exchange and correlation to use is still to be resolved. In
principle one can try to find an exchange functional compatible
with “dispersionless” interaction energies.71 Another approach
might be to fit a functional to interaction energies based on the
so-called exact exchange (EXX) in the ACFDT formalism.
This would allow the correlation part to be compared directly
to the ACFDT correlation energy (e.g., in the RPA approxima-
tion). However, this might not be qualitatively that different
from trying to reproduce HF binding curves. Moreover, the
EXX energy depends on the single-particle orbitals and the
correlation part will be just EEXX

c = E(exact) − E(EXX).
Therefore no “exact” correlation energy can be defined in
this sense. Even defining EEXX

c using some choice of orbitals
will mean that this needs to be reproduced by a given DFT
functional which seems to be rather difficult. So far, even the
form of semilocal correlation that should be used is an ongoing
debate.3,72 This includes the question of how much of the
semilocal correlation energy the vdW correlation functional
recovers. In this light, there is a need for reference systems
to help the development, similar to GGA functionals where
lattice constants, atomization energies, bond lengths, and other
data have been extremely useful. The doubts and discussions
concerning the vdW functionals just highlight the need for
accurate reference data for gas-phase clusters, adsorbates,
solids, and so on. The approach of using quantum chemistry
methods for the solid state17,73–77 is one that seems very useful
and deserves more attention.

To conclude, we have calculated solid-state properties of
a set of solids using a self-consistent implementation of the
vdW-DF method in the VASP code. We have shown that the
method agrees well with all-electron data which are much more
time consuming to obtain. The lattice constants of solids are, in
analogy to what has been reported for gas phase dimers,3,21,63

too large with the original revPBE-vdW and rPW86-vdW2
methods but improved when optimized exchange functionals
are used. Indeed, optB86b-vdW gives errors in lattice constants

between PBE and PBEsol and thus yields accurate binding
properties for gas-phase clusters and also describes bulk mate-
rials well. The atomization energies of solids are considerably
improved when the optimized functionals are used. This work
provides some clear reference data as to how the vdW-DF
family of functionals perform which should be useful in the
further development of the method.
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APPENDIX A: OPTB86B

Here we briefly present the optB86b exchange functional;
a more in-depth discussion will be published elsewhere. From
detailed studies of the exchange functionals and binding
curves it became apparent that the behavior of the exchange
enhancement factor (Fx) for small reduced density gradients
(s) affects the position of the repulsive Pauli wall. Functionals
with steeply increasing Fx are more repulsive, and more
importantly, start to be repulsive for longer distances than
functionals with Fx less steep or flat, like LDA. Therefore
lattice constants tend to be longer when one goes from LDA
to PBEsol to PBE to revPBE50,52 and similar observations can
be made for equilibrium distances of gas-phase clusters, e.g.,
the water dimer.68,78 This has been exploited in the PBEsol
functional which decreases the average overestimation of the
PBE equilibrium distances.58 In an analogous way the overes-
timation of the revPBE-vdW binding distances, observed for
many systems, can be reduced by choosing a functional that
rises less steeply for small s. Using the same small s behavior
as PBEsol leads to a good agreement of the gas-phase dimer
binding curves with the reference data. For large s, it has been
suggested that Fx should have s2/5 behavior.42 We modified
the B86b exchange functional to obey these limits (although
the second with a coefficient slightly different from the one
suggested in Ref. 42). The form of the optB86b functional is
then F

optB86b
x = 1 + μs2

(1+μs2)4/5 ,μ = 0.1234 , and the function
is shown in Fig. 2. The optB86b-vdW gives almost the same
results on the S22 data set as the optB88-vdW functional;
namely, the mean absolute deviations are 12 meV for the total
set and 13, 16, and 6 meV for the hydrogen, dispersion, and
mixed bonding subsets (using the reference data of Podeszwa
et al.79 on the geometries of Jurečka et al.16). However, since
this form has a less steeply rising Fx for large s than optB88,
it is less repulsive for distances larger than optimum. This
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TABLE VII. Lattice constant of Ge calculated on the very fine
grid with 200 points in each direction for different cutoffs of the
all-electron density and different Nα interpolation points. The cutoff
value for q0 was set to qcut

0 = 10. The change of the lattice constant
is small overall when the density cutoff is increased for a constant
Nα . The variation is higher for constant cutoff and increasing
number of interpolation points. For the highest density cutoff and
the highest number of interpolation points the data deviate because
of an insufficient real-space grid.

Nα

�cut (a.u.) 20 30 40 50 80

20 5.740 5.734 5.731 5.730 5.733
100 5.734 5.734 5.731 5.725 5.742
1000 5.738 5.733 5.730 5.728 5.747

leads to a smaller error cancellation between exchange and the
overestimated correlation than for the optB88-vdW functional.

APPENDIX B: ALL-ELECTRON DENSITY BASED
LATTICE CONSTANTS

Our tests comparing the approximate vdW evaluation in
VASP to all-electron calculations show very good agreement
between both approaches. However, it is not clear whether
reference-quality calculations can be performed since the vdW
energy depends on the PAW potential used. In this part we aim
to obtain all-electron based lattice constants and then assess the
accuracy of VASP against this benchmark. We start by showing
that by utilizing different PAW potentials the lattice constants
differ. For example, we show lattice constants of Ge evaluated
with three different PAW potentials in Table V. The potentials
are Ge with 4 valence electrons, Ge d with 14 electrons,
and a hard Ge h with 14 electrons. One can see that the
differences between the optB86b-vdW lattice constants cannot
be completely attributed to the differences caused by the PAW
potential, shown by the optB86b-LDA values. Therefore in the
following we first test convergence of the various parameters
involved. For this we use Ge because of its medium size and
the fact that three different PAW potentials are available for it.
Later, in Sec. B 2 we obtain the all-electron based data for the
whole set.

To calculate the all-electron vdW energy we use a stand-
alone program based on the vdW routines in SIESTA.46,80,81

However, the calculation of the AE based lattice constants is
not straightforward as several parameters need to be converged.
Importantly, the AE density represented on a finite grid leads
to numerical errors close to the ionic cores. Therefore we first
smoothly cut the electron density around the cores and test
the convergence of the other parameters. We then study the
effect of the cut of the density. Furthermore, we test whether
the lattice constant can be evaluated using only the valence
electron density. We use the lattice constant of Ge with the
Ge h PAW data set for the tests of the parameters.

1. Convergence tests
The efficient vdW algorithm introduces two basic parame-

ters that control the quality of interpolation of the q0 function:

TABLE VIII. Dependence of the Ge lattice constant on the all-
electron density cutoff and the number of interpolation points Nα .
The soft correction was not added to Enl

c . qcut
0 = 10 was used. In this

case the all-electron density can be used without any cutoff (row ∞)
since the contribution from the inner shells is small. The agreement
with data in Table VII is almost perfect, with the exception of the
lattices obtained with �cut = 1000.

Nα

�cut (a.u.) 20 30 40 50 80

20 5.736 5.734 5.731 5.730 5.733
100 5.731 5.734 5.731 5.725 5.742
1000 5.732 5.731 5.728 5.726 5.743
∞ 5.732 5.731 5.728 5.726 5.743

a cutoff qcut
0 and number of interpolation points Nα . The vdW

energy also depends on the underlying FFT grid and the density
cutoff needed to avoid numerical errors close to the cores. The
FFT grid is the most straightforward parameter to converge
and we find that grid spacing around 0.03 Å can be considered
converged; compared to grid spacing of 0.04 Å the lattice
constant changes by only 0.002 Å.

The values of qcut
0 and Nα affect the value of the lattice

constant more significantly. As can be seen in Table VI, the
lattice constant seems to converge when both qcut

0 and Nα

are increased. The values of Nα = 30, qcut
0 = 10 give results

that are in a very good agreement with the lattice constants
obtained with either Nα or qcut

0 increased. Moreover, the qcut
0 =

10 values are almost identical to the values obtained with
qcut

0 = 18. We therefore now set qcut
0 = 10 and study how the

lattice constant depends on the density cutoff and Nα . Table VII
shows that the values first converge when Nα is increased
up to 40; further increase, to Nα = 50 and Nα = 80, gives
oscillating values. This is more pronounced with higher density
cutoffs. This seems to be caused by “overinterpolation” of the
q0 function, which would be probably less severe with an even
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FIG. 7. (Color online) Lattice constants of various solids cal-
culated with different approximations of the nonlocal van der
Waals energy for the optB86b-vdW functional. The self-consistent
implementation in VASP and non-self-consistent calculations based
on the same density are reported. These use the real valence density
(“valence”) and the all-electron density without (“AE no soft”) and
with (“AE dens. cut”) the soft correction. The VASP calculations tend
to give better agreement with the AE calculations because of the
partial electronic core charge density added to the pseudo–valence
density.
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TABLE IX. Lattice constants in Å calculated with the optB86b-
vdW functional using different approaches and compared to the
zero-point energy corrected experimental value. Self-consistent
calculation using the sum of the pseudo–valence density and the
soft-core density (“VASP”), postprocessing calculations using the
real valence density (“�val”), and all-electron density with �ae and
without �no soft

ae the soft correction are given.

Solid VASP �val �no soft
ae �ae Exp. (ZPEC)

Nα 30 40 40 40 —
qcut

0 10 10 10 10 —
�cut ∞ ∞ ∞ 20 —

Cu 3.605 3.607 3.607 3.606 3.595
Rh 3.805 3.811 3.813 3.806 3.793
Pd 3.909 3.913 3.912 3.912 3.875
Ag 4.101 4.100 4.097 4.098 4.056

Li 3.452 3.454 3.454 3.454 3.449
Na 4.191 4.194 4.185 4.191 4.210
K 5.202 5.215 5.213 5.208 5.212
Rb 5.541 5.562 5.548 5.550 5.576
Cs 5.945 5.980 5.956 5.944 6.039
Ca 5.465 5.476 5.471 5.463 5.553
Sr 5.921 5.937 5.927 5.927 6.045
Ba 4.906 4.935 4.926 4.920 4.995
Al 4.036 4.086 4.036 4.038 4.020

LiF 4.037 4.041 4.039 4.040 3.964
LiCl 5.103 5.116 5.109 5.109 5.056
NaF 4.658 4.660 4.656 4.658 4.579
NaCl 5.627 5.636 5.625 5.628 5.565
MgO 4.230 4.239 4.233 4.234 4.184

C 3.572 3.573 3.571 3.571 3.543
SiC 4.369 4.385 4.367 4.367 4.342
Si 5.447 5.478 5.458 5.447 5.416
Ge 5.725 5.737 5.728 5.731 5.640
GaAs 5.717 5.744 5.724 5.722 5.638

denser grid. However, there seems to be no point in doing this
since the calculations using Nα = 40, qcut

0 = 10 agree with
more stringent settings to within 0.001 Å. Therefore, to obtain
the reference lattice constants, we use density cutoff 20 a.u.,
Nα = 40, qcut

0 = 10, and FFT grid with fine spacing around
0.03 Å. Since increasing Nα is computationally demanding,
we use the values Nα = 30, qcut

0 = 10 in VASP calculations.
Before calculating the lattice constant on the whole solid-

state test, we present two alternative approaches to the
calculation. First, it turns out that the problematic part of the
calculation that makes the direct evaluation of the vdW energy
impractical is the soft correction term, introduced in Ref. 46.
However, the lattice constants calculated with or without this
term are virtually identical when the electron density is cut
and a “hard” vdW kernel is used (cf. the data in Table VIII and
Table VII). Therefore one can use the all-electron density to
evaluate the lattice constant if the soft correction is not added.
However, as the data for large Nα in Table VIII suggest, there
is some numerical noise introduced from the interpolation as
well. Despite this, the difference in the lattice constants of
the all-electron smoothed density and the all-electron density
without the soft correction is very small (< 0.1%).

TABLE X. Total atomization energy from VASP (Eat,total) using
optB86b-vdW and contribution of the nonlocal correlation term
(Enl

c ) to the atomization energies for a set of solids. The nonlocal
correlation has been calculated with VASP self-consistently, and
using the SIESTA routine on the all-electron density with and without
the soft correction. All data in eV. The reference atom calculations
were done in a rather small cell with a side length approximately
twice the side of the conventional unit cell of the appropriate solid
and thus they are not fully converged. The atomization energies are
therefore lower than those reported in Table III.

Enl
at

Solid Eat,total VASP ae ae, no soft

Cu 3.679 0.941 0.933 0.935
Ag 2.887 1.097 1.063 1.065
Pd 4.160 1.309 1.259 1.261
Rh 6.385 1.498 1.430 1.433

Li 1.203 0.155 0.153 0.155
Na 0.923 0.221 0.221 0.222
K 0.832 0.281 0.275 0.276
Rb 0.762 0.314 0.301 0.303
Cs 0.743 0.355 0.340 0.342
Ca 1.940 0.584 0.569 0.571
Sr 1.691 0.638 0.616 0.617
Ba 2.036 0.739 0.711 0.713
Al 3.488 0.799 0.750 0.752

LiF 4.410 0.273 0.267 0.268
LiCl 3.489 0.375 0.369 0.370
NaF 3.959 0.270 0.268 0.269
NaCl 3.239 0.359 0.356 0.357
MgO 5.189 0.533 0.523 0.524

C 7.910 0.772 0.745 0.747
SiC 6.669 0.767 0.737 0.738
Si 4.836 0.741 0.712 0.714
Ge 4.003 0.752 0.733 0.734
GaAs 3.442 0.741 0.717 0.718

It is also interesting to try to use the real valence density (i.e.,
not the pseudo–valence density) to obtain the lattice constant.
In this case the lattice constant converges quickly with all
the parameters and, in the case of Ge, the converged value
is 5.737 Å, slightly larger than the 5.732 Å obtained with
the all-electron density. As we shall see, the agreement for
other materials strongly depends on the number of electrons
included in the valence shell.

Let us now summarize the results and compare the lattice
constants obtained using the softer potentials as well. We com-
pare the VASP calculations to the real valence, and all-electron
with and without electron density cutoff in Table V. Since
we want to be able to compare to our VASP implementation we
use Nα = 30 and qcut

0 = 10. One can notice that the changes in
the all-electron lattice constants (�cut 20

ae and �no soft
ae ) correspond

well to the respective changes in the optB86b-LDA values. The
real valence calculation (�val) without the d electrons gives a
too large lattice constant; the difference is almost halved in the
case of the VASP calculation where the partial electronic core
charge is added as well. Therefore we can expect a very good
agreement of the VASP and all-electron data for PAW potentials
that are either hard or contain more than one electronic shell.
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2. Comparison on the whole set

Now we proceed to calculate the lattice constants of the
chosen solids using the approaches shown above. This allows
us to test whether we need to use the quite cumbersome
all-electron evaluation or whether VASP can be used. We
use several ways to estimate the lattice parameter: First,
we calculate it directly from VASP using the approximated
Enl

c . Second, the real valence density is used; third, the
all-electron density without the soft correction. Finally, the
vdW energy is calculated on the all-electron density with
a density cutoff imposed to avoid numerical errors. The
VASP implementation uses Nα = 30 interpolation points with
qcut

0 = 10; the real valence and all-electron calculations use
Nα = 40 interpolation points and qcut

0 = 10. The number of
FFT grid points is set by hand to a large number so that the
integration grid spacing is ∼0.03 Å.

The lattice constants using optB86b-vdW are collected in
Table IX and shown in Fig. 7. One can see that the data obtained
with VASP (violet +) are in a very good agreement with the
all-electron calculations (black +) that use smoothed electron
density. This then justifies the approximations involved in
the evaluation of the vdW correlation energy in VASP. The
calculations without the soft correction (green ×) on the
all-electron density are generally very similar to the smoothed
density calculations. As we have shown earlier, this seems
to come more from the representation of the electron density
on the finite grid. We find the largest deviations from the
AE results for alkali and alkali-earth metals, which are very
sensitive to the errors in the vdW correction because of
their small bulk moduli. This means that the lattice constant
calculated with the all-electron density has some error and the
very good agreement between the VASP and AE calculations
for Cs might be accidental; the trend toward shortening the
lattices with the increased size of the ion is not affected. For
the other materials the differences are below 0.1%; i.e., the
results differ only at the third decimal place in most cases.
This level of accuracy of our VASP calculations is more than
sufficient to recover the trends and also similar to or better
than the differences for the same solid and functional obtained
with different codes.41

An interesting approach which would circumvent the
problematic calculation of the AE vdW correction would be to

use the real valence density to calculate Enl
c . However, lattice

constants obtained with this approach (blue circles in Fig. 7)
are slightly larger than the AE ones. This difference seems
to crucially depend on the number of shells included in the
valence; this is supported by the fact that the largest errors are
observed for Al (3 electrons in valence), Si (4), and As (5).
Although the valence electron density based data cannot be
used to obtain a reliable lattice constant in some cases, they
seem to give a good upper bound of the AE based values.

APPENDIX C: ALL-ELECTRON ATOMIZATION
ENERGIES

To assess the validity of our implementation and to evaluate
its accuracy we calculate the atomization energies of the
solids within VASP and with the all-electron postprocessing
correction. A self-consistent calculation using optB86b-vdW
is done for the solid close to the energy minimum and the
respective atom or atoms in a large rectangular box (with
approximately two times larger sides). From this calculation
we obtain the approximate Enl

c . In the next step, the all-electron
density from the VASP calculation is used to evaluate Enl,ae

c . By
subtracting the solid energies per atom from the atomic ones,
we obtain the nonlocal contribution to the atomization energy
for these two approaches which we can compare. The results
are summarized in Table X where we show the Enl

c contribution
to binding from VASP and from the all-electron calculations
with and without the soft correction, along with the total
atomization energy. The agreement is very good overall with
the errors in the total atomization energies below 2%. The soft
correction is not calculated in VASP; however, its effect on the
atomization energies is negligible.

As was shown in the case of lattice constants the all-electron
density based Enl,ae

c strongly depends on the underlying grid
and high-density regions need to be cut. The problem is less
severe in the case of atomization energies where we use exactly
the same grid spacing for the solid and atomic calculations
so that numerical inaccuracies cancel out. In most cases the
calculations with cut density give the same vdW contribution
to the atomization energy (to within a meV). In a few cases
the contribution differs slightly (by up to 30 meV for Pd),
and therefore we give the results calculated with the electron
density cut above 100 a.u. in Table X.
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B 79, 155107 (2009).

42E. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theo. Comput.
5, 2754 (2009).

43A. D. Becke, J. Chem. Phys. 85, 7184 (1986).
44G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
45G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
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