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This paper introduces key ingredients of the dielectric response of α-alumina that go beyond an independent-
particle (IP) treatment of the valence-electron excitations. The optical-response functions were calculated from
first- principles both at the Bethe–Salpeter and the random-phase approximation (RPA) levels. Excitonic effects
obtained within the Bethe–Salpeter framework were found essential for reproducing the low-energy part of
the experimental spectra (below 15 eV) and the bound exciton in particular. For higher energies, local-field
effects introduced through the RPA modified considerably the IP results and provided a satisfactory account of
the reflectivity spectra and of the position and shape of the dominant bulk plasmon resonance in the electron
energy-loss spectra.
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I. INTRODUCTION

α-alumina (α-Al2O3) is a wide band-gap insulator and an
important structural ceramic with diverse uses, for instance,
as an abrasive, a component in cutting tools, a catalyst
and catalyst support, and an optical material.1 Its electronic
band structure and excitations have been studied by a va-
riety of experimental techniques including optical,2–9 x-ray
emission,10,11 photoelectron,11 and electron energy-loss9,12

spectroscopies. The most detailed studies of the valence-
electron excitations and optical response have been performed
by means of vacuum ultraviolet (VUV) spectroscopy.3–5,7–9

This specific technique allowed the complete coverage of the
energy range of the interband transitions, offering at the same
time a superior energy resolution. The anisotropy of the optical
response of α-alumina, a uniaxial solid with the hexagonal
(0001) basal planes stacked parallel to the crystallographic
c axis, was also investigated by making use of polarized
light from synchrotron-radiation light sources providing the
reflectivity spectra for polarizations parallel and perpendicular
to the hexagonal c axis.5 In these studies the VUV reflectivity
spectra for sufficiently low temperatures displayed a strong
excitonic peak at about 9 eV. By studying the dependence of
the optical reflectivity with temperature, the exciton binding
energy was estimated to be 0.13 eV.7

Theoretically, both semiempirical13–16 and first-
principles17–19 schemes based on density-functional theory
(DFT)20,21 have been employed to determine the electronic
band structure of α-alumina. Concerning the optical response
and related dielectric functions, the existing first-principles
calculations18,19,22,23 are based on an independent-particle
(IP) treatment of the electronic excitations, where the latter
are described solely by noninteracting electron-hole pairs.24

The electron quasiparticle (QP) energies in these studies were
approximated by the Kohn–Sham energies as determined by
a self-consistent determination of the ground state within
the DFT. Despite the fact that these calculations reproduced
reasonably well the salient features of the measured optical
spectra,18,19,22,23 they relied on an ad hoc shift of the
spectra (by 2 eV) toward higher energies and invariably
failed to predict the steep onset of oscillator strength,

leading to the strong exciton peak just above the absorption
edge.

In this paper we have calculated the optical response of
α-alumina beyond the IP level of approximation: We included
self-energy corrections to the electron QP energies, local-field
effects (LFEs), and the electron-hole attraction, which is
the origin of excitonic effects in solids. On one hand we
treated the QP corrections and the electron-hole interaction
within the GW approximation25,26 and Bethe–Salpeter (BS)
equation24,27 frameworks, respectively. On the other hand we
included just LFEs within the random-phase approximation
(RPA).28 The methodologies of both schemes are presented
in Sec. II. The former scheme is certainly more accurate,
incorporating many-body effects in the electron response,
but its computational cost allowed us to calculate only a
restricted part of the excitation spectra, whereas the RPA
can cover a much larger energy range and has already given
reliable energy-loss spectra for solids.29,30 In Sec. III we
initially discuss the effect of the QP corrections to the DFT
band structure. Our results (Sec. III) show that LFEs and
electron-hole attraction are both important, though in different
energy regions, and describe satisfactorily the experimental
spectra. We compare first the results for the reflectivity
spectra (Sec. III B)–directly obtained from experiment—and
then the results for a number of dielectric-response functions
(Sec. III C): the macroscopic dielectric function, index of
refraction, extinction coefficient, and energy-loss function,
which for this material are commonly accessed experimentally
through Kramers–Kronig analyses of the measured reflectivity
and energy-loss data. Finally, in Sec. IV we discuss the relative
importance of many-body effects in specific energy regions
and present our concluding remarks.

II. METHODOLOGICAL BACKGROUND

A. Calculation of the macroscopic dielectric function

The frequency-dependent macroscopic dielectric function,
εM , is the principal quantity needed for the calculation of the
optical and dielectric functions of solids.24 We calculated εM

at two levels of approximation: at the RPA level28 and at the BS
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level.24,27 In both cases, we started from the IP eigenfunctions
and eigenenergies {ψ0

nk,ε
0
nk} (n being the band index, and k

the generic vector of the grid sampling of the Brillouin zone)
calculated at the Kohn–Sham21 DFT level.20

Within the RPA, the microscopic dielectric function ε in the
reciprocal space for a periodic system and for a wave vector q
is given by

εGG′ (q,ω) = δGG′ − v (q + G) χ0
GG′ (q,ω) , (1)

with G and G′ being the reciprocal lattice vectors. v is
the bare Coulomb interaction and χ0 is the noninteracting
response function calculated from the DFT eigenfunctions
and eigenenergies.24 The εM is obtained using its definition
in terms of the inverse of ε,31

εM (ω) = lim
q→0

1

[ε (q,ω)−1]G=0 G′=0
. (2)

When ε in Eq. (1) is diagonal, Eq. (2) reduces to a simple
macroscopic average and corresponds to the IP treatment of
excitations. Instead, by considering ε as a matrix in the space
of reciprocal vectors, and including the off-diagonal elements
in the matrix inversion, we effectively include the effects
of microscopic fields—the LFE—that locally counteract the
effect of the external field.

Within the BS framework, correlation effects beyond the
IP approximation are taken into account. First, the self-
energy-corrected QP energies are used instead of the DFT
energies, and second, the electron-hole interaction is included
in the description of the excited states. The QP corrections
are calculated within the GW approximation.25,26 Within
this approach the QP energy E

QP
nk is calculated by adding

to the corresponding DFT eigenenergy ε0
nk the first-order

perturbation correction that comes from replacing the DFT
exchange-correlation potential vxc with the GW self-energy
operator 	GW :

E
QP
nk = ε0

nk + �{
Znk

〈
ψ0

nk

∣∣	GW − vxc

∣∣ψ0
nk

〉}
. (3)

The renormalization factor Z accounts for the fact that
	GW , which is energy dependent, should be evaluated at
E

QP
nk . The GW self-energy operator 	GW is the convolution

in frequency space between the noninteracting one-electron
Green’s function G and the screened Coulomb potential W .
The screening in W is described by a dielectric function ε that
was calculated within the RPA with a frequency dependence
approximated by a plasmon-pole model.32

Electron-hole interaction is introduced at the BS level,27 by
solving the eigenvalue problem for the two-particle Hamilto-
nian H ,24

H
nn′k

mm′k′
= (

E
QP
nk − E

QP
n′k

)
δnmδn′m′δkk′

+ (fn′k − fnk) 

nn′k

mm′k′
, (4)

where fnk are the occupation factors, and the matrix 

nn′k
ss ′k1

=

2V̄
nn′k
ss ′k1

− W
nn′k
ss ′k1

is the BS kernel containing a bare Coulomb

interaction term V̄ , and a screened electron-hole interaction

term W . On a finite grid of transferred momenta q, V̄ and W

read

V̄
nn′k
ss ′k1

= 1

�Nq

∑

G �=0

ρnn′k (q = 0,G)

×ρ∗
ss ′k1

(q = 0,G) v (G) , (5)

W
nn′k
ss ′k1

= 1

�Nq

∑

GG′
ρnsk (q = k − k1,G)

×ρ∗
n′s ′k1

(q = k − k1,G′)ε−1
GG′v(q + G′). (6)

where ρnmk(q,G) = 〈ψ0
nk|ei(q+G)·r)|ψ0

mk−q〉, � is the unit cell
volume, and Nq is the number of transferred momenta. V̄

stems from the density variation of the Hartree part and takes
into account LFEs (setting 
 = 2V̄ corresponds to the RPA).
W comes from the variation of the self-energy and takes into
account the electron-hole attraction. While the latter term is
frequency dependent, we used, as it is generally done, a static
approximation. The eigenvalues Eλ and eigenvectors Aλ

n′nk of
Eq. (4), are finally used to calculate εM as

εM (ω) = 1 − lim
q→0

8π

|q|2�Nq

∑

nn′k

∑

mm′k′
ρ∗

n′nk (q,G)

×ρm′mk′(q,G′)
∑

λ

Aλ
n′nk

(
Aλ

m′mk′
)∗

ω − Eλ

, (7)

The eigenvalue problem [Eq. (4)] was solved iteratively using
the Lanczos–Haydock approach for the full non-Hermitian
matrix as proposed in Ref. 33. In fact, considering the full
Hamiltonian, and not only its resonant part as is usually
done, was found necessary in the present study for calculating
the reflectivity, the energy-loss function,34 and all dielectric
functions that contain the real part, ε1, of εM .

B. Computational details

The Kohn–Sham energy eigenvalues and wave functions
and structural parameters of α-alumina were determined
within the DFT using the local-density approximation35 (LDA)
for exchange and correlation. The calculations were carried
out with the ABINIT code.36–38 The crystalline wave functions
were expanded on a plane-wave basis set up to kinetic energy
cutoff of 35 Ha and norm-conserving Troullier–Martins pseu-
dopotentials were employed.39 A Monkhorst–Pack40 4×4×4
mesh was selected for the Brillouin-zone (BZ) integrations.
Maximally localized wave functions (MLWFs) were obtained
using the WANNIER9041 interface in ABINIT.

The GW calculations for the QP corrections and the RPA
and BS calculations for the macroscopic dielectric matrix were
performed using the YAMBO code.42 The self-energy 	GW in
Eq. (3) was evaluated at the Kohn–Sham energies ε0

nk. For
the QP corrections, we included 200 bands in the Green’s
function and 580 bands and 629 reciprocal lattice vectors
in the dielectric matrix. With these parameters the band-gap
correction converged to within 0.1 eV. To obtain converged
spectra and functions at the RPA level spanning a range of up
to 42 eV, we included 160 bands and 223 reciprocal lattice
vectors when calculating the response function χ0 in Eq. (1).
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For the BS calculations, the BZ was sampled with a
11×11×11 Monkhorst–Pack grid giving 1331 points in the full
BZ. The BS equation was solved by taking a basis consisting of
12 of the upper valence and 12 of the lower conduction bands,
but limiting the electron-hole energy range to 18.7 eV. For
calculating the static screening in W we included 168 bands
and 121 reciprocal lattice vectors. Finally, to calculate the
electron-hole exchange and electron-hole attraction matrices
we included 223 and 25 reciprocal vectors, respectively. The
above parameters, and in particular the choice for the basis,
ensured converged BS spectra up to 13.5 eV, but at the same
time limited the validity of the BS results for providing
converged values at low energies (below 7 eV) for the real
part of εM , ε1, and for the functions containing ε1.

III. RESULTS

A. Equilibrium geometry and electronic band structure

The hexagonal α phase of alumina is described by a trigonal
(rhombohedral) space group (R3c, no. 137) with 10 atoms
(4 Al and 6 O) in the primitive unit cell. From the geometry
optimization we obtained 5.05 Å for the lattice parameter and
55.32◦ for the rhombohedral angle, in close agreement with
previous DFT-LDA results43,44 and the existing experimental
data.45

Figure 1 shows the calculated DFT band structure along
high-symmetry directions in the first BZ. The valence-band
edge was taken as the energy zero. The valence bands consist
of two well-separated manifolds (labeled I and II starting from
the lowest in energy). The corresponding MLWFs, reported
in Fig. 2, allow us to identify their chemical character:46 the
lower manifold consisting of six bands located between −19
and −16 eV originates from the 2s states of the oxygens;
the upper manifold consisting of 18 bands with a width of
7.25 eV originates instead from the 2p states of the oxygens
with a mixed bonding and nonbonding character. In particular,
the upper bands of manifold II exhibit very small dispersion
and have probably a stronger nonbonding character than the
lowermost more dispersing bands, which contain contributions
from aluminum states.18,19 The conduction bands consist of
a single manifold with the lowest band exhibiting a strong
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FIG. 1. DFT band structure of α-alumina within the LDA. The
roman numbers label the valence manifolds.

FIG. 2. (Color online) Isosurfaces of the MLWFs in α-alumina
corresponding to the manifolds in Fig. 1: magenta and cyan
indicate opposite isovalues. O atoms are in red, Al atoms in gray.
Corresponding to manifold I there are six s-type MLWFs, each center
at one of the six oxygens in the unit cell and slightly polarized toward
the bonded Al. Corresponding to manifold II there are 18 p-type
MLWFs pointing in three orthogonal directions (a,b,c) and centered
at the six oxygens. For clarity only one MLWF per type is shown.

dispersion around the � point. From the LDA band structure
we deduce a minimum direct band gap of 6.72 eV at �.

The magnitude of both the band gap and the upper manifold
width are consistent with earlier DFT results at the LDA
level.19,22 Also the character of the valence bands from the
Wannier functions analysis agrees with the previous analyses
based on angular-momentum and site-projected densities of
states.18,19

Figure 3 shows the QP corrections, as obtained within
the GW approximation, plotted as a function of the energy
of the LDA eigenvalues. The corrections shift the energy of
the valence states toward more negative energies and raise
the energy of conduction states having as total effect the
opening of the valence-conduction band gap. The obtained
QP corrections are not rigid in energy: we found that for
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FIG. 3. QP corrections to the DFT eigenvalues for 12 valence and
12 conduction bands at high-symmetry points � (square), A (dot), D
(plus), Z (x) in the first BZ. Dashed lines indicate the valence-band
maximum (VBM) and conduction band minimum (CBM).
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the energy region studied the corrections exhibit a linear
dependence on the energy, which leads to a stretching of the
bands with respect to the valence- and conduction-band edges,
therefore increasing the LDA bandwidths. From a linear fit
we found that the valence and conduction bands are stretched
by about 11% and 8%, respectively.47 At the � point the QP
correction to the minimum gap amounts to 2.64 eV, giving
a final QP gap of 9.36 eV, in excellent agreement with the
experimental value of 9.4 eV48 and slightly underestimated
with respect to 9.57 eV deduced by French and co-workers
from temperature-dependent VUV spectroscopy.7

Furthermore, by applying the stretching coefficient found
by the linear fit of the valence states in Fig. 3 a width of
8.05 eV is obtained for the upper valence-band manifold
(labeled II in Fig. 1) in agreement with the value measured by
polarized x-ray emission spectroscopy (8 eV)10 while smaller
than the values of 9.2 and 9.5 eV obtained by photoelectron
and soft x-ray emission spectroscopies.11

B. Reflectivity spectra

The existing experimental optical spectra on α-alumina
are based on VUV reflectivity measurements5,9 from which
the dielectric response functions were obtained by Kramers–
Kronig relations.6 Using synchrotron radiation sources Tomiki
and co-workers5 measured reflectivity spectra up to 120 eV at
10 and 297 K for incident light parallel and perpendicular to the
c axis. French and co-workers9 measured reflectivity spectra
at temperatures from 293 to 2167 K using a laser plasma light
source and for light polarization perpendicular to the c axis.

The reflectivity R is related to the index of refraction n and
extinction coefficient κ by

R = (n − 1)2 + κ2

(n + 1)2 + κ2
, (8)

which in turn are related to the real (ε1) and imaginary (ε2)
parts of εM by

n = 1√
2

((
ε2

1 + ε2
2

)1/2 + ε1
)1/2

(9)

κ = 1√
2

((
ε2

1 + ε2
2

)1/2 − ε1
)1/2

. (10)

For analysis purposes we chose to discuss first our results
for the reflectivity where a direct comparison to experimental
data can be made. The results for the dielectric function εM ,
the index of refraction n, and extinction coefficient κ will be
presented in the next subsection.

Figure 4 shows the reflectivity spectra for light polarizations
(a) perpendicular and (b) parallel to the c axis calculated at the
two levels of theory, RPA and BS, together with the measured
VUV spectra obtained from the two different groups.5,9 To
elucidate the significance of LFEs and excitonic effects the
spectra obtained at the IP level are also shown.

For both polarizations the experimental spectra display a
sharp peak at 9.1 eV, appearing in a region of continuously
increasing intensity. The subsequent increase in intensity
eventually leads to two broader features centered around 13
and 20 eV. The latter has the largest intensity, reaching just
above 30%. For higher energies the intensity decreases steadily
until 30 eV, with a small rise in between 30 and 35 eV, most
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FIG. 4. (Color online) Reflectivity spectra for light polarizations
(a) perpendicular and (b) parallel to the c axis: The calculated IP
(magenta dotted-dashed), RPA (black dashed), and BS (solid blue)
curves are compared with experimental data from Ref. 5 (black
circles) and Ref. 9 (red stars).

likely due to contributions coming from the deeper O(2s)
bands.

The reflectivity spectra for the two different polarizations
overall are similar, with some quantitative differences espe-
cially in the energy range between 10 and 18 eV. In this
range a dip in reflectivity is seen for both polarizations, albeit
at different energies (at 16 and 15 eV, for the perpendicular
and parallel, respectively) that effectively splits the reflectivity
spectra into two distinct regions. The spectrum for parallel
polarization exhibits a more pronounced bimodal shape with
the intensity dip falling below 20%. Also, in the spectrum for
parallel polarization the features at about 13 eV are slightly
red-shifted and have lower intensity and a different shape. For
light polarization perpendicular to the c axis, the experimental
spectra obtained from the two different groups generally agree,
except in the intensity of the first peak at 9.1 eV and the shape
of the feature centered at 20 eV.

Consistent with earlier calculations at the IP level,19,22 the
calculated IP spectra plotted in Fig. 4 are seen to provide
a relatively good account of the experimental data for the
higher energies, in this case for the part of the spectra after
the reflectivity dip. The most notable difference at these
energies is the intensity of the feature at 20 eV which is
overestimated: The IP calculation predicts intensities between
35% and 40% instead of 30%. In contrast, at lower energies
there are important differences: At energies below 9 eV the
reflectivity intensity is slightly overestimated, the sharp peak
at 9 eV is completely missing, and the feature centered at 13 eV
is red-shifted by about 2 eV and underestimated in intensity.

The inclusion of LFEs through the RPA corrects some of
the shortcomings of the IP results. At higher energies LFEs are
particularly strong and reproduce remarkably well the experi-
mental data for energies starting immediately after the intensity
dip for either polarization by decreasing the overestimation of
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the intensity obtained in the IP calculations. The agreement
is very good in terms of the predicted intensity but also in
terms of the line shape of the spectra. At low energies, LFEs
correct the IP reflectivity intensity and reproduce accurately
the low-frequency reflectivity limit measured experimentally
for both light polarizations. Between 9 and 14 eV, LFEs are
negligible and the agreement with experiment at the RPA level
is as bad as at the IP level. Inclusion of QP corrections on top
of the RPA would not improve the results. In fact the effect
would be mostly a blue shift of about 2.6 eV that would worsen
the comparison for energies below 9 eV and above 16 eV and
not substantially improve in the intermediate region.

The part of the reflectivity spectra between 9 and 14 eV is
well described only by including QP corrections together with
electron-hole attraction at the BS level. The BS spectra show a
sharp peak at about 9.0 eV, thus confirming its excitonic origin.
The position of the peak is slightly lower in energy with respect
to the experimental positions of 9.156 eV (perpendicular
polarization) and 9.078 eV (parallel polarization) found at
10 K.49 The broad feature at about 13 eV is also reasonably
well reproduced as well as its dependence on the polarization.
For perpendicular polarization two peaks can be distinguished
at about 11.5 and 13.0 eV, and for parallel polarization three
peaks at 12.1, 12.5, and 13.3 eV, in fairly good agreement
with the experimental values: 12.12 and 13.42 eV for the
perpendicular, and 12.45, 13.04, and 13.76 eV for the parallel
polarization.5

C. Dielectric response functions

Figures 5 and 6 compare the εM calculated at the RPA
and BS levels for both light polarizations with the εM as
reported in two experimental studies in Refs. 6 and 9. In the
latter studies, εM was deduced from Kramers–Kronig analysis
of the VUV reflectivity spectra discussed in the previous
subsection.

The optical absorption spectra, ε2, obtained from both
experiments display a very steep onset that leads to a pro-
nounced cusp at about 9 eV in correspondence with the sharp
peak observed in the reflectivity. The intensity of the optical
spectra then increases, leading to a strong peak in the range of
12–14 eV, whose exact location depends on the experiment and
light polarization. Beyond this peak, for perpendicular light
polarization the intensity falls off with a distinct shoulder-like
feature at 18 eV and attains finally very low values at
25 eV and beyond. Instead for parallel light polarization the
spectrum exhibits a bimodal shape with a second equally
intense peak at about 18 eV before falling off in intensity
for higher energies. For the perpendicular light polarization
the differences between the two experimental curves is
much more pronounced than for the original reflectivity data
(Fig. 4). Noticeable differences exist in both peak positions
and intensity, with the curves from Ref. 6 exhibiting a shift
toward higher energies.

The real part, ε1, shows again the sharp peak at about 9 eV
followed by a second broader structure at 12–13 eV, stronger
for the parallel light polarization. Eventually, the curves
decrease to values close to zero, exhibiting a shoulder-like
structure in the 15–16-eV range and becoming negative at
about 18 eV until 25 eV. The zero crossing at about 25 eV
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FIG. 5. (Color online) Real part, ε1, and imaginary part, ε2,
of the macroscopic dielectric function, εM , for light polarization
perpendicular to the c axis. The calculated RPA (black dashed) and
BS (solid blue) curves are compared with experimental data from
Ref. 6 (black circles) and Ref. 9 (red stars).

signals the excitation of a plasmon mode and will be discussed
in more detail later on. For the ε1 curve from Ref. 9 a
near-crossing of the zero is also seen at 15 eV.

Our results agree closely with the curves from Ref. 9. For
perpendicular polarization the BS results for lower energies
reproduce well the experiment. In particular the peak at about
9 eV in ε2 is reproduced at only the BS level, similar to the
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FIG. 6. (Color online) Real part, ε1, and imaginary part, ε2, of the
macroscopic dielectric function, εM , for light polarization parallel
to the c axis. The calculated RPA (black dashed) and BS (solid
blue) curves are compared with experimental data from Ref. 6 (black
circles).
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reflectivity calculations, reaffirming its excitonic origin. The
only drawback of the BS results is their predicted intensity
of ε1 which is strongly underestimated, a consequence of the
poor convergence with respect to the number of bands (see
Sec. II B). The RPA, on the other hand, reproduces the
low-energy magnitude of ε1. At lower energies (2 eV)
the magnitude of ε1 from RPA is equal to 3.15 and 3.11 for
perpendicular and parallel polarizations, respectively. These
values are marginally higher than the high-frequency dielec-
tric constants ε∞ obtained from spectroscopic ellipsometry
data.50,51 However, compared with experiment, the RPA
displays a far more gradual increase in intensity in ε2 for
low energies missing completely the strong onset of oscillator
strength associated with the excitonic peak. For higher energies
the RPA captures well the line shape of ε2 as obtained in Ref. 9
and the position of the zeros of the experimental ε1 at 25 eV.

For the parallel light polarization the differences between
the experimental (from Ref. 6) and calculated curves are
rather pronounced. These differences are quite unexpected
considering the very good agreement we obtained for the
reflectivity both at low energies within the BS and at higher
energies within the RPA.

The index of refraction n and extinction coefficient κ

(Figs. 7 and 8) show features similar to ε1 and ε2, respec-
tively, although for these dielectric functions the differences
between the two experimental curves, and the experimental
and theoretical curves are less pronounced. In particular, for
perpendicular polarization there is a very good agreement
between the experimental index of refraction and extinction
coefficient from Ref. 9 and the BS results (for energies below
14 eV) and RPA results (for energies above 15 eV).

Finally, Figs. 9 and 10 compare the calculated and ex-
perimental electron energy-loss function −Im[ε−1

M (q)] in the
vanishing q limit. Again, the experimental curves were de-

10 20 30 40
0

1

2

3

n

10 20 30 40

Energy (eV)

0

0.5

1

1.5

2

κ

FIG. 7. (Color online) Index of refraction n and extinction
coefficient κ for light polarization perpendicular to the c axis.
The calculated RPA (black dashed) and BS (solid blue) curves are
compared with experimental data from Ref. 6 (black circles) and
Ref. 9 (red stars).
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FIG. 8. (Color online) Index of refraction n and extinction
coefficient κ for light polarization parallel to the c axis. The calculated
RPA (black dashed) and BS (solid blue) curves are compared with
experimental data from Ref. 6 (black circles).

duced from Kramers–Kronig analysis of the VUV reflectivity
spectra. The only exception is for the case of perpendicular
q orientation, where the energy-loss function obtained from
electron energy-loss spectroscopy9 (EELS) is also shown.
It can be seen that for this polarization the intensity of the
dominant peak varies, depending on the experiment, from 1.3
to 2. This difference in the loss functions obtained through the
EELS or the VUV spectra (from Ref. 9) has been attributed to
the uncertainty in the EELS due to the zero-loss extraction. On
the other hand, the differences between the two loss functions
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FIG. 9. (Color online) Electron energy-loss function in the van-
ishing q limit for q oriented perpendicular to the c axis. The calculated
RPA (black dashed) and BS (solid blue) curves are compared with
experimental data obtained from Kramers–Kronig analysis of VUV
reflectivity spectra from Ref. 6 (black circles) and from Ref. 9 (red
stars), and with experimental data from electron energy-loss spectra
from Ref. 9 (magenta plusses).
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FIG. 10. (Color online) Electron energy-loss function in the
vanishing q limit for q oriented parallel to the c axis. The calculated
RPA (black dashed) and BS (solid blue) curves are compared with
experimental data obtained from Kramers-Kronig analysis of VUV
reflectivity spectra from Ref. 6 (black circles).

derived from the two different VUV reflectivity experiments
instead stem directly from the details of the Kramers–Kronig
analyses that use measured intensities for energies higher than
120 eV (as discussed in Ref. 9) and can affect the absolute
scale of the loss functions.

The experimental curves have an onset at about 9.0 eV.
For perpendicular q orientation both loss functions obtained
from the VUV data present a shoulder at 16 eV, which
is absent in the loss function obtained from the EELS
measurements, a consequence of the better resolution of the
VUV measurements. This feature must probably have a strong
collective character, namely be plasmon-like, since ε1 almost
passes through zero at this energy (see Fig. 5) for the case of
the function derived by French and co-workers.9 Nonetheless,
it is heavily damped because of the still large magnitude of ε2

at this energy range (see Fig. 5). A similar shoulder is seen at
15 eV for the parallel q orientation but in this case it does not
correspond to a zero crossing of ε1 (Fig. 6).

At higher energies, the very intense and broad bulk plasmon
appears, centered at 25.5 to 26 eV. This excitation mode
represents the collective excitations of all the valence electrons
of α-alumina, with its position almost coinciding with the zero
of ε1 (Figs. 5 and 6). Finally, another distinct shoulder-like
feature also appears in the 32–34-eV region in the loss
functions with a relative intensity more pronounced for the
parallel polarization.

Our calculated RPA curves, again similar as in ε2, under-
estimate the onset of the loss functions. Nonetheless, the RPA
reproduces the experimental loss functions for a very extended
range of energies. The agreement again is best with the
function from Ref. 9 in terms of the obtained intensity. More
specifically, the position of the major experimental features are
reproduced and in particular the intensity, shape, and position
of the dominant plasmon resonance peak. Concerning the
comparison with the curves obtained from Ref. 6 the agreement
is also qualitatively acceptable regarding the position of the
major features of the loss function and taking into account

the fact that the plasmon resonance and the overall intensities
of the loss functions derived in Ref. 6 are more damped, as
discussed before.

The BS results in Figs. 9 and 10 reproduce the experimental
onset for either q orientation and provide a very good
description of the intensity of the loss function obtained in
Ref. 9 for the perpendicular orientation.

IV. DISCUSSION AND CONCLUSIONS

From the present results we can distinguish two energy
regions for the optical response of α-alumina: The first
region spans the energies from the absorption onset up
to approximately 15 eV and contains the exciton and the
initial part of interband transitions. The second region starts
from 15 eV and contains the remaining interband transitions
(originating from both I and II manifolds) together with the
collective bulk plasmon resonance.

More specifically, the region up to 15 eV involves transi-
tions from the upper valence manifold (labeled II in Fig. 1)
that has mainly O(2p) character (see Fig. 2), to the conduction
bands closer to the band edge. To describe qualitatively and
quantitatively the optical response in this region it is necessary
to go beyond the IP level of approximation and introduce
many-body effects, both QP corrections and the electron-hole
attraction. The QP corrections are needed to give the correct
onset, whereas the electron-hole attraction introduced at the
BS level is needed to obtain the sharp peak at 9 eV that
has excitonic origin. Recalculating the spectra by performing
exact diagonalization of the BS equation52 reveals that the
peak at 9 eV contains two doubly degenerate excitations,
at 9.0 eV (stronger) and at 9.25 eV (weaker). Analysis of
these excitations in terms of independent electron-hole pairs
showed that the main contribution to the intensity comes from
transitions from the three upper valence bands to the lowest
conduction band at �, although additional contributions from k

points close to � are fundamental to obtaining a converged final
position and intensity. Furthermore, by studying the intensity
of the exciton peak with respect to the number of transitions
we found that, although transitions between the band edges
have the largest weight, transitions from other bands have
to be included to converge the peak intensity. In particular we
needed to include transitions from 12 valence to 12 conduction
bands. Similarly, the transitions involving these bands are the
dominant ones leading to converged interband peaks in ε2

calculated at the BS level up to 13.5 eV (Figs. 5 and 6).
By comparing the QP gap found from the GW calculations

with the energy of the lowest excitation determined by solving
the BS equation, we found a binding energy for the exciton
of about 0.4 eV, in agreement with the value of about
0.3 eV deduced by comparing experimental band gap and
exciton positions, but larger than the value of 0.13 eV
determined in Ref. 7 from analysis of temperature-dependent
reflectivity data.

The region beyond 15 eV involves transitions from the full
upper valence manifold (all 18 bands of it) to higher-energy
conduction states and, for energies above 30 eV, as well from
the lower valence manifold (labeled I in Fig. 1) that has mainly
O(2s) character (see Fig. 2). It corresponds approximately to
the region in which ε1 is very small. In this region, and in
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particular when ε1 is negative, LFEs are very strong, while
QP corrections and the electron-hole attraction do not seem
to be essential, since we obtain good results already at the
RPA level. This is consistent with the fact that, as discussed in
Ref. 6, the dielectric response in this energy range resembles
that of an electron gas under a longitudinal perturbation.

Concerning the comparison with experiment, quite un-
expectedly the agreement depends markedly on the specific
optical function or spectrum. Whereas a very good agreement
is obtained with the VUV reflectivity data from Ref. 5,
the agreement is not that good for the derived dielectric
functions, especially for the macroscopic dielectric function
for parallel light polarization. In contrast, our results compare
very favorably with the VUV reflectivity data of French and
co-workers9 as well as with their derived dielectric functions
for perpendicular light polarization (see Figs. 5, 7, and 9).
The reason for these differences may be due to compensation
of errors in the calculated reflectivity spectra [Eq. (8)]. On
the other hand it can be due to experimental uncertainties. In
Ref. 9 the authors show that small differences in the reflectivity
spectra, due to sample preparation and annealing treatments,
are amplified in the complex macroscopic dielectric function.
Furthermore, as discussed by the same authors, the Kramers–
Kronig transformations may also introduce errors in the
predicted dielectric functions. Our calculated macroscopic

dielectric functions may help to interpret the differences
in the functions derived by Kramers–Kronig analyses of
reflectivity or energy-loss spectra measured for different sets of
samples.

To summarize, by carrying out first-principles calculations
at the RPA and GW+BS levels we reproduced quantitatively
the main features of the reflectivity spectra and dielectric re-
sponse functions of α-alumina. We found that incorporation of
many-body effects beyond the IP approximation is imperative
for a quantitative description of the optical response, with
excitonic effects dominating below 15 eV and LFEs appearing
noticeably at higher energies.
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