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Anharmonic effects in the mixed 4 f -electron lattice excitations of Pr skutterudites
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The structure of Pr skutterudites provides large cages for the anharmonic rattling motion of the rare-earth
guest atom. For suitable composition, their frequency may be nearly degenerate with low-energy crystalline
electric-field excitations of localized 4f states. In this case, the anharmonic oscillation of Pr is supplemented by
nonadiabatic or vibronic effects due to 4f -electron–phonon coupling. This affects the temperature dependence
of the effective phonon frequency and the rattling phonon-Raman contribution to NMR and nuclear quadrupole
resonance relaxation. Furthermore, dispersive 4f -quadrupole excitations originating from intersite quadrupole
coupling may exhibit typical anomalies due to mixing with the phonons. A model of anharmonic rattling
phonons together with dispersive 4f excitations is introduced to study these effects. It is of particular relevance
to Pr(Os1−xRux)4Sb12, where the degeneracy of 4f excitations and rattling phonons has been identified
before.

DOI: 10.1103/PhysRevB.83.195124 PACS number(s): 63.20.kd, 63.20.Ry, 71.70.Ch, 76.60.−k

I. INTRODUCTION

Filled rare-earth-based skutterudite compounds have been
intensely investigated, mostly because of their exotic super-
conducting and hidden-order phases due to strongly correlated
4f electrons.1–3 In particular, it was shown4,5 that in PrOs4Sb12

and Pr(Os1−xRux)4Sb12, low-energy crystalline electric-field
(CEF) excitations play a crucial role in the superconducting
mechanism. Furthermore, in these compounds, the rare earth
can be viewed as guest ions in a cage formed by the Sb12 icosa-
hedrons of the host. The cage potential may have considerable
anharmonicity, which leads to low-energy “rattling” phonons
with temperature-dependent effective phonon frequency. The
rattling phonons can be viewed as dispersionless (local) optical
modes of the guest atom lying deep in the continuum of the
acoustic-phonon branch of the host.6 This is quite similar to
the anharmonic rattling of alkaline-earth atoms in the cages of
pyrochlore superconductors such as KOs2O6.7 For this class of
compounds, a model involving only lattice degrees of freedom
was investigated by Dahm and Ueda8 and, e.g., in Refs. 9
and 10. In particular, an effective temperature dependence of
guest phonon frequency and its Raman contribution to NMR
relaxation was found.8 Such effects should also be present
in skutterudites and have been studied in Refs. 11 and 12.
Experimentally, evidence for the rattling in skutterudites has
been suggested from ultrasonic13 neutron diffraction,14 as
well as from NMR and nuclear quadrupole resonance (NQR)
experiments.17

In previous theoretical investigations, the guest rattling
motion has been treated purely as a lattice problem. How-
ever, recently an interesting situation has been found in
Pr(Os1−xRux)4Sb12.18 It was shown from specific-heat anal-
ysis that around x ≈ 0.65, a crossing of the x-independent
guest mode frequency ω0

e � 45 K and the �1 − �
(2)
4 singlet-

triplet CEF excitation �(x), which increases monotonously
with x from �(0) = 8 K to �(0) = 84 K, takes place. In
this case, one not only has to expect purely anharmonic
lattice effects but also nonadiabatic or vibronic effects coming
from the resonant 4f -phonon interaction. The latter have
been studied in Ref. 5, in particular in hindsight of the

superconducting Tc(x) concentration dependence found in
Ref. 19. However, harmonic phonons and dispersionless CEF
excitations without intersite coupling were assumed in this
analysis.

For a fully self-consistent treatment of the problem, one
first has to include the dispersion effects of CEF excitations
shown to exist in Ref. 20, and second, both anharmonic lattice
coupling and nonadiabatic 4f -electron–phonon coupling have
to be treated on the same footing. This demands a further
extension of the theory given in Ref. 5. The aim is to investigate
nonadiabatic effects in the temperature-dependent anharmonic
rattling phonons and anharmonic effects in the mixed 4f -
phonon mode dispersion. The latter can be investigated with
inelastic neutron scattering (INS). Furthermore, it should be
clarified to what extent the 4f -phonon coupling leaves its
signature in the Raman-phonon contribution to NMR and NQR
relaxation, which was proposed for the anharmonic pyrochlore
compound.

In Sec. II, we will introduce the generalized model
Hamiltonian for coupled rattling phonons and CEF excitations.
In the quasiharmonic approximation, this model will first be
diagonalized without the dispersive effects in Sec. III, and the
influence of the vibronic mode splitting on the phonon-Raman
NMR and NQR will be discussed in Sec. IV. Then the
typical signature of anharmonicity in the vibronic mixed-mode
dispersions will be discussed in Sec. V by considering the
dynamic and momentum-dependent dipolar spectral function
relevant for INS experiments. Finally, Sec. VI gives the
conclusions.

II. MODEL FOR ANHARMONIC RATTLING PHONONS
AND DISPERSIVE 4 f EXCITONS

For the present purpose, the microscopic model presented
in Ref. 5 for the interaction of rattling phonons and 4f

CEF excitations in Pr skutterudites needs to be extended
in two essential ways: (i) the anharmonicity of the rattling
phonons has to be included explicitly and (ii) the intersite
quadrupolar interactions should be included to describe the
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observed dispersion effects of 4f excitations.20 This leads us
to an extended model Hamiltonian given by

H =
∑
ni

[
1

2
ω0(b†nbn + bnb

†
n) + 1

2
�(a†

nan + ana
†
n)

+ iĝ0(bnan − b†na
†
n + b†nan − bna

†
n)

]
i

− 1

2
D̃

∑
〈ij〉,n

(ani − a
†
ni)(anj − a

†
nj )

+ B

4

(
h̄

2Mωe

)2

(bni + b
†
ni)

4. (1)

Here the first three terms were introduced before,5 describing
guest harmonic phonons (bare frequency ω0), CEF excitations
[singlet-triplet splitting �(x)], and their vibronic interaction
(coupling constant ĝ0), respectively, while the remaining
terms are treated in this work. The third term describes the
quadrupolar next neighbor intersite coupling with strength D̃,
and is written in bosonic (a,a†) variables.21,22 The last term is
the quartic anharmonic potential Va(r) = (B/4)

∑
n x4

n , where
r = (x1,x2,x3) describes the distance from the equilibrium
position of the guest atom in the host cage and B gives the
anharmonic potential strength. We assume that the guest atom
is in a centered equilibrium position at all temperatures, as
suggested by neutron diffraction.14,15 As a first step, we only
add the anharmonic term. The dispersive (fourth) term will be
included later.

Before we proceed, we discuss an essential difference to
the rattling motion in the pyrochlore superconductors like
KOs2O6. In the latter, the site symmetry of the rattling K
host atom is Td ,10 which does not contain the inversion with
respect to the K site. Therefore, in these compounds, there
are additional anharmonic potential terms ∼(x1,x2,x3) of the
third order in the guest atom displacement r. Such terms
cannot be treated within the quasiharmonic approximation, as
discussed in Ref. 10. However, in the present case of filled
skutterudite, the Pr host atom resides in the center of the
Sb12 cage where the site symmetry is Th,16 which contains
the inversion symmetry with respect to the Pr site. Therefore
the anharmonic potential of the latter does not include terms
of the third (odd) order in the displacement coordinates xn, as
these are strictly forbidden by inversion. Consequently, we can
safely apply the quasiharmonic treatment of rattling motion
including only the above fourth-order anharmonicity term in
the following.

III. QUASIHARMONIC THEORY OF COUPLED
VIBRONIC STATES

In this section, we investigate the effect of anharmonic
terms on the local vibronic (coupled 4f rattling phonon)
spectrum. This will be done in a quasiharmonic approximation,
which was used before in Refs. 8 and 9 for the pyrochlore
superconductor AOs2O6 where the third-order terms were
neglected. In the pyrochlore case, however, there are no 4f

electrons and therefore no vibronic excitations; it rather is a
pure phonon problem. In the present case of Pr skutterudites,
the self-consistent quasiharmonic theory has to be extended

by including the effect of the vibronic coupling term. In the
quasiharmonic approximation, the anharmonic guest poten-
tial is approximated by a harmonic one with an effective
temperature-dependent coefficient leading to

Va(r) � B

2
〈x2〉

∑
n

x2
n, (2)

ωe(T ) = ω2
0 + B

M
〈x2〉. (3)

Here, 〈x2〉 = 〈x2
n〉 is the mode-independent (Cartesian polar-

ization directions n = 1–3), mean-square displacement, and
ωe(T ) is the renormalized rattling frequency of the guest (Pr)
atom, which depends on temperature via the self-consistency
in Eq. (3). Like the unrenormalized ω0, ωe(T ) is threefold
degenerate (independent of n) due to the tetrahedral symmetry.
The temperature dependence of the effective quasiharmonic
frequency results from the nonequidistant level spacing of the
true anharmonic oscillator spectrum. The average level spacing
corresponding to ωe(T ) will then depend on the thermal
occupation of those levels and therefore on temperature.
Without the dispersive term, the quasiharmonic vibronic
Hamiltonian then reduces to

H =
∑
ni

[
1

2
ωe(T )(b†nbn + bnb

†
n) + 1

2
�(a†

nan + ana
†
n)

+ iĝ0(bnan − b†na
†
n + b†nan − bna

†
n)

]
i

. (4)

Formally this is now the same model as in Ref. 5 except for the
replacement ω0 → ωe(T ), where the T-dependent anharmonic
ωe(T ) has to be determined self-consistently. For that purpose,
we diagonalize the model as in Ref. 5 and obtain

H =
∑

n

�φ(T )

(
φ†

nφn + 1

2

)
+

∑
n

�ψ (T )

(
ψ†

nψn + 1

2

)
.

(5)
Here, φ,ψ are the vibronic normal-mode coordinates, and
the triply degenerate (n = x,y,z) and temperature-dependent,
normal-mode frequencies �n

s = �s (s = φ,ψ) are given by
(γ ≡ 1

4 ĝ0),

�s(T ) = 2

{
1

2

(ωe(T )2

4
+ �2

4

)
±1

2

[(
ωe(T )2

4
− �2

4

)2

+ 1

4
γ 2ωe(T )�

] 1
2
} 1

2

. (6)

For vanishing vibronic coupling (γ = 0), the purely phononic
self-consistency equation for the guest displacement is given
by

〈
x2

n

〉 =
(

h̄

2Mωe

)
(2ne + 1), ne = (eωe/T − 1)−1. (7)

For the present nonzero coupling to the Pr CEF excitations
(γ 	= 0), this has to be generalized: The averaged squared
displacement 〈x2

n〉 must now be calculated with respect to
the new normal coordinates. Using xn = (h̄/2Mωe)

1
2 (bn + b

†
n)

and the transformation

bn + b†n = urφ(φ − φ†) + urψ (ψ − ψ†), (8)

195124-2



ANHARMONIC EFFECTS IN THE MIXED 4f -ELECTRON . . . PHYSICAL REVIEW B 83, 195124 (2011)

with coefficients (independent of mode n) given by5

u2
rs = ωe

�s

γ 2�ωe(
ω2

e − �2
s

)2 + γ 2�ωe

, (9)

the self-consistency equation now reads

〈
x2

n

〉 =
(

h̄

2Mωe

)∑
s

u2
rs(2ns + 1), ns = (e�s/T − 1)−1.

(10)

Inserting this expression into Eq. (3), we obtain, after some
algebra, a self-consistent equation for the renormalized Pr
guest rattling frequency under the presence of vibronic
coupling to 4f CEF excitations:(

ωe

ω0
e

)2

T γ

= 1 + βr

(
ω0

e

ωe

) [
n̄ + 1

2
− 1

2

ωe

ω0
e

]
,

(11)
βr (T ,γ ) = β

∑
s

u2
rs , n̄ =

∑
s

nsu
2
rs/

∑
s

u2
rs .

Here we defined ω0
e = ω0

e (T = 0) as the low-temperature
limit of the rattling frequency and β = h̄B/M2(ω0

e )3 as a
dimensionless anharmonic potential strength. This is the
generalization of the corresponding equation in Ref. 8 to
the case where the rattling motion of guest atoms is coupled
to virtual CEF excitations. It contains three parameters: The
effective low temperature ω0

e and the anharmonic and vibronic
coupling constants β,γ , respectively. It should be noted that
ω0

e � 45 K is the experimentally determined low-temperature
rattling frequency.18 It is equal to ω0 only when the anharmonic
coupling is neglected (β = 0), as was done previously.5

Furthermore, the singlet-triplet splitting �(x) is interpolated
between the boundary values �(0) � 8 K and �(1) � 84 K.5

The temperature dependence of ωe(T ) obtained from
Eq. (11) and its variation with coupling parameters is shown in
Fig. 1. We estimate β as follows: From INS,23 one obtains the
ratio ωe(300 K)/ω0

e � 1.4 for PrOs4Sb12. Using ω0
e = 45 K

to stay consistent with Refs. 5,18, this ratio is obtained for
β � 0.3. Thus, in Pr skutterudite, the anharmonicity is quite
moderate and it is not comparable to the strongly anharmonic
case (β 
 1) of the pyrochlore compounds, where values
β � 6–7 have been proposed.8,9 In the weakly anharmonic
case, ωe(T ) roughly increases ∼T , except at the lowest
temperatures. This is shown in Fig. 1 corresponding to x = 0
by the dashed line without vibronic coupling (γ = 0). When γ

is turned on (dash-dotted and solid lines), the low-energy CEF
excitation at �(x) acquires a partly phononic character; this in
turn increases the anharmonic effect via the self-consistency
relation in Eq. (11). Therefore, ωe(T ) increases more rapidly
with T and the linear T regime is enlarged (for fixed β < 1),
as shown in Fig. 1. For larger x, the splitting �(x) increases,
which diminishes the effect of vibronic coupling in ωe(T ). In
the crossing region x ≈ 0.65, where ω0

e � �(x), only a small
γ dependence of ωe(T ) remains.

In the crossing region, a different effect due to anhar-
monicity may be observed: The dipolar spectral function has a
double-peak structure caused by the vibronic coupling,5 which
will now depend considerably on temperature because the res-
onant condition ω0

e (T ) � �(x) will change with temperature
for β > 0. Therefore, a shift and intensity transfer of the split

0 0.2 0.4 0.6 0.8 1
T/ω

e

0

0.95

1

1.05

1.1

1.15

ω
e/ω

e0

β = 0.3
x = 0

FIG. 1. Temperature dependence of quasiharmonic rattling
phonon frequency for 4f -phonon coupling constant γ = 0 (dashed
line), 0.15 (dash-dotted line), and 0.3 (solid line). The anharmonic
coupling β is defined in Sec. III.

vibronic modes due to anharmonic effects may be expected,
as illustrated in Fig. 2.This prediction may be checked by INS
experiments.

IV. VIBRONIC EXCITATIONS IN THE NMR AND
NQR RELAXATION

It is known from the pyrocholore cage compounds8,24 that
guest rattling leads to a NMR relaxation with unusual temper-
ature dependence. It was attributed to the specific anharmonic
features in the two-phonon Raman process, which dominates

0.5 0.75 1 1.25 1.5

ω/ω
e
0

0

1

2

3

4

5

6

S
D

(ω
)

FIG. 2. Dipolar dynamical structure function (in units of b2
D) for

resonant case (x ≈ 0.654) for T = 0 (solid line) and T/ωe
0 = 0.8

(dash-dotted line). Here we used β = 0.3, γ = 0.2, and linewidth
� = 0.2 (in units of ω0

e ). The anharmonic increase of rattling mode
frequency ω0

e (T ) with temperature leads to a shift of mixed-mode
peaks and redistribution of their spectral weight.
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the relaxation mechanism.8 The quadrupolar relaxation rate of
the Raman process is given by25

1

T R
1

= V 2
2

∑
n

∫ ∞

−∞
dteiωLt

〈
x2

n(t)x2
n(0)

〉 =
(

3h̄V 2
2

2Mωe

)
R(ωL),

(12)

R(ωL) =
∫ ∞

−∞
dteiωLt 〈B(t)2B(0)2〉.

Here we defined B = b + b†, with b denoting any (n = x,y,z)
of the triply degenerate rattling mode displacements. The
constant V2 is proportional to the derivative of the electric-field
gradient, and ωL is the nuclear Lamor frequency. In the
Pr skutterudites, in contrast to pyrochlores, the correlation
function in the integral for 1

T R
1

is not only determined by the
lattice dynamics but also by the coupling to 4f excitations.
Using the transformation to vibronic coordinates in Eq. (8),
and defining 
 = φ − φ† and � = ψ − ψ†, we obtain

〈Bn(t)2Bn(0)2〉 = F 2(0) + 2F 2(t),
(13)

F (t) = u2
rφ〈
(t)
(0)〉 + u2

rψ 〈�(t)�(0)〉.

The Fourier transform of F (t) is then given by

F (ω) = −2π
∑

s

u2
rs[n(ω) + 1]As(ω),

(14)

As(ω) = − 1

π
Ds(ω) = 4�s�sω(

ω2 − �2
s

)2 + 2�2
s

(
ω2 + �2

s

) + �4
s

.

Here, As(ω) is the spectral function of the bosonic prop-
agator Ds(ω) for the normal mode with energy �s and
phenomenological linewidth �s (s = φ,ψ). For �s � �s , the
denominator may be approximated by (ω2 − �2

s )2 + 4�2
s �

2
s .

The relaxation function in Eq. (12) may now be expressed as

R(ωL) = 2πF 2(0)δ(ωL) + 1

π

∫ ∞

−∞
dωF (ω)F (ω − ωL).

(15)

Then for ωL → 0, we obtain the Raman relaxation rate due to
vibronic excitations as

1

T R
1

= 4πV 2
2 3h̄

2Mωe(T )

∑
ss ′

u2
rsu

2
rs ′

×
∫ ∞

−∞
n(ω)[n(ω) + 1]As(ω)As ′(ω) dω. (16)

We separate the (temperature-dependent) prefactor and define
the normalized relaxation rate 1

T̂ R
1 T

by

1

T R
1 T

=
(

6πh̄V 2
0

M�ω02
e

) (
�ω02

e

ωe(T )

)
1

T̂ R
1 T

, (17)

where the product of the last two factors is dimensionless
and almost independent of the linewidth �. We can split the

normalized relaxation rate into direct and cross contributions
according to 1/T̂ R

1 = 1/T̂ R
1D + 1/T̂ R

1C , as given by

1/T̂ R
1D = 2

∫ ∞

0
n(ω)[n(ω) + 1]

[
u4

rφA2
φ(ω) + u4

rψA2
ψ (ω)

]
dω,

(18)

1/T̂ R
1C = 2

∫ ∞

0
n(ω)[n(ω) + 1]u2

rφu2
rψ

[
2Aφ(ω)Aψ (ω)

]
dω.

The direct contribution simply sums up the individual terms
coming by two distinct vibronic normal modes, φ,ψ . Their
integrands in Eq. (19) consist of their respective spectral
function (Eq. (15)) and their weight factors (Eq. (9)) squared
at a given frequency. However, the additional cross terms are
determined by the overlap of spectral functions and weight
functions for the two normal modes. This overlap and the
associated cross contribution will be sizable only when their
frequencies are not too different. This is the case in the
anticrossing region of rattling phonons and the singlet-triplet
CEF excitations of Pr(Os1−xRux)4Sb12, which lies around a
critical Ru concentration of x � 0.65.

The temperature dependence of the total Raman relaxation
rate and its contributions are shown in Fig. 3 for various
parameters. For harmonic phonons, 1/T R

1 T would be linear in
T ,8 where the small anharmonicity leads to a slightly sublinear
behavior which is shown in the pure phonon (γ = 0) reference
(solid upper line). The vibronic coupling has a sizable effect
only for the region x ≈ 0.65, where the mode splitting occurs
and strongly affects the normalized relaxation rates in Eq. (19).
The experimental NMR and NQR relaxation rate17,26 in the
normal state of PrOs4Sb12 and La-substituted compounds is
dominated by the localized magnetic fluctuations of thermally
excited �

(2)
4 triplet states and the Korringa relaxation from

quasiparticles. It is difficult to directly extract the anharmonic
phonon-Raman contribution in these systems.17 One should
investigate the x dependence of the difference of the total
relaxation rates (T1T )−1

x − (T1T )−1
x=0 taken at temperatures

scaled with �(x) to subtract out the former contributions. The
difference as a function of x should have an anomaly in the
crossing region x � 0.65 due to the vibronic coupling effect
in the Raman contribution.

V. DISPERSIVE EFFECTS DUE TO QUADRUPOLAR
EXCITONS

In the previous sections and also in Ref. 5, only isolated
Pr 4f states were considered. It is known, however, that the
singlet-triplet CEF excitations in PrOs4Sb12 acquire a consid-
erable dispersion of ∼30% (Ref. 20) resulting from effective
intersite interactions between Pr quadrupole moments, and
therefore form a band of quadrupolar excitons. In fact, the
field-induced softening of the latter at x-point wave vector
k =(2π/a,0,0) of the body-centered cubic Brillouin zone
are responsible for the transition to the antiferroquadrupolar
(AFQ) order above H = 4.5 T. These observations have been
explained within a mean-field random phase approximation
theory of the AFQ order.21,22 It is expected that dispersive
effects are present throughout the whole Pr(Os1−xRux)4Sb12

series, even though the AFQ order eventually vanishes be-
cause the CEF splitting energy �(x) or center of �1 − �

(2)
4
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T/ω
e
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1/
T

1R
 T

β = 0.3

FIG. 3. Temperature dependence of the rattling phonon contri-
bution to the Raman relaxation rate [unit is the first prefactor in
Eq. (17)]. The three upper curves correspond to arbitrary x, γ = 0
(solid thin line); x = 0, γ = 0.2 (dashed line); and x = 1, γ = 0.25
(dash-dotted line). The lower curve corresponds to the resonant case
(� = ω0

e ) with x = 0.65, γ = 0.3. Only close to x � 0.65 does the
vibronic coupling γ have a large influence on the Raman relaxation
rate.

quadrupolar exciton band becomes larger for increasing the
Ru content x. In the anticrossing region of singlet-triplet
excitation and rattling phonon, one definitely would expect
that the dispersive effects of the former described by the fourth
term in the Hamiltonian of Eq. (2) should become important.
In this section, we extend the previous theory5 for isolated 4f

states to the case of dispersive excitons coupled to anharmonic
phonons.

The full model Hamiltonian in Eq. (2) in a quasiharmonic
approximation, and using momentum representation, is given
by

H =
∑

k

[
1

2
ωe(T )(b†kbk + bkb

†
k) + 1

2
(� + Ak)(a†

kak + aka
†
k)

+iĝ0(bka−k − b
†
ka

†
−k + b

†
kak − bka

†
k)

−1

2
Ak(a†

ka
†
−k + a−kak)

]
, (19)

where the quadrupolar exciton dispersion enters through

Ak = D̃Qzγk,

γk = 1

z

∑
δ

exp(ik̂) = cos
k̂x

2
cos

k̂y

2
cos

k̂z

2
, (20)

with δ denoting summation over next neighbors in the Pr
sublattice, and where the normalization k̂ = (2π/a)k has
been chosen. The bilinear Hamiltonian of Eq. (20) can be
diagonalized by a generalized Bogoliubov transformation
in the same manner as was described in Ref. 5 for the
dispersionless model. The details will not be repeated here.
The eigenvalues in the dispersive model are simply obtained
by replacing the local singlet-triplet energy by the dispersive

quadrupolar exciton according to � → �k, with

�k = [�(� + 2Ak)]
1
2 . (21)

This leads to the dispersive and T-dependent vibronic mode
energies given by

�ks(T ) = 2

{
1

2

(
ωe(T )2

4
+ �2

k

4

)
± 1

2

[(
ωe(T )2

4
− �2

k

4

)2

+ 4ĝ2
0ωe(T )�

] 1
2
} 1

2

. (22)

Note that in the last term, the bare � has to appear. The
effective temperature dependence of normal-mode energies
enters through that of the effective anharmonic rattling fre-
quency ωe(T ), which is still determined by the self-consistency
relation of Eq. (11). However, the anharmonic parameter and
occupation function βr,n̄, respectively, are now given by the
following more general relation that also involves summation
over momentum in addition to mode indices:

βr (T ,γ ) = β
1

N

∑
ks

u2
rks ,n̄ =

∑
ks

nksu
2
rks/

∑
sk

u2
rks . (23)

The transformation coefficients urks and occupation numbers
nks are obtained from Eqs. (9) and (10) simply by substituting
�s → �ks . For the numerical calculations, as long as the
dispersion is moderate and far from the soft-mode regime, the
effective ωe(T ) may still be calculated from the dispersionless
expression in Eq. (11).

Using the previous results, we can now discuss the
anharmonic and dispersive effects in the vibronic spectrum as
they should appear in the dipolar or phonon-scattering cross
section. The former is given by the response function (mode
index n suppressed i.f.),

χD(k,ω) = ib2
D

∫ ∞

−∞
dteiωt 〈[(ak + a

†
−k)t ,(ak + a

†
−k)0]〉θH (t).

(24)

Here, bD is the dipolar singlet-triplet matrix element and θH

is the Heaviside function. In complete analogy to the disper-
sionless case, the corresponding spectral function S(k,ω) =
2(1 − e−βω)−1χD(k,ω)′′ may be computed by transforming to
the normal coordinates according to

ak + a
†
−k = uDkφ(φk + φ

†
−k) + uDkψ (ψk + ψ

†
−k), (25)

with the dipolar spectral weights of modes s = φ,ψ given by

u2
Dks = �ks

�

(
ω2

e − �2
ks

)2

(
ω2

e − �2
ks

)2 + γ 2�ωe

. (26)

For positive frequencies, the spectral function is explicitly
given by

SD(k,ω) = 2πb2
D

∑
s

�ks

�

(nks + 1)
(
ω2

e − �2
sk

)2

(
ω2

e − �2
sk

)2 + γ 2�ωe

× �s/π(
ω − �ks

)2 + �2
s

. (27)

Here it is assumed that the phenomenological mode
broadening �s does not appreciably depend on momentum
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FIG. 4. Contour plot of the logarithm of the dynamical structure
function SD(k,ω) (in units of b2

D) for k = (k,0,0) with β = 0.3, γ =
0.2, �/ω0

e = 0.05, and k in units of 2π/a. (a) Off-resonant case x =
0, T = 0: quadrupolar exciton band is located around ω/ω0

e � 0.2
and small spectral weight is shifted to T = 0 phonon energy ω0

E .
(b) Resonant case x = 0.65 and T/ω0

e = 1: Vibronic mode splitting
around anharmonic ωe(T ) > ω0

e occurs. For T > 0, the anticrossing
point is therefore shifted to k < 0.5.

k and mode index s. The temperature dependence of SD(k,ω)
appears explicitly through the Bose factors in the above
expression and through the effective ωe(T ), and also via
�ks(T ) given by Eq. (22), which is caused by the anharmonic
term in the Hamiltonian. The rattling phonon propagator
is associated with a similar and complementary spectral
function.

The dipolar spectral function relevant for INS is shown in
Figs. 4 (in logarithmic scale) for the pure PrOs4Sb12 (x =
0) off-resonant case and the resonant case with ω0

e = �(x)
(x ≈ 0.65). In the former, one has the low-lying quadrupolar
exciton band around ω/ω0

e � 0.2 found in Ref. 20. Due to
the finite vibronic coupling γ , a small part of the spectral
weight is shifted to the rattling phonon frequency, which is

exactly at ω0
e because of T = 0. In the latter (resonant case

at x � 0.65), the mode mixing of phonons and singlet-triplet
excitations caused by γ > 0 is evident. It is assumed that
the intersite interaction D̃Q scales with �. For this case, the
anticrossing of vibronic modes when γ > 0 is exactly halfway
in the Brillouin zone at k = (π/a,0,0) when T = 0. When T
increases, ωe(T ) > ω0

e is increasing due to the anharmonic
effect of nonzero β, therefore the vibronic coupling becomes
slightly off-resonant. Consequently, the anticrossing point will
shift to a smaller k vector. If this effect were identified in INS
experiments, it would be direct evidence for the importance of
anharmonic coupling in the mixed-mode spectrum. It would
be much more dramatic with a complete vanishing of the mode
splitting for a larger β.

VI. CONCLUSION AND OUTLOOK

We have investigated the simultaneous effects of anhar-
monic rattling phonons, the vibronic phonon–4f -electron
interactions in Pr skutterudites, Pr(Os1−xRux)4Sb12 and the
4f -intersite-quadrupolar interactions. This work presents
a unified and self-consistent treatment of all terms
that have been considered only separately in previous
analyses.

It was found that the temperature dependence of effective
quasiharmonic phonon frequency is considerably influenced
by the coupling to CEF excitations, in particular for moderate
x when the singlet-triplet splitting is small, and therefore the
mixed-mode phononic spectral function obtains a low-energy
contribution. The latter can be tuned by the 4f -phonon
interaction leading to pronounced effects in the effective
phonon frequency. This effect is diminished for larger x when
the CEF splitting increases.

The same holds true for the γ dependence of the phonon-
Raman contribution to the NMR and NQR relaxation rate. Be-
cause the anharmonicity parameter β = 0.3 is quite moderate
in PrOs4Sb12, the rate 1/T R

1 T still increases with temperature
and is far from the saturation limit of the strongly anharmonic
case.8 However, β is already large enough to observe distinct
deviations from the ∼T behavior of the purely harmonic
phonon-Raman contribution. Furthermore, in the resonance
region, it consists of two contributions, namely, the direct and
cross parts due to the vibronic mode splitting. It should be
noted that the phonon-Raman contribution in PrOs4Sb12 is
difficult to extract because the total relaxation is dominated by
the local-moment fluctuation part and the Korringa part from
the heavy itinerant electrons.

The low-lying CEF singlet-triplet excitations in PrOs4Sb12

have a distinct dispersion due to intersite quadrupolar inter-
actions found in INS,20 which may also be expected to exist
in the mixed Pr(Os1−xRux)4Sb12 compounds. For x ≈ 0.65
close to the resonance condition of singlet-triplet and rattling
phonon energy, the nonadiabatic or vibronic effects will lead
to a typical splitting of these dispersive modes as a function
of the wave vector k. The observation of this effect and of the
temperature dependence of the anticrossing point (Fig. 4) and
redistribution of the spectral shape (Fig. 2) by INS would be
the most direct confirmation of the coupling of anharmonic
rattling phonons and 4f CEF interactions in rare-earth
skutterudites.
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