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Cloaking dielectric spherical objects by a shell of metallic nanoparticles
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We show that dielectric spheres can be cloaked by a shell of amorphously arranged metallic nanoparticles. The
shell represents an artificial medium with tunable effective properties that can be adjusted such that the scattered
signals of shell and sphere almost cancel each other. We provide an analytical model for the cloak design and
prove numerically that the cloak operates as desired. We show that more than 70% of the scattered signal of
the sphere can be suppressed at the design wavelength. Advantages and disadvantages of such a cloak when
compared to other implementations are disclosed.
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I. INTRODUCTION

Transformation-based solutions to the conductivity and
Maxwell equations in curvilinear coordinate systems, reported
by Greenleaf et al.1 in 2003, opened new vistas to control
electromagnetic waves. In 2006, Pendry et al. showed that, by
embedding a finite-size object into a coating made of a suitable
metamaterial, this object can be concealed from an external
observer; i.e., it can be cloaked.2 The cornerstone of this work
was the understanding that a geometrical transformation can
be cast into a suitable spatial distribution of a biaxial material.
The transformation of the cloak itself is an inflation of space
such that a point acquires the finite dimension of a sphere
or cylinder in which objects can be hidden. At first glance
it seemed to be detrimental that an efficient cloak requires
both controllable (artificial) permittivity and permeability.
The latter is inaccessible in natural media, and their imple-
mentation would require metamaterials. Metamaterials are
artificial media with optical properties that can be controlled
by suitably designed unit cells. It was soon understood that
although a perfect cloak requires quite arbitrary permittivity
and permeability, simplified cloaks can be implemented that
only need the control of either quantity. Such simplified cloaks
may similarly guide light around the object to be cloaked,
however, at the expense that impedance matching to the
surrounding is incomplete and spurious reflections occur.3 A
team led by Pendry and Smith finally implemented a simplified
cloak by using a metamaterial consisting of concentric layers
of split-ring resonators. The cloak made a copper cylinder
invisible to an incident plane wave at 8.5 GHz.3 Another
implementation of such a cloak was suggested by relying on
elliptical metallic nanoparticles.4 There the ellipticity varied
across the radius to evoke the desired radial and azimuthal
permittivity profile across the cylindrical cloak. This can
be achieved only if the material forming the cloak may be
considered an effectively homogenous medium with tunable
properties.

Farhat et al.5 analyzed the cloaking of transverse electric
(TE) fields through homogenization of radially symmetric
metallic structures. The cloak consisted of concentric layers
cut into a large number of small infinitely conducting sectors,
which is equivalent to a highly anisotropic permittivity.
This structure was shown to work for different wavelengths

provided that they are 10 times larger than the size of the unit
cells building the cloak.

An alternative approach to design a cloak was put forward
by Leonhardt that relies on conformal transformation.6 This
technique has been shown to unify cloaking with other
phenomena, such as, e.g., the lensing effect.7 Moreover this
approach is equally versatile and many other optical devices
next to a cloak can be envisioned using such a design
strategy.8 An even further different path to invisibility was
suggested by Nicorovict et al.9,10 They proposed to cloak a
countable set of line sources when they are situated near a
cylindrical coating filled with a negative-index material using
anomalous resonance. More recently, Smolyaninov et al.11

proposed a two-dimensional (2D) experimental cloak based
on a tapered waveguide, and Tretyakov et al.12 demonstrated
the possibility of designing a cloak for microwaves by using
simple structures made of metallic layers. This technique
permits broadband and low-loss cloaking as experimentally
demonstrated. In this vein, Li and Pendry introduced in 200813

a quasi-conformal transformation called carpet cloaking that
relaxes the conditions of singularities needed by the general
coordinate transformation technique. Soon after this seminal
work, many groups have shown the experimental validity of
such an approach for different wavelength scales.13–17 In a
further development, two groups have shown simultaneously
and independently that it is possible to hide a macroscopic
obstacle without use of a metamaterial coat. This latter
technique is based on the use of anisotropic media, e.g., a
calcite crystal.18,19 More details about transformation optics
and cloaking can be found in the comprehensive review paper
by Chen et al.20 or in the book by Leonhardt and Philbin.21

In 2005, Alù and Engheta proposed the use of plasmonic
materials to render small dielectric or conducting objects
nearly invisible. There the mechanism relies on a scattering
cancellation technique based on the negative local polariz-
ability of a cover made of a metallic material.22,23 This cloak
has been shown to be relatively robust against changes in the
object geometry and operation wavelength. Recently, its first
experimental realization and characterization at microwave
frequencies have been performed.24 It is worth mentioning
that, in 1975, Kerker studied the possibility of rendering
invisible dielectric bodies by covering them with a convenient
coating.25 Gao et al.26 further analyzed the cloaking of
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dielectric spheres, presenting at the same time anisotropy
in the permittivity and the permeability. Applications for
stealth technology and noninvasive probing and sensing can
be envisaged, opening the door to various applications in
medicine, defense, and telecommunications. As could be
already seen from this first experimental implementation, the
spectral ranges were such that a cloak can be implemented
and can be increased when the material of the shell itself is an
artificial medium rather than a homogenous metal. This relaxes
design constraints and allows, moreover, for the potential
exploitation of new fabrication methods to realize such a cloak.

In this paper we propose and analyze in depth a cloak where
the plasmonic shell surrounding the object to be concealed is
already an artificial medium with tunable effective properties.
To this end we focus on a plasmonic shell that is composed of a
large number of metallic nanoparticles. Such a medium made
from densely packed metallic nanoparticles has already been
suggested to build metamaterial nanotips27 or bottom-up bulk
metamaterials.28–32 The fabrication of such a shell of metallic
nanoparticles is amenable by self-organization methods in
colloidal nanochemistry.33 We analytically demonstrate but
also verify by full-wave simulations that such a shell allows
us to reduce the scattering cross section of the dielectric
core to be concealed by orders of magnitude. The underlying
mechanism that enables the design of the cloak is the treatment
of the shell as an effective medium that shows, according to
Maxwell–Garnett theory, that a strong dispersion in its effec-
tive permittivity around the frequency was a localized plasmon
polariton that was excited in the metallic nanoparticles. These
associated very large, very small, or even close-to-zero values
for the effective permittivity can be exploited to cancel the
scattering response from the core at tunable frequencies. In
our work we combine a simplified description that treats the
problem analytically in the quasi-static limit with rigorous
simulations where all the particles involved are explicitly
considered. The advantages and disadvantages of such a cloak
are discussed in detail in this paper. Moreover, besides the mere
exploration of such a cloaking application we show here that
effective properties assigned to metamaterials can be further
exploited in the design of a functional device. The ability
to compare predictions of optical properties of such finite
systems obtained from a simplified description with full-wave
simulations provides confidence that metamaterials can be
faithfully considered in the future as ingredients to design bulk
and macroscopic optical devices and applications. This will be
feasible by looking up effective metamaterial properties from
tables as it is now possible for natural materials, just as we
do here in designing the desired structure. The specific fine
structure of the metamaterials does not need to be considered
in this process.

II. FORMULATION OF THE PROBLEM

By considering the scattering of an illuminating electro-
magnetic plane wave at a given object (centered without loss
of generality at the origin of a spherical coordinate system), it
can be shown34 that the scattered electric and magnetic fields
Es and Hs can be expressed in terms of the coefficients cTE

nm

and cTM
nm . These coefficients represent the amplitudes of the

spherical harmonics into which the scattered field can always

be expanded, and TE and TM refer to the transverse electric and
transverse magnetic contribution, respectively. The complex
amplitudes depend on the geometry of the scatterer, the
material it is made of, and the frequency. Moreover, for a given
size a of a spherical scatterer, only amplitudes with n < N

are relevant since these scattering amplitudes are of the order
of (k0a)(2n+1), where k0 = ω/c

√
εbμb is the wave number of

the background region and εb and μb are its permittivity and
permeability. For spherical objects and for an incident plane
wave propagating along the z direction and being polarized
parallel to the x direction, the high symmetry of the object
suggests that only coefficients with n = m have nonzero
amplitudes. These coefficients of the order of (n) can be
calculated for a sphere as

cTE
n = − UTE

n

UTE
n + V TE

n

, cTM
n = − UTM

n

UTM
n + V TM

n

(1)

where UTE,TM
n and V TE,TM

n are determinants of matrices
comprising spherical Bessel functions (see Ref. 22). They can
be explicitly calculated once all the parameters describing the
system are fixed.

Now, if an observer is placed in close proximity to the
scatterer (near field) or far from it (far field), the possibility of
detecting the scatterer’s presence is entirely given by the total
scattering cross section (SCS) defined as34

σs = 2π

|k0|2
∞∑

n=1

(2n + 1)
{ ∣∣cTE

n

∣∣2 + ∣∣cTM
n

∣∣2 }
. (2)

Therefore, suppressing this SCS to the largest possible extent
conceals an object.

By considering a scatterer sufficiently small with respect
to the wavelength of interest, it can be shown that the SCS is
dominated by only the lowest TE scattering multipole (of the
order of n = 1). In this case, it was shown in the literature,22,24

that, by covering the object with a material with low or
negative permittivity, it is possible to significantly reduce the
SCS at certain frequencies. This effect may be explained by
considering the first-order electric multipole (n = 1), which
is related to an integral of the polarization vector P1(r,ω) =
ε0 [ε(r,ω) − εb] E(r,ω) inside the material,34 where ε1(r,ω)
and E(r,ω) are the local relative permittivity and electric field,

FIG. 1. (Color online) Schematic of the dielectric sphere to be
cloaked surrounded by metallic nanoparticles (right) forming an
effective invisibility shell (left) described by its effective permittivity
εs and effective polarization vector (dashed arrows) Ps = ε0(εs − 1)E
of opposite direction and same amplitude as the vector of the bare
object (solid arrow) Pc = ε0(εc − 1)E, where E is the local electric
field and where our background material is air.
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respectively. As can be seen from Fig. 1 a plasmonic cover
with less than one permittivity induces a local π out-of-phase
polarization vector with respect to the local electric field, thus
permitting partial or even entire cancellation of the scattering
signal caused by the object.

In the quasi-static limit where the size of the dielectric
core sphere is much less than the wavelength and only the
lowest-order Mie coefficient is important, an analytical result
can be provided that links the core radius ac and its permittivity
εc to the required shell radius as and permittivity εs(ω) in order
to suppress the entire scattered signal. It reads as22

γ 3 = [εs(ω) − εb] [2εs(ω) + εc]

[εs(ω) − εc] [2εs(ω) + εb]
, (3)

with γ = ac/as and εb being the permittivity of the surround-
ing. A shell, in simple words, that possesses the properties
specified by this equation acts as an antireflection coating for
the core.

In this paper, we will focus on a cloak for small dielectric
spheres (approximately 10 times smaller than the optical
wavelength, i.e., of the order of 50 nm) that requires an
effective shell of definite radius and permittivity in order to
reduce the scattering by annihilating its dipole moment. For a
given core permittivity εc there are two different solutions to
Eq. (3), corresponding to a negative and a positive permittivity
for the shell. In Fig. 2 both solutions for the required shell
permittivity to cloak the core are shown as functions of the core
permittivity. For the positive solution we notice that the larger
the core permittivity, the smaller the required shell permittivity
εs . By inspecting the negative solution we find that a larger
core permittivity implies a more negative shell permittivity.
For a fixed value of εc = 2.25 we have furthermore solved Eq.
(3) and plotted εs against the ratio of the shell to the core radius
γ . It suggests that, for a rather small ratio, εs ≈ 1 is enough to
drastically reduce the scattering (which is obvious because of
the low visibility of the small sphere if γ � 1).

We are interested in realistic structures where the shell
will be implemented by metallic nanospheres that are limited
in size for experimental reasons (a thin cloaking shell is
more convenient for experimental applications). Therefore, a
sufficiently small effective permittivity of the shell is required.
The cloak is designed to operate in a regime where γ is only
slightly smaller than unity. In addition, the main purpose
of using the structure on the right of Fig. 1 instead of a
simple coating is to increase the cloaking efficiency at higher
frequencies, i.e., at frequencies beyond the plasma resonance
of metals. There, the intrinsic absorption of a metal like silver
is large, which prevents an efficient cloaking. The plasmonic
shell we propose here has a significant smaller imaginary part
in the permittivity and the cloak is hence more efficient. The
second advantage of our device is the increased degree of
freedom: The effective material itself representing the shell
can be already engineered by changing the filling fraction of
the spheres.

To get specific with regard to the sphere to be cloaked, we
fix the core sphere radius to ac = 35 nm and vary only the core
permittivity. Furthermore the radius of the core-shell system
is set to as = 45 nm. Since the shell will be implemented
by metallic nanoparticles, their uniform diameter amounts
to 10 nm. The system we consider is sketched in Fig. 1.
The shell formed by the metallic nanoparticles mimics a
homogenous medium to which effective properties can be
assigned. At a certain design frequency the effective properties
of this medium have to be chosen such that Eq. (3) is
fulfilled. In the succeeding section effective parameters will
be assigned to the shell in the framework of Maxwell–
Garnett theory. Such a treatment allows furthermore for
an analytical design of the cloak in the quasi-static limit.
We are going to verify the functionality of the cloak by
modeling the entire structure as shown in Fig. 1 by full-wave
simulations and compare the results with those of the analytical
consideration.
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FIG. 2. (Color online) (a) Shell permittivity for both negative (blue solid line) and positive (green dashed line) solutions of Eq. (3) that
allows cloaking a sphere with a radius of 35 nm as a function of its permittivity with a shell of a thickness of 10 nm. The permittivity of
the surrounding was set to be 1. (b) Required shell permittivity εs as a function of the ratio core to shell radius for negative (blue solid line)
and positive (green dashed line) solutions by assuming that the core has a permittivity of εc = 2.25 and the surrounding medium again has a
permittivity of 1.
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III. EFFECTIVE MEDIUM APPROACH–MAXWELL–
GARNETT APPROXIMATION

In this section we will analyze analytically the properties
of the metamaterials made of metal nanoparticles. In fact, the
description of the shell material as an effective medium is
a reasonable approximation for small metallic nanoparticles
when compared with the wavelength of light. Moreover, here
the nanoparticles are distributed at the surface of the core in an
amorphous manner with a low filling fraction (around 0.34).
Hence, all all of these properties justify the application of
an effective medium approach where we use the Maxwell–
Garnett approximation. The spheres were assumed to be made
of silver where the tabulated permittivity35 was used in the
simulations.

The shell can be described by an effective permittivity,
which is given by the Maxwell–Garnett formula as (see e.g.,
Ref. 36)

εeff(ω) = εm
εi(ω)[1 + 2f ] − εm[2f − 2]

εm[2 + f ] + εi(ω)[1 − f ]
, (4)

where εm is the nondispersive permittivity of the host medium
(air in our case), εi(ω) is the one of the nanoparticles, and f is
the filling fraction of the effective medium.

Figure 3(a) shows the real and imaginary part of the
permittivity for such a medium with the filling fraction of
0.34. It can be seen that the effective permittivity of the
metamaterial exhibits a strong dispersion with a Lorentzian
line shape near the frequency where the localized plasmon
polariton is excited in the metallic nanoparticle. For higher
filling fractions f , this dispersion curve is shifted toward
smaller frequencies. This can be explained by the mutual
coupling of the resonant fields in adjacent metallic spheres.
It has to be mentioned that the resonance can be tuned across
a much larger spectral domain if small metallic shells had
been considered rather than homogenous spheres. Moreover,
it can be seen in Fig. 3(a) that the metamaterial behaves
differently below and above the resonance frequency. At
larger frequencies it mimics a metal [�(εeff) < 0] whereas at
smaller ones it behaves as a dielectric material [�(εeff) > 0].

According to the solution of Eq. (3), the regime of interest
to design a cloak for the core sphere is the dielectric one far
off-resonance, where εeff is less than one but larger than zero.
In addition we require moderate losses at the frequency of
operation [�(εeff) � �(εeff)]. Both requirements are suitably
matched for the given filling fraction at a frequency slightly
exceeding 900 THz. Moreover, generally we can use also an
operational wavelength where the other condition for the shell
is met, i.e., exhibiting a large negative permittivity. However,
in this case the metamaterial has to be operated near the
resonance where the strong absorption will greatly deteriorate
its performance. Moreover, closer to the resonance the validity
of the effective medium theory becomes questionable. Both
aspects will be investigated in detail once the performance
of the cloak is analyzed with full-wave simulations. In
addition, from such simulations the anticipated operational
frequencies of the cloak can be extracted in a unique
manner.

Since we have fixed the nanoparticle size, the only
remaining degree of freedom in the design of the cloak
is the filling fraction. It sensitively affects the effective
properties of the metamaterial shell, most notably by scaling
the height of the resonance oscillator strength. This changes
the frequency where the cloak shall operate. In fact, this can
be easily seen by inserting Eq. (4) into Eq. (3), where we
get the required filling fraction for scattering cancellation.
In Fig. 3(b) we show the operational frequency where the
effective medium of the shell takes the required values as
a function of the filling fraction. Both the positive and the
negative solutions are shown. With the parameters given
above we require here as a solution either εeff(ω) = 0.49
(positive solution) or εeff(ω) = −2.28 (negative solution),
respectively.

From this family of solutions we have chosen those that
correspond to a filling fraction of f = 0.34. This basically
fixes the operational frequency. Moreover, this very filling
fraction seems to be reasonable since the Maxwell–Garnett
approximation still holds.36 In the following section we
verify the functionality of the cloak by using full-wave
simulations.
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FIG. 3. (Color online) (a) Effective real (blue solid line) and imaginary (green dashed line) parts of the permittivity of the shell given by
Maxwell–Garnett theory that is valid for low filling fractions (here we have a filling fraction of 0.34). (b) Cloaking frequency versus the filling
fraction of the shell for both positive (blue solid line) and negative (green dashed line) cloaking.
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FIG. 4. (Color online) Numerical calculation of the total scattering efficiency for two different permittivities of the dielectric core sphere
as a function of frequency [(a) εc = 2.25, (b) εc = 8]. The lines then have following meaning: red dotted line, bare sphere; blue solid line,
core-shell system rigorously calculated where the fine details of the structure are accounted for; green dashed line, homogeneous core–shell
system where the shell is described by the Maxwell–Garnett approximation [Eq. (4)]. Note the very good agreement in the frequency domain
of effective cloaking around 900 THz.

IV. NUMERICAL ANALYSIS OF THE CLOAKING EFFECT

In what follows, we aim at numerically evaluating the
performance of the cloak of Fig. 1. As it is commonly known,
the electromagnetic SCS per unit length of an arbitrarily
object [given by Eq. (2)] is a quantitative measure of its
visibility. In Fig. 4 the response of the cloak is displayed
for the frequency range between 600 and 1200 THz. The
scattering efficiency of the cloak is defined as the ratio of
the SCS of the covered object normalized to its geometrical
cross section. It was calculated by two different methods. The
first method is rigorous by relying on a multiple-scattering
formalism for a large number of spheres.28 The object under
consideration was a large dielectric core sphere (radius 35 nm)
with 131 small silver nanoparticles (radius 5 nm) amorphously
distributed with a filling fraction of f = 0.34. A schematic of
such a structure is shown in Fig. 1. This core-shell system
was illuminated by a linearly polarized plane wave. Because
of the spherical symmetry of the object and the amorphous
nature of the shell the response is qualitatively fully preserved
for various implementations of nominally the same geometry.
In a second simulation the scattering response of the core-
shell system was calculated where the shell was described
as an effectively homogeneous medium with a permittivity
according to the Maxwell–Garnett formula, Eq. (4). As a
reference the scattering efficiency for the uncloaked particle
is shown too. Two different permittivities of the core were
considered (εc = 2.25 and εc = 8). It can be clearly seen that
in a finite frequency range an excellent scattering reduction
may be achieved. The frequencies correspond to the domain
where the effective permittivity of the shell takes the required
small and positive value. The scattering efficiency of the
particle to be cloaked is reduced by approximately 70%
and the cloaking behavior is equally well predicted by the
approximate treatment. In contrast, cloaking is inefficient
for the second possible case, i.e., for a large, but negative
effective permittivity. This second operational frequency can
be disclosed from the analytical treatment to be either 830 THz
for εc = 2.25 or 790 THz for εc = 8. It is noteworthy that

rigorous simulations do not show a peculiar behavior at these
frequencies. This is a clear indication that near nanoparticle
resonance the description of the shell in terms of an effective
permittivity fails since the impinging light probes explicitly all
metallic nanoparticles. This can also be recognized by looking
at the rigorously calculated spectra that feature many small
resonances in this domain. Moreover, as anticipated before,
this solution to the cloak is inefficient because unavoidably
absorption comes into the play.

Nevertheless, despite all these details, it can safely be
concluded that the cloak operates as anticipated and the
remaining deviations can be explained by considering the
peculiar details of its implementation. It remains interesting
to note that the higher the permittivity of the obstacle (and
thus its “dielectric size”), the better the efficiency of the shell.
To summarize the cloaking efficiency we also provide the
scattering reduction versus the permittivity of the core in
Fig. 5, confirming that for large permittivities the reduction of
scattering is more than 75%. To further check the functionality
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FIG. 5. (Color online) Efficiency of the cloaking mechanism
versus the dielectric function of the core sphere in decibels. It shows
that for high permittivities core spheres the reduction of scattering is
more than 75%.
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FIG. 6. (Color online) Time averaged field distributions in a logarithmic scale of a dielectric sphere of εc = 8 which is cloaked by the
nanoparticles (a) and on its own for comparison (b). The structures are illuminated with a unit amplitude plane wave (909.5 THz) propagating
in the z-direction and being polarized in the x-direction.

of the cloak, we show in Fig. 6 the amplitude distribution of
the electromagnetic field scattered by the spherical obstacle
with [Fig. 6(a)] and without the plasmonic shell ([Fig. 6(b)]).
When it is surrounded by the cloak, the scattered amplitude is
close to zero everywhere in space in contrast to the uncloaked
case. As already explained, the reduction of scattering is due to
the proper choice of the permittivity function of the plasmonic
cover. This is consistent with the scattering reduction predicted
in Fig. 4. It finally remains to mention that the same mechanism
is also expected to work for metallic core particles with finite
or infinite conductivity where, however, the required specific
effective shell permittivities will be different.

V. CONCLUSION

In this paper, we propose a realistic design for cloaking
three-dimensional objects by suppressing their scattering
response in the dipolar limit. This technique is based on
the well-known plasmonic cloaking that relies on the use
of low-permittivity shells. We propose to extend this idea
by allowing the core sphere to be covered by a finite
number of small metallic nanoparticles. In the dipolar limit
this medium can be described as effectively homogenous,
possessing a Lorentzian resonance in the effective permittivity.
The description of this medium is feasible by using the
Maxwell–Garnett approximation that allows for an analytical

description of the cloak in the dipolar limit. We even went
one step further and compared the analytical design with
full-wave simulations of the entire core-shell system by using a
multiple-scattering algorithm that explicitly takes into account
all the individual spheres forming the shell. A scattering
reduction of approximately 70% has been proven. Using this
design, one may envision that cloaking theory can be moved
closer to its practical and feasible realization for optical waves.
We are confident that our proposed cloak can be implemented
in an optical experiment where bottom-up methods from
colloidal nanochemistry are used to decorate a dielectric sphere
by sufficiently densely packed small metallic nanoparticles.
Moreover, we are working toward the extension of this
technique to cloak larger obstacles for which higher-order
multipolar contributions to the scattered field have to be
taken into account. For such objects the effective permeability
of the shell equally needs to be controllable for which
various unit cells that rely on metallic nanoparticles can be
envisioned.

ACKNOWLEDGMENTS

Financial support by the Federal Ministry of Education
and Research PhoNa, from the State of Thuringia within the
ProExcellence program MeMa, as well as from the European
Union FP7 project NANOGOLD is acknowledged.

1A. Greenleaf, M. Lassas, and G. Uhlmann, Math. Res. Lett. 10, 685
(2003).

2J. B. Pendry, D. Schurig, and D. R. Smith, Science 312, 1780 (2006).
3D. Schurig, J. J. Mock, J. B. Justice, S. A. Cummer, J. B. Pendry,
A. F. Starr, and D. R. Smith, Science 314, 977 (2006).

4W. Cai, U. K. Chettiar, A. V. Kildiev, and V. M. Shalaev, Nat.
Photon. 1, 224 (2007).

5M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, Opt. Exp.
16, 5656 (2008).

6U. Leonhardt, Science 312, 1777 (2006).
7U. Leonhardt and T. G. Philbin, New J. Phys. 8, 247 (2006).

8M. Schmiele, V. S. Varma, C. Rockstuhl, and F. Lederer, Phys. Rev.
A 81, 033837 (2010).

9N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, Phys. Rev.
B 49, 8479 (1994).

10N. A. P. Nicorovici, G. W. Milton, R. C. McPhedran, and L. C.
Botten, Opt. Exp. 15, 6314 (2007).

11I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M.
Shalaev, Phys. Rev. Lett. 102, 213901 (2009).

12S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, Phys.
Rev. Lett. 103, 103905 (2009).

13J. Li and J. B. Pendry, Phys. Rev. Lett. 101, 203901 (2008).

195116-6

http://dx.doi.org/10.1126/science.1125907
http://dx.doi.org/10.1126/science.1133628
http://dx.doi.org/10.1038/nphoton.2007.28
http://dx.doi.org/10.1038/nphoton.2007.28
http://dx.doi.org/10.1364/OE.16.005656
http://dx.doi.org/10.1364/OE.16.005656
http://dx.doi.org/10.1126/science.1126493
http://dx.doi.org/10.1088/1367-2630/8/10/247
http://dx.doi.org/10.1103/PhysRevA.81.033837
http://dx.doi.org/10.1103/PhysRevA.81.033837
http://dx.doi.org/10.1103/PhysRevB.49.8479
http://dx.doi.org/10.1103/PhysRevB.49.8479
http://dx.doi.org/10.1364/OE.15.006314
http://dx.doi.org/10.1103/PhysRevLett.102.213901
http://dx.doi.org/10.1103/PhysRevLett.103.103905
http://dx.doi.org/10.1103/PhysRevLett.103.103905
http://dx.doi.org/10.1103/PhysRevLett.101.203901


CLOAKING DIELECTRIC SPHERICAL OBJECTS BY A . . . PHYSICAL REVIEW B 83, 195116 (2011)

14R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith,
Science 323, 366 (2009).

15J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, Nat. Mater.
8, 568 (2009).

16L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, Nat.
Photon. 3, 461 (2009).

17T. Ergin, N. Stenger, J. B. Pendry, P. Brenner, and M. Wegener,
Science 328, 337 (2010).

18X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang,
Nat. Commun. 2, 171 (2011).

19B. Zhang, Y. Luo, X. Liu, and G. Barbastathis, Phys. Rev. Lett. 106,
033901 (2011).

20H. Chen, C. T. Chan, and P. Sheng, Nat. Mater. 9, 387 (2010).
21U. Leonhardt and T. G. Philbin, Geometry and Light: The Science

of Invisibility (Dover, Mineola, 2010).
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