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Anderson impurity model with a narrow-band host: From orbital physics to the Kondo effect
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A particle-hole symmetric Anderson impurity model with a metallic host of narrow bandwidth is studied within
the framework of the local moment approach. The resultant single-particle spectra are compared to unrestricted
Hartree-Fock, second-order perturbation theory about the noninteracting limit, and Lanczos spectra by Hofstetter
and Kehrein. Rather accurate analytical results explain the spectral evolution over almost the entire range of
interactions. These encompass, in particular, a rationale for the four-peak structure observed in the low-energy
sector of the Lanczos spectra in the moderate-coupling regime. In weak coupling, the spectral evolution is
governed by orbital effects, while in the strong-coupling Kondo limit, the model is shown to connect smoothly
to the generic Anderson impurity model with a flat and infinitely wide hybridization band.

DOI: 10.1103/PhysRevB.83.195110 PACS number(s): 71.27.+a, 71.28.+d, 71.55.−i, 75.20.Hr

I. INTRODUCTION

Five decades of intense experimental and theoretical re-
search have boosted the Anderson impurity model (AIM)1

far beyond the scope of the “localized magnetic states in
metals” that it was initially designed for. In the first three
decades, its concept of a single level with on-site Coulomb
repulsion coupled to a host without electronic interactions was
mainly used to describe magnetic transition-metal impurities
dissolved in otherwise nonmagnetic bulk metals. The last two
decades’ extraordinary progress in nanotechnology, however,
brought a myriad of new and rather surprising implementations
of what in the meantime had become one of the theorists’
favorite toys, ranging from tunable quantum dots2,3 over
carbon nanotubes4,5 and adsorbed organic molecules6 to
single-electron7 or single-molecule transistors.8

The vast majority of theoretical work, comprehensively
reviewed in Ref. 9, focuses on AIMs with metallic hosts
of large bandwidth. In the limit of infinite bandwidth, the
exact static and thermodynamic properties can be deduced
from the Bethe ansatz solution.10–12 A powerful and versatile
alternative is provided by the numerical renormalization group
(NRG),13,14 recent extensions of which have also been able to
address the dynamics of the model to excellent accuracy.15–21

Yet another field of application is the Mott metal-to-
insulator transition in high spatial dimensions:22–24 Here,
dynamical mean-field theory (DMFT)23 reduces the at first
sight unrelated problem of interacting electrons on a high-
dimensional lattice to an effective AIM immersed in a bath
of identical sites whose properties have to be determined
self-consistently. It was within this context that the possibility
of an AIM with a metallic host of narrow bandwidth was
first evoked25 since it naturally arises, in the vicinity of the
Mott-Hubbard transition,26 within the now widely accepted
scenario of a metallic state surrounded by a preformed gap.23

At the time, Hofstetter and Kehrein argued, on grounds of
their Lanczos-determined single-particle spectra for a corre-
sponding AIM,25 that this incipient gap might be populated
by localized states. Although these states have not actually
been observed inside the preformed gap of the infinite-
dimensional Hubbard model, recent high-resolution dynamic
density-matrix renormalization-group (DDMRG) data27–29 do

indeed show very narrow features on the inner band edges of
the Hubbard satellites in the appropriate regime of interactions.

Independent from the relevance for the Mott-Hubbard
transition, several questions about these sharp features may
arise: (i) What are the underlying physical processes? (ii) Do
these processes depend on correlations within the DMFT bath?
(iii) Why do these features disappear for both small and large
values of the Coulomb repulsion? (iv) Are they related—and
if yes, in which manner—to the series of peaks observed in
the low-energy sector of Lanczos-determined spectra of an
AIM with a correlationless narrow-band host?25 (v) Why, in
the latter case, are the peaks organized in a four-set structure?

Some of the above questions have already been addressed
in a previous paper,30 in which the AIM was mainly stud-
ied perturbatively about the noninteracting limit; others, in
particular those concerning the rich low-energy structure at
moderate interaction strengths or the strong-coupling Kondo
regime, lie out of reach for perturbative approaches and remain
unanswered thus far. It is these questions, among others, that
shall be addressed in the present paper, primarily within the
framework of the so-called local moment approach (LMA).
This nonperturbative many-body Green-function formalism,
developed by Logan and co-workers,19,31,32 introduces the
concept of local moments from the outset. At pure mean-field
level, this would lead to a doubly degenerate ground state, as
appropriate for an insulator, but in manifest contradiction to
the Kondo singlet observed for impurities hosted in metals.
The LMA aims to transcend this deficiency by accounting for
dynamical tunneling processes between the two mean-field
ground states, at a rate which has to be determined in
consistency with Fermi-liquid behavior on the lowest energy
scale. The resulting formalism is equally well adapted to
impurities in metallic31 and insulating33 hosts, be it in the
particle-hole symmetric limit31 or away from it.32 The LMA
has so far been applied and adapted to a variety of impurity
and lattice problems with strong electronic correlations, where
its ability to cope with essentially all interaction regimes
and to correctly describe all energy scales has proven very
valuable.34–39 In the present case of an impurity hosted in
a narrow band, the LMA has to be generalized by using
a renormalized, sum-rule compliant version of the original
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ladder-sum propagator for the transverse spin fluctuations.
This extension is necessary, especially in the regime of
moderate interaction strengths, to correctly capture the subtle
low-energy dynamics (see Secs. III A and IV B).

The paper is outlined as follows: After a brief presentation
of the model, Sec. II defines the narrow-band regime and
presents two different mean-field solutions. Section III starts
with a review of the LMA, followed by a discussion of
the physically relevant transverse spin fluctuations and of
two important sum rules for the associated polarization
propagator; its last paragraph is dedicated to the self-energy
approximation implemented in practice. Section IV presents
the LMA impurity spectra for different regimes defined by
the strength of the on-site Coulomb interaction U ; the spectra
are compared to corresponding Hartree-Fock or perturbation
theory results and, where available, to Hofstetter and Kehrein’s
Lanczos-determined spectra.25 A Conclusion section closes
the paper.

II. HAMILTONIAN AND MEAN-FIELD THEORIES

The Hamiltonian for the AIM is given in standard notation
by

Ĥ =
∑
kσ

εkn̂kσ +
∑

σ

εi n̂iσ + Un̂i↑n̂i↓

+
∑
kσ

(Vikc
+
iσ ckσ + H.c.), (1)

where the first term describes electrons (of spin σ =↑ , ↓)
in a metallic host band of dispersion εk. The following two
terms refer to the impurity, with εi the impurity level and U

the on-site Coulomb interaction. The final term describes the
one-electron hybridization between the impurity and host.

Throughout this paper, as in Refs. 25 and 30, the particle-
hole symmetric AIM, obtained by setting ψ = −U/2, will be
studied. In this case, the empty and doubly occupied impurity
states are degenerate, whence for all interaction strengths
the Fermi level remains fixed at its noninteracting value
and the impurity charge is ni = 〈n̂i↑ + n̂i↓〉 = 1. Regardless
of the interaction strength, single-particle spectra are thus
symmetric with respect to the Fermi level, ω = 0. Persistent
charge fluctuations guarantee the system’s metallic character,
allowing for the possibility to recast the exact single-particle
impurity Green function as an infinite-order perturbation
series, with each diagram depending solely on U and the
noninteracting Green function

g(ω) = [ω + i0+sgn(ω) − �(ω)]−1 . (2)

In the latter expression, �(ω) = �R(ω) − i sgn(ω)�I(ω)
stands for the hybridization function

�(ω) =
∑

k

|Vik|2
ω + i0+sgn(ω) − εk

, (3)

which condenses all relevant information about the host
dispersion εk and the hybridization matrix elements Vik.

In this section, the single-particle impurity spectra of
the AIM will be calculated in two different mean-field
descriptions: Restricted Hartree-Fock (RHF), on the one hand,

implements spin symmetry from the outset via identical im-
purity occupation numbers for both spin species; unrestricted
Hartree Fock (UHF), on the other hand, seeks to determine
the occupation numbers self-consistently—thus allowing for
solutions with different impurity occupancies for ↑ and ↓ spins
at an intermediate stage—and restores the full spin symmetry
only at the very end.

In both versions of the theory, the (causal) single-
particle impurity Green function Giσ (ω) = ReGiσ (ω) −
i sgn(ω)πD0

iσ (ω) can be deduced via standard techniques, e.g.,
the equation-of-motion method, after Hartree-Fock factorizing
the two-body term in the Hamiltonian (1), n̂i↑n̂i↓ � n̂i↑〈n̂i↓〉 +
〈n̂i↑〉n̂i↓ − 〈n̂i↑〉〈n̂i↓〉, yielding

Giσ (ω) = [ω + i0+sgn(ω) − εiσ − �(ω)]−1, (4)

where εiσ = εi + U
2 (ni − σμ) denotes the Hartree-Fock cor-

rected impurity level. In the particle-hole symmetric AIM,
where εi = −U/2 and ni = 〈n̂i↑ + n̂i↓〉 = 1, the Hartree-Fock
corrected impurity level solely depends on the impurity
moment μ = 〈n̂i↑ − n̂i↓〉, viz.

εiσ = −U

2
σμ (5)

with σ = + (−) for ↑ (↓) spins. As a consequence of the
Hamiltonian’s invariance under spin inversion, solutions with
a nonvanishing magnetic moment are doubly degenerate, μ =
+|μ| and −|μ|.

The present paper focuses on AIMs with narrow metallic
host bands, whose width is much smaller than the hybridization
strength at the Fermi level, �0 = �I(ω = 0). The physics of
such a narrow-band AIM is naturally rather insensitive to the
precise form of the hybridization, meaning that, without loss
of generality, �I(ω) may be assumed to consist of a single flat
band of intensity �0, ranging from −D to +D, with D � �0.
As for any time-ordered Green function the real part follows
via Hilbert transform,

�R(ω) = P
∫ +∞

−∞

dω′

π

�I(ω′)
ω − ω′ , (6)

so that in total

�(ω) = �0

π
ln

∣∣∣∣ω + D

ω − D

∣∣∣∣ − i�0 sgn(ω) θ (D − |ω|) . (7)

A. Restricted Hartree-Fock (RHF)

The spin-reversal invariance of the Anderson Hamiltonian
(1) implies that the average number of ↑ and ↓-spin electrons
on the impurity has to be the same for any interaction
strength. RHF theory acknowledges this fact from the outset
by enforcing 〈n̂i↑〉 = 〈n̂i↓〉 for all interactions strengths, thus
entailing εiσ ≡ 0 in Eq. (4). As a result, RHF recovers the
noninteracting Green function for both spin species and all
interaction strengths:

GRHF
σ (ω) ≡ g(ω) = [ω + i0+sgn(ω) − �(ω)]−1. (8)

The associated single-particle spectrum D0
iσ (ω) consists of

two contributions: (i) a continuum for ω ∈ [−D,D], arising
from the nonzero imaginary part of the hybridization; and
(ii) two poles, one lying above and the other symmetrically
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below the continuum. The fraction of spectral weight residing
in the poles depends strongly on the bandwidth of the host
metal. In the usual wide-band model, D � �0, most of the
spectral intensity is concentrated in the single-particle band,
while the poles are exponentially weak and hence irrelevant in
practice.

The situation is, however, radically different in the present
narrow-band model, defined by D � �0. Here, almost the
entire spectral intensity resides in the poles, occurring at
frequencies ±ω0 far outside the band. By analogy with an
H2 molecule, these poles can be viewed as a bonding and an
antibonding orbital, thus suggesting that the narrow host band
to which the impurity is coupled behaves effectively as a single
site or level.25,40

In this case, the pole frequencies and weights can be
obtained to good accuracy from Eq. (8) by using the expansion
�R(ω) ∼ (2/π )�0D/ω, valid for |ω| � D:

ω0 �
√

2

π
�0D, (9a)

q � 1

2
− 8D

π�0
. (9b)

The “bonding energy” ω0 corresponds to the integrated hy-
bridization, or the total hopping between host and impurity;30

subject to D � ω0 � �0, it defines a second low-energy scale
relevant in the narrow-band regime.

In the following, it will sometimes be helpful to consider D

and ω0 as independent parameters. In particular, in the limit of
an infinitely narrow host band, D → 0, this allows us to treat
the host as a single level which couples via a finite bonding
energy ω0 to the impurity—a picture henceforth referred to as
the two-site approximation.

In addition to the orbital levels of the two-site approxima-
tion, the full noninteracting single-particle spectrum encom-
passes the aforementioned Fermi-liquid continuum stemming
from the hybridization band on the lowest energy scale,
|ω| � D. Its integrated weight is of the order O(D/�0) and
thus weak in the narrow-band regime.

The RHF description, naturally exact in the noninteracting
limit, is expected to break down if U is much larger than the
“molecular” bonding energy ω0: in this case, the extra electron
probed by Gσ is most likely to be introduced on an already
singly occupied impurity, which involves an energy cost of the
order of the interaction strength U ; the single-particle spectra
will then be dominated by Hubbard poles separated by the
Coulomb interaction U rather than the molecular orbitals at
ω = ±ω0.

B. Unrestricted Hartree-Fock (UHF)

In UHF theory, the magnetic moment residing on the im-
purity will be determined self-consistently from the impurity
Green function Giσ itself. For small interaction strengths, it is
found to be zero, and UHF recovers the noninteracting solution
g. This nonmagnetic solution becomes unstable above some
critical interaction Uc

0 —which turns out to be related to the
“molecular” bonding energy ω0—and UHF then converges to
a solution with a finite impurity moment. The Hamiltonian (1)
is, however, still invariant under spin inversions, thus guaran-
teeing for any mean-field ground state with positive moment

μ = +μ0 the existence of another degenerate ground state
with opposite moment, μ = −μ0. Subsequently, quantum-
mechanical tunneling processes between these mean-field
ground states ensure their occurrence with equal probability:

GUHF(ω) = 1
2 [GAσ (ω) + GBσ (ω)]. (10)

Throughout the present paper and without loss of generality,
A- (B-)type impurities are assumed to be predominantly ↑ (↓)
spin occupied, implying μ0 � 0. The ↑↓ spin symmetry of the
Hamiltonian entailsGAσ (ω) = GB−σ (ω), thus guaranteeing the
spin independence of GUHF(ω) in Eq. (10).

The necessity of the mixing process (10) becomes par-
ticularly obvious in the atomic limit, defined by vanishing
hybridization matrix elements, Vik ≡ 0. In this limit, the
impurity propagator is GAL(ω) = 1

2 ([z + U
2 ]−1 + [z − U

2 ]−1)
[with z = ω + i0+sgn(ω)]. Each of the two contributions in
Eq. (10) yields one term of this exact result [via �(ω) ≡ 0
and μ0 = 1]: an ↑-spin electron can only be retrieved from an
A-type impurity (first term), and can only be added to a B-type
impurity (second term).

In practical terms, the Green function GAσ (ω) =
ReGAσ (ω) − i sgn(ω)πD0

Aσ (ω) is obtained from Eqs. (4) and
(5) with an impurity moment μ = +μ0, calculated self-
consistently from

μ0 =
∫ 0

−∞
dω

[
D0

A↑(ω) − D0
A↓(ω)

]
; (11)

[GBσ (ω) follows equivalently for μ = −μ0]. In Fig. 1, the self-
consistent UHF moment μ0, Eq. (11), is plotted as a function
of the interaction strength U for a narrow-band AIM with host
bandwidth D = 0.01�0.

The spectral density D0
A↓(ω) consists of a low-energy

continuum for |ω| < D, of net weight O(D/�0), arising
from the finite imaginary part of the hybridization, and two
pole contributions, one above the single-particle band, at ω =
ω> > +D, and the other one below it, at ω = −ω< < −D.
Assuming both poles to occur far outside the single-particle
band, the pole frequencies and weights can be obtained rather
accurately by expansion of the hybridization function (7),
�R(ω) ∼ (2/π )�0D/ω:

ω≷ � ω0
(√

y2
0 + 1 ± y0

)
, (12a)

0 0.5 1
U/Δ

0

0

0.5

1

μ
i

μ
0

FIG. 1. Magnetic impurity moment vs Coulomb repulsion U

for an AIM with bandwidth D = 0.01�0, where ω0 � 0.08�0.
Filled circles: numerically determined LMA moment μ, as required
by Eq. (35); open circles: numerically determined UHF moment
μ0. Solid lines: corresponding approximate analytical expressions,
Eqs. (36) and (13). The critical interactions are Uc � 0.23�0 for the
LMA, and Uc

0 � 0.32�0 in UHF.
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q≷ �
√

y2
0 + 1 ± y0

2
√

y2
0 + 1

(12b)

with y0 = Uμ0/4ω0.
For the above expansion to hold, ω≷ � D is required, thus

limiting the validity of Eq. (12) for the low-energy pole at ω =
−ω< to interactions Uμ0 � 4

π
�0 (while no restrictions follow

for the high-energy pole ω>). In this range of interactions, the
renormalization effects in the single-particle continuum are
still small and the UHF moment μ0 can be obtained very
accurately by only retaining the pole contributions of D0

Aσ (ω)
in the self-consistency equation (11). This yields the following
expression which corresponds to the lower solid line in
Fig. 1:

μ0 �
⎧⎨
⎩

√
1 − (

Uc
0

/
U

)2
for U > Uc

0 := 4ω0

0 for U < Uc
0

(13)

For U < Uc
0 , the self-consistently determined moment

vanishes and the UHF Green function coincides with the
noninteracting or RHF solution, Eq. (8). Above Uc

0 , by
contrast, a finite local moment forms on the impurity, and
saturates rapidly as U is increased. With increasing μ0, the
pole at ω = ω> shifts rapidly away from its noninteracting
value ω0 toward higher frequencies and gains in intensity. For
U � Uc

0 , it becomes the upper Hubbard satellite at ω> � U/2,
which overwhelmingly dominates the spectrum D0

A↓(ω) with
a pole weight of q> � 1 − O([ω0/U ]2). Simultaneously, the
pole at ω = −ω< moves from −ω0 toward the lower band
edge −D and loses weight. For Uc

0 � U � �0, its position
and weight are given to good accuracy by

ω< � 2ω2
0

U
=:

J

2
, (14a)

q< �
(

2ω0

U

)2

. (14b)

The first equation defines a third low-energy scale, J =
4ω2

0/U , which lies between bandwidth and bonding en-
ergy, D � J � ω0, and accounts for the antiferromagnetic
exchange between impurity and host.

If U is increased to values of the order of �0, the
antiferromagnetic exchange J approaches the bandwidth D,
and the above analysis—while still valid for the Hubbard
level at ω = ω>—breaks down for the low-energy pole at
ω = −ω<. If, like in the present case, the hybridization
band �I(ω) has a discontinuity at the lower band edge −D,
the logarithmic divergence of the related real part, �R(ω),
still guarantees the existence of a low-energy pole; in the
present model with a flat hybridization band it occurs, for
U � �0 (where μ0 � 1), exponentially close to the band
edge and carries exponentially small weight, which renders
it insignificant in practice:

ω< � D

[
1 + 2 exp

(
− πU

2�0

)]
, (15a)

q< � 2πD

�0
exp

(
− πU

2�0

)
. (15b)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0

1

π 
Δ 0D

i(ω
)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0

1

π 
Δ 0D

i(ω
)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

0

1

π 
Δ 0D

i(ω
)

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
ω/Δ

0

0

1

π 
Δ 0D

i(ω
)

FIG. 2. UHF impurity spectra, π�0D
UHF(ω) vs ω/�0, for

bandwidth D = 0.01�0, i.e., ω0 � 0.08�0 and Uc
0 � 0.32�0, and

interaction strengths U/�0 = 0, 0.5, 1, 2 (from top to bottom). In
the bottom panel, the Hubbard satellites at ω � ±U/2 = ±�0 lie
off plot range. Discrete levels are represented by vertical lines. The
Fermi energy is ω = 0.

Finally, according to Eq. (10), the full UHF impurity
spectrum can be obtained by superposing D0

A↓(ω) and D0
B↓(ω),

the latter of which follows by symmetry, D0
B↓(ω) = D0

A↑(ω).
As illustrated in Fig. 2, DUHF(ω) consist of a continuum for
|ω| < D, and two pairs of poles at ω = ±ω> and ω = ±ω<.
Before the onset of moment formation, i.e., for U < Uc

0 , the
two pairs merge into the single pair of molecular orbitals shown
in the first graph, at ω = ±ω0 and of net weight q ∼ 1/2
each, and UHF coincides with the noninteracting solution.
As U exceeds Uc

0 , the orbitals split up progressively into
a stronger growing high- and a weaker growing low-energy
component, as depicted in the second and third graphs of Fig. 2.
In the second panel, where U = 0.5�0 is only moderately
greater than Uc

0 � 0.32�0, the impurity moment is already
well established, μ0 � 0.78, and the “Hubbard satellites”
at ω � ±0.22�0 are not far from their terminal position,
ω � ±U/2 = ±0.25�0, carrying together more than 88% of
the spectral intensity. Approximately a further 11% of the
weight reside in the low-frequency poles at ω � ±0.030�0

[expected at ω � ±J/2 � ±0.025�0 from Eq. (14a)], while
the central low-energy continuum carries only less than 1%
of the spectral intensity. In the third graph, where U = �0,
roughly 98% of the spectral weight reside in the Hubbard
satellites at ω � ±0.49�0, while the low-energy poles at ω �
±0.015�0 appear close to the central continuum, the latter
being strongly renormalized from its noninteracting shape.
Finally, these renormalization effects are still enhanced for
U = 2�0 (bottom panel), not yet fully in the strong-coupling
regime, resulting in a considerable violation of the Friedel
sum rule (see below); here, almost all intensity resides in the
Hubbard satellites (off plot range), and exponentially weak
low-energy poles, with total weight 0.3%, are located slightly
outside the central continuum [see Eqs. (15)].
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The above scenario, with a spectral evolution governed by
ω0 � √

2�0D/π in weak coupling, and by U and J = 4ω2
0/U

in moderate coupling, Uc
0 � U � �0, concurs qualitatively

with second-order perturbation theory in U (2PT),30 and
can be rationalized in terms of a simple two-site model
in which the host is caricatured by a single level coupled
to the impurity.40 Despite these encouraging results, UHF
suffers from several severe limitations: (i) In the two-site
limit, D → 0 albeit with finite ω0, exactly captured by
2PT, the low-energy single-particle levels are expected at
ω � ±3J/2 for U � Uc

0 , i.e., three times the corresponding
UHF pole frequency (14a). (ii) The UHF single-particle
band, present for |ω| < D, is generally not a Fermi liquid:
for interactions above Uc

0 , a nonzero impurity moment μ0

forms, and the UHF zero-frequency behavior DUHF(ω = 0) =
(1/π�0)/[1 + (Uμ0/2�0)2] violates the Friedel sum rule9,41

that compels the impurity spectra of the particle-hole symmet-
ric AIM, for arbitrary interaction strengths, to be pinned at the
Fermi level to their noninteracting value, D(ω = 0) = 1/π�0.
(iii) Relatedly, due to the absence of dynamics UHF completely
fails to capture any of the Kondo physics expected to govern
the low-energy spectrum in the strong-coupling regime, U �
4�0. The present paper aims to transcend these shortcom-
ings within the framework of the local moment approach
(LMA).

III. LOCAL MOMENT APPROACH (LMA)

The LMA19,31,32 expresses the impurity Green function in
a formalism employing two self-energies. At pure mean-field
level this description reduces to UHF, discussed in the previous
section, with each of the self-energies arising from impurities
with predominant ↑- or ↓-spin occupation. For an impurity
hosted by an insulator with a sufficiently large gap, this
doubly degenerate ground state is actually observed.33,42–44

Conversely, for a metallic host, dynamical tunneling between
the two broken-symmetry states can (and will) still lower the
energy and ultimately lead to the formation of a “Kondo”
singlet ground state with fully restored spin symmetry on the
longest time scales.31,32 The tunneling mechanism requires a
(virtually) doubly occupied or empty impurity at some inter-
mediate stage, implying that its rate—and the corresponding
energy scale—diminish with increasing interaction strength.
The LMA incorporates such a mechanism by coupling the
single-particle dynamics to energetically low-lying flips of the
impurity moment. In order to obtain a successful description
of insulating and metallic phases within the same framework,
this has to be done in a manner encompassing the possibility
of self-consistent restoration of the spin symmetry at low
energies, as necessary for the preservation of Fermi-liquid
behavior on this scale.

The implementation of the LMA follows Refs. 31 and 32.
For reasons analogous to those discussed in the context of
Eq. (10), the full impurity Green function G is again obtained
by superposing A- and B-type impurity propagators in a spin-
rotationally invariant fashion,

G(ω) = 1
2 [GAσ (ω) + GBσ (ω)]. (16a)

Making use of spin symmetry, GBσ (ω) = GA−σ (ω), yields
the equivalent expression

G(ω) = 1
2 [Gα↑(ω) + Gα↓(ω)]. (16b)

Here, G is independent of the impurity type and the
indices α may be suppressed for convenience, meaning that
the individual (broken-symmetry) Gσ (ω) in Eq. (16b) will
henceforth be implicitly considered “A-type,” i.e., of impurity
moment μ � 0, unless stated otherwise. Each of the Gσ (ω)
can be expressed in terms of a Dyson equation,45

Gσ (ω) = [g−1(ω) − 
̃σ (ω)]−1, (17)

thus defining the two self-energies 
̃↑(ω) and 
̃↓(ω) central
to the present approach. Without loss of generality, the
two self-energies can be separated into static and dynamic
contributions, 
̃σ (ω) = 
st

σ + 
σ (ω): Diagrammatically, the
former are suitably approximated by the Hartree tadpole (while
the contribution of the Fock open oyster diagram vanishes),
amounting to


st
σ = −σ

U

2

∫ 0

−∞
dω

[
D0

A↑(ω) − D0
A↓(ω)

]
; (18)

and the dynamical 
σ (ω) are defined to contain “everything
else.” Equation (17) may thus be rephrased as

Gσ (ω) = [
G−1

σ (ω) − (

st

σ − εiσ

) − 
σ (ω)
]−1

. (19)

This choice is particularly convenient if—as for the LMA—the
dynamic self-energy contributions 
σ (ω) are to be diagram-
matically constructed from the UHF propagators Gσ rather
than from the noninteracting g, since it entails the sum of the
static contributions (in braces) to vanish if the UHF moment
μ0, determined self-consistently from Eq. (11), is used.

The present two-self-energy description is by now well
established and by no means exclusive to the LMA, but
likewise emerges in other approaches as, e.g., in the NRG
where it occurs for odd iterations of the renormalization
group.20 Nevertheless, it is desirable to connect it to the
conventional single self-energy, defined by the Dyson equation
G(ω) = [g−1(ω) − 
(ω)]−1:31,32


(ω) = 1

2
[
̃↑(ω) + 
̃↓(ω)]

+
(

1
2 [
̃↑(ω) − 
̃↓(ω)]

)2

g−1(ω) − 1
2 [
̃↑(ω) + 
̃↓(ω)]

. (20)

Before specifying the class of diagrams to be retained to
approximate the dynamical self-energies 
σ (ω), the condi-
tions necessary for Fermi-liquid behavior to prevail at low
frequencies shall be reviewed.32 According to Luttinger,46 the
imaginary part of the single self-energy 
(ω) is required to
vanish as O(ω2) at the Fermi level ω = 0, which for the two
self-energies 
̃σ (ω) = 
̃R

σ (ω) − i sgn(ω)
̃I
σ (ω) employed by
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the present approach translates to the following two condi-
tions:


̃I
σ (ω) ∼ O(ω2) for ω → 0; (21a)


̃R
↑ (ω = 0) = 
̃R

↓ (ω = 0). (21b)

The fulfillment of the first condition shall be assumed from
now on, and will be explicitly shown in Sec. III B for
the class of diagrams chosen in the following. The second
condition requires the broken symmetry 
̃σ (ω) to coincide
with the fully symmetric single 
(ω) at the Fermi level, thus
expressing the concept of a restored spin symmetry on the
lowest energy scales,32 which was alluded to in the beginning
of this section. Here, the additional particle-hole symmetry,

̃↑(ω) = −
̃↓(−ω), in combination with Eqs. (21), require
both self-energies 
̃σ (ω) to vanish at the Fermi level. This, in
turn, automatically guarantees the Friedel sum-rule pinning of
the spectra, D(ω = 0) = 1/π�0.

In its self-energy diagrams, the LMA incorporates trans-
verse spin fluctuations responsible for a dynamical reversion of
the impurity moment. At the simplest level, to be implemented
in the following, this is achieved by coupling the ladder-sum
polarization propagator to the single-particle Green function,

Σσ(ω) ≡ Σσ[{Gσ}] ∼
σ

−σ
≡

σ

−σ
−σ (22)

where wavy lines represent the interaction U and left-going
(right-going) solid lines stand for a UHF-like particle (hole)
propagator Gσ . Note, however, that symmetry restoration is
generally not automatically guaranteed by the above class
of diagrams, but can be obtained through self-consistent
determination of a free parameter. In the following, the
impurity moment μ will serve as such, implying that it will
generally differ at self-consistency from its UHF value μ0 (see
Sec. III B below).

The above approximation for the self-energies 
σ (ω) has
been motivated and discussed in detail in Refs. 31, 34, and
32; here, its basic properties shall only be briefly reviewed:
(i) In weak coupling, before the onset of moment formation,
the UHF propagators Gσ coincide, for both σ , with the nonin-
teracting Green functions g; up to (and including) second order
in U , Eq. (22) is hence equivalent to an ordinary diagrammatic
perturbation expansion about the noninteracting limit. (ii) For
arbitrary interaction strengths, the self-energy diagram (22)
describes processes where after having added at t = 0, say, a
σ =↓-spin electron to a −σ =↑-spin occupied impurity, the
original ↑-spin electron hops away, thus effectively flipping
the impurity spin until its return at some later time t : this is
precisely the dynamical spin-flip scattering, comprised in the
second order of Anderson’s poor man’s scaling (see Ref. 9),
which allows us to restore spin symmetry and to capture the
strong-coupling Kondo limit. (iii) In the atomic limit, where
Vik ≡ 0 and therefore �0 = 0, the self-energy (22) vanishes,
since the −σ -spin electron cannot leave the impurity at all.
The LMA reduces to simple UHF, and thus becomes exact
in this limit, predicting an impurity moment of μ0 = 1 and
single-particle poles at ω = ±U/2. This is salutary, since the
atomic limit may be considered as an extreme of the local

moment phases observed in a gapped AIM;33,42–44 it also
plays an important role in the context of the breakdown of
the skeleton expansion30 taking place already in the metallic
regime close to a Mott metal-insulator transition.25,26

Before discussing the LMA impurity spectra in Sec. IV, the
spin fluctuations and their dynamical coupling to the single-
particle Green function will be examined in the following two
paragraphs.

A. Transverse spin fluctuations

As already mentioned in the previous paragraph, one of
the main ingredients for the LMA self-energy is given by
dynamical spin-flip scattering processes opening the possi-
bility to restore the spin symmetry on the lowest energy
scale. Embodied in the transverse impurity-spin polarization
propagators, �+−(t) = i〈T̂ {S+

i (t)S−
i (0)}〉 and �−+(t), these

scattering processes are at the simplest level accounted for by
a sum of repeated particle-hole interactions, as depicted by the
ladder bubble in the rightmost self-energy diagram in Eq. (22)
which, for σ =↓ (−σ =↑), leads to the familiar expression

�+−(ω) =
0�+−(ω)

1 − U 0�+−(ω)
, (23)

where

0�+−(ω) = i
∫ +∞

−∞

dω′

2π
G↓(ω′)G↑(ω′ − ω) (24)

is the bare transverse-spin bubble. [The second polarization
propagator follows by particle-hole symmetry, �+−(ω) =
�−+(−ω).]

Using the Hilbert transform relation (6) for Gσ (ω) on the
right-hand side (rhs) of Eq. (24), yields31

1

π
Im 0�+−(ω) = θ (ω)

∫ +|ω|

0
dω′ D0

↓(ω′) D0
↑(ω′ − ω)

+ θ (−ω)
∫ 0

−|ω|
dω′ D0

↓(ω′) D0
↑(ω′ − ω).

(25)

The first term describes a spin-flipping particle-hole excitation
where an electron is removed from an occupied ↑-spin state
below the Fermi surface (ω′ − ω < 0) and placed into an
unoccupied ↓-spin state above the Fermi surface (ω′ > 0).
Similarly, the second term accounts for the recombination of
an ↑-spin electron into an empty ↓-spin level below the Fermi
surface.

In the present AIM with a narrow host band, these processes
operate mainly between the UHF orbitals, giving rise to poles
in 1

π
Im 0�+−(ω) at ω = 2ω> and ω = −2ω< with respective

pole weight q2
≷.

For a vanishing impurity moment, as appropriate for
weak coupling, the UHF levels coincide with the “molec-
ular” orbitals of the noninteracting limit, entailing poles in
1
π

Im 0�+−(ω) at frequencies ω = ±2ω0 and of spectral weight
q � 1/4 each. Conversely, in moderate to strong coupling,
particle-hole excitations between the lower and the upper UHF
Hubbard level become dominant, producing a high-frequency
pole at ω = 2ω> � U of weight q2

> � 1 in 1
π

Im 0�+−(ω),
and a corresponding low-frequency pole at ω = −2ω< whose
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intensity decreases rapidly (first algebraically for Uc � U �
�0, where q2

< ∼ [2ω0/U ]4, and then exponentially for U �
4�0).

In addition to the pole contributions 1
π

Im 0�+−(ω) contains
three weak continua stemming from processes involving the
narrow UHF single-particle band at the Fermi level. Two of
these continua have their origin in electronic transfer between
the single-particle band and one of the UHF levels; they are
found at ω ∈ [ω>,ω> + D] and at ω ∈ [−ω< − D, − ω<],
with respective net weight O(q≷D/�0), and turn out to be
of little importance in the following. The third continuum
appears at low frequencies, |ω| � 2D, and owes its existence to
particle-hole excitations within the narrow UHF single-particle
band itself. According to Eq. (25), its behavior in the vicinity
of the Fermi level is essentially governed by the overlap of
the two D0

σ (ω) bands; for a metallic host, the intensity of the
latter being finite at the Fermi level ω = 0, this results in a
continuum vanishing linearly for small ω,

1

π
Im 0�+−(ω)

|ω|�D∼ |ω|D0
↓(0)D0

↑(0), (26)

a property that is needed to prove the fulfillment of condition
(21a) by the present theory.31

1. Stability of the ladder sum propagator

From the Hilbert transform relation (6) for �+−(ω), and
the positivity of its imaginary part, one deduces an analyticity
condition for the polarization propagator,31

Re�+−(ω = 0) =
∫ +∞

−∞

dω′

π

Im�+−(ω′)
|ω′| > 0, (27)

which naturally holds for 0�+− and the exact �+−.
Conversely, for an approximate polarization propagator,

like the present ladder sum �+−, Eq. (27) is not automati-
cally satisfied, but rather constrains the applicability of the
approximation to a certain range of parameters U and μ.

According to Eq. (23) and granted Im 0�+−(ω = 0) = 0,
the behavior of Re �+−(ω = 0) is solely controlled by the
bare Re 0�+−(ω = 0). For a vanishing impurity moment, as
enforced in RHF and found self-consistently in UHF for
U < Uc

0 ≡ 4ω0, Re 0�+−(ω = 0) � 1/4ω0 follows to good
accuracy from the two-site approximation, implying that
the corresponding ladder sum �+− satisfies the positivity
condition (27).

Above Uc
0 , the μ = 0 ladder sum �+−—which corresponds

to an ordinary random-phase approximation (RPA) in the
transverse spin channel—becomes unstable to spin excitations
since the underlying mean-field theory predicts a transition to
a phase with a finite magnetic moment. A finite μ, on the
other hand, allows for a direct calculation of Re 0�+−(ω = 0)
from Eq. (24) by means of the identity G↑(ω) − G↓(ω) =
−UμG↓(ω)G↑(ω) and of particle-hole symmetry D0

σ (ω) =
D0

−σ (−ω):

URe0�+−(ω = 0) = 1

μ

∫ 0

−∞
dω[D0

↑(ω) − D0
↓(ω)]. (28)

The latter equation shows that if the moment is determined
self-consistently from the UHF propagators, μ = μ0 as given
in UHF by Eq. (11), the rhs evaluates to unity and the

corresponding ladder sum �+−, Eq. (23), has a pole at ω = 0.
While appropriate for an insulator, where flipping the impurity
spin costs no energy, in a metallic host such a spin flip is
expected to be governed by the Kondo effect and thus to involve
a finite energy.

In the framework of the LMA, this picture emerges naturally
if μ is increased above its UHF value μ0, thereby shifting the
pole in �+−(ω) from ω = 0 to a small but positive frequency
ωm—closely related to the Kondo energy—and rendering �+−
analytic in the sense of Eq. (27).

2. Sum rules and renormalized ladder-sum propagator

Any acceptable approximation for the spin-flip polarization
propagator should fulfill the following sum rules:[∫ +∞

0
±

∫ 0

−∞

]
dω

π
Im�+−(ω) = 〈[c+

i↑ci↓,c+
i↓ci↑]±〉

=
{

ni↑ + ni↓ − 2〈n̂i↑n̂i↓〉
μ

,

(29)

which naturally hold for the noninteracting 0�+−(ω), and
likewise for the exact �+−(ω).

The second sum rule reflects the fact that, in weak coupling,
Im �+−(ω) is symmetric about the Fermi level since the
impurity is found to be occupied by electrons of both spin
species with equal probability; after the onset of moment
formation (and before symmetry restoration), the impurity
is predominantly ↑-spin occupied and spectral intensity at
positive energies, associated with processes flipping the
impurity spin from ↑ to ↓, should dominate.

As for the first sum rule, its rhs is comprised between
1/2 and 1 for the particle-hole symmetric AIM, since the
expectation to find a doubly occupied impurity 〈n̂i↑n̂i↓〉 varies
from 1/4 in weak to 0 in strong coupling and, in any case,
ni↑ + ni↓ = 1; both limits are captured by the approximate
expression 1

2 [1 + μ2] which follows by recasting the double
occupancy as 〈n̂i↑n̂i↓〉 = 1

4 (〈n̂2
i 〉 − 〈μ̂2

i 〉) and subsequently
factorizing the quartic Fermion operators via a Hartree-Fock
decoupling.

For the present narrow-band AIM, the above sum rules are
naturally fulfilled in weak coupling, where �+−(ω) reduces
essentially to the noninteracting 0�+−(ω). More surprisingly,
also in the strong-coupling (Kondo) regime, U � 4�0, both
sum rules are found to be approximately satisfied for values of
the magnetic moment required by symmetry restoration.

Problems are found to arise primarily for moderate in-
teractions, large enough to find the impurity moment well
established, but far from the Kondo limit. For this range of
interactions, the main features of the ladder-sum polarization
propagator �+−(ω) are accurately described in the two-site
approximation; it reduces to two poles, with frequencies and
weights given analytically by

ω±
m = 2ω0[γy ±

√
(γy)2 + γ ], (30a)

q±
m = [γy ±

√
(γy)2 + γ ]2

4γ
√

[y2 + 1][(γy)2 + γ ]
, (30b)
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where y = μU/Uc
0 and γ = 1 − U/Uc

0√
y2+1

. Incidentally, Eqs.

(30) encompass the bare (broken symmetry) 0�+−(ω), which
follows for γ = 1, as well as the noninteracting polarization
bubble, obtained by setting U = 0 and γ = 1.

Within the two-site approximation, appreciable sum-rule
violations occur for U � Uc

0 , where the stability criterion (27)
and the definition of the magnetic moment itself constrain μ

to the narrow interval between the UHF moment μ0 and 1. In
this regime, the deviation of the moment from its UHF value
defines a small positive parameter δ = μ − μ0. The position
and weights of the ladder-sum poles, Eqs. (30), can then be
expanded in terms of the square root of this parameter which,
using γ � μ0δ + O(δ2), yields

ω±
m � ±2ω0

√
μ0δ + U

2
μ2

0δ + O(
√

δ
3
), (31a)

q±
m � ω0

U
√

μ0δ
± μ0

2
+ O(

√
δ). (31b)

By consequence, the integrals in Eq. (29) evaluate to q+
m +

q−
m = 2ω0/U

√
μ0δ + O(

√
δ) and q+

m − q−
m = μ0; the 1/

√
δ

singularity of the first result indicates a strong violation of
the first sum rule (while the second is found to be fulfilled to
leading order even in this regime).

Within the present approach, this problem can be overcome
by renormalization of the ladder-sum propagator, i.e., by
multiplication of Im �+−(ω) with two different constants
above and below the Fermi level, ω = 0, chosen to comply
with both sum rules (29). [The corresponding real part can
subsequently be calculated from the Hilbert transform (6).] In
the two-site approximation, the renormalized weights—which
have to be used instead of Eq. (30b)—are explicitly given by

q±
m = 1

4 (1 ± μ)2. (32)

Henceforth, unless explicitly stated otherwise, �+−(ω) will
always stand for such a renormalized spin-flip ladder sum.

3. Full spin-flip polarization propagator

Beyond the two-site approximation, where the polarization
propagator solely consists of two poles, with frequencies given
by Eq. (30a) and renormalized weights (32), the full ladder sum
�+− contains the following additional features:

(i) The full �+−(ω) inherits its continua from the bare
0�+−(ω); these are located at frequencies ω ∈ ±[ω≷,ω≷ +
D] and |ω| � 2D.

(ii) For moments μ which only exceed the corresponding
UHF moment very slightly, as appropriate in strong coupling,
U � 4�0, the pole frequencies (30a) may lie within the low-
energy continuum |ω| � 2D; instead of poles, the full �+−(ω)
will thus have sharp resonances at these frequencies.

(iii) In addition to the above mentioned poles, the full
�+−(ω) shows a third collective pole, induced by the RPA-
like structure of Eq. (23) and the logarithmic singularity of
Re 0�+−(ω) at the upper edge of the polarization band found
for ω ∈ [−ω< − D, − ω<]; of tiny weight throughout the
whole range of interactions, this pole can be safely neglected
in practice.

B. LMA self-energy

For a ↓-spin electron, the self-energy diagram (22) trans-
lates to


↓(ω) = U 2
∫ +∞

−∞

dω′

2π i
�+−(ω′)G↑(ω − ω′) (33)

and the ↑-spin self-energy follows by particle-hole symmetry

↑(ω) = −
↓(−ω).

In analogy to the calculus of the spin-flip polarization
propagator, useful expressions for the self-energy 
↓(ω) =

R

↓ (ω) − i sgn(ω)
I
↓(ω) are obtained by inserting the Hilbert

transforms for the broken-symmetry �+− and G↑ in the
integrands on the rhs of Eq. (33), yielding for the imaginary
part


I
↓(ω) = θ (ω)U 2

∫ +|ω|

0
dω′ Im �+−(ω′)D0

↑(ω − ω′)

+ θ (−ω)U 2
∫ 0

−|ω|
dω′ Im �+−(ω′)D0

↑(ω − ω′) (34)

and a corresponding real part 
R
↓ (ω), which follows by Hilbert

transform.
The evaluation of the integrals in Eq. (34) is greatly

facilitated by the structure of the polarization propagator
�+−(ω), whose spectral intensity resides—as pointed out in
Sec. III A—throughout the entire range of interactions almost
exclusively in two sharp low-energy modes at ω = ω±

m. Except
in strong coupling, U � 4�0, the dominant contribution to the
self-energy arises by coupling these modes to the UHF ↑-spin
orbitals, resulting in two poles or sharp resonances in 
I

↓(ω),
the first occurring at ω = ω+

m + ω< > 0 (net weight U 2q+
mq<),

and the second at ω = ω−
m − ω> < 0 (net weight U 2q−

mq>).
The self-energy pole at positive frequencies is associated

with single-particle excitations where an extra ↓-spin electron
is introduced on the impurity, and the initial ↑-spin impurity
electron hops off to the host. The same result could have been
obtained from the original ground state by placing the extra
electron directly in the empty ↑-spin UHF orbital (energy cost
ω<) and simultaneously flipping the impurity moment from ↑
to ↓ (energy cost ω+

m). Analogously, the 
I
↓-pole at negative

frequencies is caused by a ↓-spin electron being taken off the
impurity and subsequently replaced by an ↑-spin electron from
the host, yielding an ↑-spin electron in the UHF orbital below
the Fermi level (energy gain ω>) and a flip of the impurity
moment from ↓ to ↑ (energy gain |ω−

m|). As this requires the
impurity to be initially ↓-spin occupied, the latter self-energy
contribution will decline as the impurity moment μ approaches
saturation.

In addition to these collective modes, Eq. (34) predicts
several sets of narrow self-energy continua that arise from band
contributions in D0

↑ and �+−; such continua occur for ω � ω+
m,

for ω � ω−
m and for |ω| � ω> + ω< (all of width D), for |ω| �

ω≷ (width 2D), and for |ω| � 3D. All these continua remain
generally weak over the whole range of parameters, albeit
with one exception: As the impurity moment μ approaches its
UHF value from above, μ → μ0 + 0, and consequently ω±

m →
0—a situation that becomes relevant in the strong-coupling
Kondo limit discussed in Sec. III B 2 below—the minor UHF
single-particle pole vanishes exponentially [see Eq. (15b)],
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and the dominant self-energy contribution is transferred to the
low-energy continuum located at |ω| � 3D.

That the low-frequency behavior of the latter continuum
fulfils the first condition for symmetry restoration, Eq. (21a),
may be seen as follows: The continuum is generated, as in
Eq. (34), by convoluting the UHF band for ↑-spin electrons
with the low-frequency continuum of Im �+−; the latter
vanishes linearly in ω as ω → 0 [a consequence of Eq. (26) in
combination with the analyticity condition (27), which for a
ladder-sum propagator implies 1 − URe 0�+−(ω = 0) > 0],
entailing their convolution to behave as [
̃I

↓(ω) ≡]
I
↓(ω) ∝

ω2 for |ω| � D.
The second condition, Eq. (21b), by contrast, is not

automatically fulfilled by the present theory. As pointed out
before, it reduces under particle-hole symmetry to 
̃R

↓ (ω =
0) = 
stat

↓ + 
R
↓ (ω) = 0, which, under the assumption 
stat

↓ �
Uμ/2, becomes


R
↓ (ω = 0) + U

2
μ = 0. (35)

Within the LMA, this condition will be satisfied by tuning
the impurity moment μ within the interval μ0 < μ � 1,
prescribed by the analyticity condition (27). Despite the
generally narrow range of possible values, a solution can
always be found since the dynamical contribution, 
R

↓ (ω =
0), is very sensitive to the exact position of the majority
self-energy pole and hence implicitly to the spin-flip scale
ω+

m. The latter quantity is highly responsive to changes of the
impurity moment and thus effectively controls the condition
(35). In a more general perspective, ω+

m—which vanishes for
an ordinary UHF ground state with finite impurity moment
(see Sec. III A 1)—may be considered as an additional order
parameter that, for a state with local moments, determines
whether Kondo physics takes place or not.

The above analysis is corroborated by the numerical results
displayed in Fig. 1, confirming that, for a wide range of
interactions, U � Uc

0 , the impurity moment μ needed to
comply with condition (35) is indeed very close to the UHF
moment μ0.

In the remaining two paragraphs of this section, condition
(35) in combination with the LMA self-energy will be studied
in two regimes for which analytic results can be worked
out: (i) the two-site limit, appropriate for weak to moderate
interactions; and (ii) the strong-coupling Kondo limit.

1. Self-energy in the two-site limit

The two-site approximation—D → 0 albeit with finite
ω0 � √

2�0D/π—allows for the LMA self-energy to be
written in simple analytical terms and, more importantly,
suggests a two-pole structure for 
σ (ω) that, for ω � |D|
and up to moderate interactions U � �0, correctly reproduces
the main results of a complete version of the LMA for the
present narrow-band AIM.

In weak coupling, U � Uc
0 , UHF predicts a solution with

a vanishing impurity moment, μ0 = 0, and single-particle
propagators which, independent of spin and impurity type,
reduce to the noninteracting Green function, Gσ (ω) ≡ g(ω).
The corresponding self-energies 
σ (ω) are hence odd func-
tions of ω and their real parts satisfy the condition (35) by

symmetry. As obvious from Eq. (22), the leading contribution
to the self-energy diagrams stems from ordinary 2PT about
the noninteracting ground state and is hence overwhelmingly
dominated by poles at ω � ±3ω0 of weight Q ∼ U 2/8 each.

Above some critical interaction Uc—which is of the same
order of magnitude but slightly smaller than the correspond-
ing UHF critical interaction Uc

0 —the nonmagnetic solution
becomes unstable and a finite moment forms on the impurity.
As illustrated in Fig. 1, the LMA moment μ saturates rapidly
with increasing U , and its numerical values fit accurately to a
square-root law [which, in contrast to and despite the similarity
with Eq. (13), is not even exact in the two-site limit]:

μ �
{√

1 − (Uc/U )2 for U > Uc := 2
√

2 ω0

0 for U < Uc
. (36)

As pointed out above, symmetry restoration and conse-
quently the Fermi-liquid nature of the single-particle excita-
tions hinge, in this regime, almost exclusively on the energy
cost ωm for flipping the impurity moment. For simplicity,
in what follows, the latter quantity will be thought of as an
independent parameter, to be determined from condition (35),
and the impurity moment will be kept at its UHF value μ0

instead.
Under these assumptions (which are in concord to leading-

order with the analysis in Sec. III A 2), �+− is dominated
by poles at ω±

m = ±ωm, of renormalized weights q±
m =

1
4 (1 ± μ0)2, and 
↓(ω) is constituted by a majority pole at
ω = ωm + ω< (net weight U 2q+

mq< ≡ 4ω2
0q>) and a minority

pole at ω = −ωm − ω> (net weight U 2q−
mq> ≡ 4ω2

0q<). The
magnetic energy scale follows finally from Eq. (35), viz.

ωm = −U

4
+ J +

√(
U

4

)2

+ J 2 + ω2
0, (37)

where, again, J ≡ 4ω2
0/U stands for the antiferromagnetic

exchange coupling constant.
At the critical interaction for moment formation in UHF,

where U = Uc
0 and U/4 = J = ω0, the magnetic energy starts

out at ωm = √
3ω0, and then decreases as ωm ∼ 3J/2 for

interactions U � Uc
0 (the relevance of the two-site approx-

imation being subject to ωm � D, or equivalently U � �0 as
previously).

Due to the simplicity of the two-site approximation, two
further virtues of the LMA become manifest: first, the
renormalization procedure of �+−(ω)—which enforces the
sum rules (29)—guarantees the LMA self-energy (33) to fulfill
an analogous set of sum rules for the interaction self-energy

̃↓(ω) ≡ U 2〈〈ci↓δn̂i↑; δn̂i↑c+

i↓〉〉ω,[∫ +∞

0
±

∫ 0

−∞

]
dω

π

̃I

↓(ω) = U 2〈[ci↓δn̂i↑,δn̂i↑c+
i↓]±〉

� U 2

4

(
1 − μ2

0

) ×
{

1

μ0
, (38)

the sole condition being that the many-body expectation values
on the rhs are evaluated by a Hartree-Fock factorization, as
shown on the second line of Eq. (38) (which, again, correctly
captures the limits of weak and strong coupling).
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The second virtue concerns the conventional single self-
energy 
: in Lanczos calculations by Hofstetter and Kehrein,25

this 
(ω) is found to have poles on an energy scale ω ∼ √
�0D

which cannot be explained in any order of the skeleton
expansion.25,26 Moreover, these poles have been shown to de-
pend little or not at all on the interaction strength,30 occurring
in the limits of strong and weak coupling exactly at ω = ±3ω0,
with net spectral weight Q ∼ U 2/8 each. Responsible in the
atomic limit Vik ∼ ω0 = 0 for the 
(ω) ∼ 1/ω characteristics
of the insulator, they are an intrinsic feature of the narrow-band
AIM.44

It has been argued in the beginning of this paragraph that,
in weak coupling (U � Uc), both LMA self-energies coincide
and inherit their main properties from 2PT, whose poles in turn
precisely respect the desired properties. But also for U � Uc,
where the impurity moment saturates and ωm � 3

2J , such poles
occur on a similar energy scale in the symmetry-restored single
LMA self-energy, 
(ω). The latter depends, as in Eq. (20), on
the self-energies 
̃σ which in the limit U � Uc reduce to


̃↓(ω) �
U
2 ω

[
ω + U

2

]
ω2 + U

2 ω − 4ω2
0

(39)

and 
̃↑(ω) = −
̃↓(−ω); insertion of which into Eq. (20)
generates a single self-energy constituted, to leading order
in J ∼ 1/U , by poles at ω � ±√

5ω0 of spectral weight Q ∼
U 2/8 each. Hence apart from the pole frequency prefactor
(
√

5 � 2.23 instead of 3), the LMA self-energy matches the
above-mentioned properties of the exact solution also for
U � Uc. The discrepancy in the prefactor is possibly due
to the inability of the two-site approximation to describe the
true strong-coupling regime, U � 4�0.

2. Self-energy in the Kondo limit

In genuinely strong coupling, U � 4�0, the polarization
propagator �+−(ω) consists in essence of a single sharp
resonance peaked at a frequency ωm which is tiny compared
to any other frequency scale involved in the problem, even
D. The corresponding self-energy, obtained by convoluting
this resonance with the single-particle UHF propagator as in
Eq. (34), is thus governed by resonant spin-flip scattering
within the metallic single-particle band at the Fermi level
itself, i.e., the Kondo effect, whereas the orbital contributions,
predominant in the two-site limit, vanish exponentially [see
Eq. (15b)].

Under these circumstances, and granted μ0 � 1, condition
(35) can again be solved analytically, yielding an exponentially
small spin-flip energy, ωm � D exp[−πU/8�0], which—
apart from the prefactor—concurs with the LMA results for
the AIM with a flat and infinite wide hybridization band.31

Far from the band edges of the low-energy continuum, the
interaction self-energy can be written as a function of a single
parameter, ω̃ = ω/ωm, viz.


̃↓(ω)
|ω|�D∼ 4�0

[
1

π
ln|1 − ω̃| − iθ (ω̃ − 1)

]
, (40)

and is otherwise independent of the original parameters U

and D.
This low-fequency scaling behavior of the self-energy—

which is ultimately responsible for the scaling properties

of the single-particle resonance—is a hallmark of AIMs
with metallic hosts.19,31,32 The associated prediction of an
exponentially small magnetic energy scale, closely related to
the Kondo temperature, emerges similarly from Anderson’s
poor man’s scaling47 for the s-d model, and from a strong-
coupling expansion of the exact Bethe ansatz solution for the
AIM.10

IV. SPECTRAL EVOLUTION IN THE
NARROW-BAND REGIME

In this section, the numerically obtained LMA impurity
spectra D(ω) = − 1

π
sgn(ω)Im G(ω) [with G(ω) the spin-

symmetric single-particle Green function of Eq. (16b)] will
be presented next to corresponding UHF and 2PT results. The
section also comprises a comparison of the LMA spectra with
Lanczos calculations performed by Hofstetter and Kehrein25

for an 11 + 1-site Anderson star with host bandwidth D =
10−4�0.

Further analytic rationales reveal how the spectrum evolves
with interaction strength and suggest an interpretation of its
main features in simple physical terms: for weak to moderate
interactions, U � �0, the reasoning is based on the two-site
approximation where the host band is taken to be infinitely
narrow; conversely, in strong coupling, U � 4�0, similarities
with the opposite case of an infinitely wide host band emerge in
the immediate vicinity of the Fermi level, and ultimately lead to
the characteristic scaling behavior of the Kondo resonance.19,31

A. Weak coupling: U � U c

For U much smaller than the critical interaction for moment
formation, Uc, the LMA connects smoothly to 2PT (see
Sec. III B 1), which in turn exactly captures the two-site limit
for any interaction strength. By analogy to the latter, exten-
sively discussed in Ref. 30, the LMA single-particle spectrum
(depicted in the last graph of Fig. 3) is overwhelmingly
dominated by the “molecular orbitals,’ occurring at minimally
lower frequencies |ω| � ω0 than in the noninteracting limit.
Additionally, for any nonzero U , a pair of weak poles arises at
ω � ±3ω0: these are the precursors of the Hubbard satellites,
and start out with net spectral weight q ∼ O([U/ω0]2) each.

Figure 3 depicts the impurity spectra for D = 0.01�0

and U = 0.1�0, i.e., an interaction strength that is weak
compared to �0, but already appreciable with respect to Uc �
2
√

2ω0 � 0.23�0 (or Uc
0 ≡ 4ω0 � 0.32�0). Since U < Uc,

the LMA converges to a solution without magnetic moment,
and the numerically computed LMA spectra (bottom panel)
carry mainly the signature of 2PT (middle panel), namely:
(i) the “molecular orbitals,’ occurring at ω � ±0.077�0,
dominate the spectrum and carry in total more than 92% of the
intensity; (ii) the outer set of poles, at ω � ±0.22�0, carrying
approximately 6.6% of the total spectral weight, occur slightly
inside their 2PT counterparts at ω � ±0.25�0; (iii) various
weak band contributions which (with one exception) also
bear great similarity with 2PT, the most prominent being the
essentially unrenormalized Fermi-liquid continuum of width
2D and net spectral weight O(D/�0) around the Fermi level.
These results clearly contrast with UHF, in the top panel of
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FIG. 3. UHF (top), 2PT (middle), and LMA (bottom) impurity
spectra, π�0D(ω) vs ω/�0, for bandwidth D = 0.01�0, i.e., ω0 �
0.08�0 and Uc � 0.23�0, and interaction strength U = 0.1�0.
Discrete levels are represented by vertical lines. The Fermi energy is
ω = 0.

Fig. 3, whose spectra, for the reasons already pointed out in
Sec. II B, coincide with the noninteracting limit.

B. Moderate coupling: U c � U � �0

In the regime of moderate interaction strengths—defined
by Uc � U � �0 or, equivalently, D � J � ω0—a well-
established local moment resides on the impurity. The energy
cost ωm � 3

2J for flipping this moment being large compared
to the host bandwidth D, the two-site scenario of Sec. III B 1
remains appropriate—except, of course, within the low-energy
Fermi-liquid continuum |ω| < D itself.

For a host of bandwidth D = 0.01�0, chosen in Fig. 4 for
clear resolution on all relevant energy scales, the above con-
ditions of moderate interaction strengths are never truly met,
since Uc � 0.23�0 and �0 are of similar orders of magnitude.
Nevertheless, for U = 0.5�0 (as in the figure), where the LMA
impurity moment is well established (μ � 0.89 vs μ0 � 0.78
for UHF, see Fig. 1), the moderate coupling regime of the two-
site approximation is a good starting point for the analysis of
the impurity spectra. Their most prominent feature, accounting
for approximately 68% of the spectral intensity, are the high-
energy Hubbard satellites at |ω| � 1

2U + 3
2J � 0.33�0. They

are found to occur remarkably close to their 2PT counterparts
at |ω| � 0.35�0 (expected in the two-site limit of 2PT at
|ω| � 1

2U + 5
2J � 0.38�0), whereas the UHF correction to

the atomic limit (where |ω| ≡ U
2 ) operates in the opposite

direction, |ω| � 1
2U − 1

2J � 0.22�0. A new feature on the
high-energy scale are the side bands for |ω| � ω> + ω< �
0.27�0 (and, very faint, for |ω| � ω> � 0.25�0), stemming
from many-body self-energy continua (see Sec. III B): strongly
enhanced with respect to their 2PT progenitors (located in
the middle panel at |ω| = 2ω0 � 0.16�0 and ω0 � 0.08�0),
these side bands will, for larger U , eventually merge with the
Hubbard levels, thereby destroying their discrete nature. This,
in turn, may be viewed as an extreme version of the many-body

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0

1

π 
Δ 0D

i(ω
)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

0

1

π 
Δ 0D

i(ω
)

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
ω/Δ

0

0

1

2

3

4

5

π 
Δ 0D

i(ω
)

FIG. 4. UHF (top), 2PT (middle), and LMA (bottom) impurity
spectra, π�0D(ω) vs ω/�0, for bandwidth D = 0.01�0, i.e., ω0 �
0.08�0 and Uc � 0.23�0, and interaction strength U = 0.5�0 (J �
0.05�0). Discrete levels are represented by vertical lines. The Fermi
energy is ω = 0.

broadening effect generic to the AIM and likewise observed
for hosts of large bandwidth.31,32

In the low-energy sector—governed by the antiferromag-
netic scale J = 4ω2

0/U � 0.05�0 and the bandwidth D =
0.01�0—the LMA impurity spectra reveal a much richer
structure than their UHF or 2PT counterparts. While all three
approaches predict the low-energy continuum, ranging from
ω = −D to D and accounting for 0.4% of the total spectral
intensity, to suffer very little renormalization with respect to
the noninteracting limit, the spectra differ significantly on the
J scale, where simpler UHF and 2PT both predict a single
pair of discrete levels (which can be viewed as remnants of
the molecular orbitals). An additional, second pair of levels
emerges in the LMA already in the framework of the two-site
approximation: The pole equation for the ↓-spin electron,
ω − �R(ω) − 
↓(ω) = 0, with 
↓(ω) from Eq. (39), yields
the upper Hubbard satellite together with two low-energy poles
at, to leading order in J ,

ω1,2 � −1 ± √
17

4
J , (41)

while, the ↑-spin pole equation, leads to the lower Hubbard
satellite and poles at ω = −ω1,2.

The low-energy poles at ω = ±ω1,2 can be interpreted in
the following way: The outer levels at |ω| = |ω1| � 1.28J �
0.065�0 (of net weight q1 � 0.51[J/ω0]2), result from a shift
of the UHF orbital remnants, initially found at |ω| = ω< �
1
2J , and occur remarkably close to their 2PT counterparts at
|ω| � 3

2J � 0.076�0; the inner poles, at frequencies |ω| =
ω2 � 0.78J � 0.04�0 and of net weight q2 � 0.12[J/ω0]2,
are interesting and somewhat unexpected features, which owe
their existence to resonant spin-flip scattering as accounted
for by the majority self-energy pole at ω = ω< + ωm � 2J .
In UHF, this pole is naturally absent due to the total lack
of dynamics; but it also misses in 2PT, albeit for subtler
reasons: assuming a perfect parity between host and impurity,
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STEFFEN SCHÄFER PHYSICAL REVIEW B 83, 195110 (2011)

as appropriate for an actual two-site problem, a resonance
process that tends to localize a spin flip on the impurity rather
than on the host is ruled out in 2PT by construction.

Despite the rather poor concord with the definition of
moderate coupling, the numerically calculated LMA spectrum
of Fig. 4 corroborates the above analysis to reasonable accu-
racy, displaying in the low-energy sector a four-peak structure
with (i) levels at |ω| � 0.05�0 � J (instead of the expected
1.28J ) and carrying about 21% of the spectral intensity;
and (ii) sharply peaked continua at |ω| � 0.7J � 0.035�0,
accounting for roughly 8% of the spectral weight, stemming
from the merger of the above-mentioned inner poles, expected
at ω � ±0.78J , with self-energy bands.

C. Comparison with Lanczos spectra

In their paper,25 Hofstetter and Kehrein present low-
frequency Lanczos spectra for an Anderson impurity coupled
to a host of 11 sites, with a bandwidth of D = 10−4�0,
entailing a “bonding energy” of ω0 � 0.008�0 ≡ 80D. They
study two different interaction strengths: the first, U = 0.2�0,
implies J � 12.7D much larger than D but much smaller than
Uc � 230D, thus matching the above definition of moderate
coupling; the second, U = 4�0, implying J � 0.63D slightly
smaller than the bandwidth, is in the crossover region between
moderate coupling and the Kondo regime. Figure 5 shows
LMA spectra for the same parameters, along with an additional
third calculation for U = 10�0—which is in the true strong-
coupling regime difficult to reach for the Lanczos method.

Hofstetter and Kehrein’s Lanczos spectrum for U = 0.2�0

is dominated by Hubbard satellites at energies as high as
|ω| � U

2 = 0.1�0 ≡ 1000D, which are excluded from their
plots.25 In the physically more relevant low-energy sector,
their spectrum may be divided in two parts: (i) a central
continuum for |ω| � D ≡ 10−4�0 which in shape is very
similar to the Fermi-liquid band of the noninteracting limit;
and (ii) two sets of narrow peaks on the antiferromagnetic scale
O(J � 12.7D), the first located at |ω| � 0.0018 − 0.0021�0

(i.e., 18 − 21D) and the second at |ω| � 0.0025 − 0.0026�0
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FIG. 5. Low-frequency sector of the LMA impurity spec-
tra, π�0D(ω) vs ω/�0, for bandwidth D = 10−4�0, i.e., ω0 �
0.008�0 = 80D, and interaction strengths U = 0.2�0 (top), U =
4�0 (middle), and U = 10�0 (bottom). Discrete levels are repre-
sented by vertical lines. The Hubbard satellites at |ω| � U/2 lie
outside the plot range.

(i.e., 25 − 26D). Although it is not clear how these sets
will evolve with a larger number of sites in the Lanczos
calculations, a structure with at least two features will most
likely prevail in this region.

The corresponding LMA results, displayed in the top panel
of Fig. 5, reproduce—at least qualitatively—all characteristics
of the Lanczos spectra: Excellent agreement is found on the
highest energy scale (off plot-range in the graph), governed by
the Hubbard satellites at ω � ±0.1�0 with almost 97% of the
total spectral intensity; good agreement is also observed on the
lowest energy scale D, occupied by the central Fermi-liquid
continuum, of net weight O(D/�0) ∼ 0.01%, and essen-
tially unrenormalized from the noninteracting-limit, since,
throughout the whole continuum, the interaction self-energies

̃σ (ω) ∼ O(U 2/�0) [Eq. (39)] are weak in comparison to
the hybridization �(ω) ∼ O(�0), and have thus very minor
influence on the quasiparticle properties. Nevertheless, con-
ceptually much simpler 2PT and UHF are similarly successful
on the two latter energy scales.

On the intermediate energy scale, J � 12.7D, by contrast,
where UHF and 2PT both predict a single set of levels (see
Sec. IV B), solely the LMA produces a rich structure which
qualitatively resembles the Lanczos spectra.25 The dominant
features are two sets of poles at ω = ±ω1,2 [Eq. (41)]: the first,
with 2q1 = 2.4% of the total spectral intensity and located
at |ω| = |ω1| � 1.28J � 0.0016�0 ≡ 16D, corresponds to
shifted “orbital remnants”; the second, with 2q2 = 0.6% of
the net spectral weight and situated at |ω| = |ω2| � 0.78J �
0.001�0 ≡ 10D, is the additional feature related to resonant
spin-flip processes (which has been discussed in the previous
paragraph). Additionally, of the various sets of single-particle
bands arising from the self-energy continua (see Sec. III B),
only the two most prominent are visible in the graph: The first,
at |ω| � ωm � 3

2J � 0.0019�0 ≡ 19D and of width D, stems
from spin-flipping impurity scattering of the metallic host
electrons close to the Fermi level—a process driving the Kondo
physics in the strong-coupling limit U � 4�0 (see Sec. IV D);
a second, almost imperceptible set of continua of width 2D,
is located at |ω| � ω< � J/2 � 0.000 64�0 ≡ 6.4D and
involves coupling the UHF orbitals to the low-lying spin-flip
continua.

In summary, contrary to UHF and 2PT, the LMA repro-
duces the main aspects of the Lanczos spectra also on the
intermediate energy scale, but somewhat underestimates the
antiferromagnetic exchange J . A better quantitative match
would require a renormalized spin exchange constant J ′ ∼
1.6J , or equivalently a Coulomb coupling U ′ screened by the
same factor for the spin channel only.

For U = 4�0, not yet in the strong-coupling regime, both
the LMA and the Lanczos-determined spectra consist only
of two appreciable contributions: the Hubbard satellites at
ω � ±2�0 on the high-energy scale, and, on the other ex-
treme, the low-energy Fermi-liquid continuum of width O(D)
surrounding the Fermi level, ω = 0. The latter contribution,
with its emergent central Kondo resonance, is plotted for the
LMA in the middle panel of Fig. 5. The corresponding Lanczos
graph by Hofstetter and Kehrein confirms this scenario, albeit
with a slightly less developed Kondo resonance, and sharper
peaks at the band edges ω = ±D. The overall agreement of the
spectra is good, but could again be improved by renormalizing
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the LMA spin exchange, even though the mismatch might
also partly stem from the artificial Lorentzian broadening or
the small number of sites used in the Lanczos calculations.

Finally, the Fermi-liquid continuum for U = 10�0, plotted
in the last panel of Fig. 5, illustrates the exponential narrowing
of the Kondo resonance with interaction strength, which is one
of the hallmarks of the strong-coupling regime to be discussed
in the next section.

D. Strong coupling: U � 4�0

In an AIM with a narrow metallic host, the single-particle
spectra suggest the following phenomenological definition of
the strong-coupling regime: An interaction strength belongs to
the latter if (i) the metallic band at the Fermi level is dominated
by a narrow central resonance whose shape is almost identical
to Kondo resonances belonging to even larger interaction
strengths; (ii) the Hubbard satellites appear as sharply peaked
continua instead of discrete levels; (iii) the spectrum contains
no other visible features.

For U = 6�0 and 12�0, the LMA single-particle spectra
do indeed comply with the last two of the above conditions.
Whether, however, the shape of the Kondo resonance in
the low-frequency sector of the spectra—displayed in the
bottom row of Fig. 6—is already scaling invariant is less
obvious, but can be worked out in analogy to the AIM with
an infinitely wide metallic host:19,31 for U � 4�0, and far
from the band edges, |ω| � D, the contributions to Gσ (ω) =
[ω − �(ω) − 
̃σ (ω)]−1 of both, ω and �R(ω) � 2�0ω/πD,
are negligible compared to the remaining two terms, given
by �I(ω) � �0, and the interaction self-energy 
̃σ (ω). In
the frequency range considered here, the latter is proportional
to �0 and scales in terms of the single variable ω̃ ≡ ω/ωm,
with ωm(U ) � D exp[−πU/8�0] [see Eq. (40)]. This, in turn,
leads to scaling invariance for the part of the single-particle
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UHF (top), 2PT (middle), and LMA (bottom), for bandwidth D =
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FIG. 7. (Color online) Scaling of the Kondo resonance in the
LMA impurity spectra, π�0D(ω) as a function of ω/ωm, with ωm

the (U -dependent) spin-flip or Kondo energy, for bandwidth D =
0.01�0 and interaction strengths U/�0 = 4, 6, 8, 12 (solid lines
from top to bottom), and in the limit U/�0 → ∞ (red dashed line).
Full discussion in text.

continuum closest to the Fermi level, |ω| � D, i.e., for the
central Kondo (or Abrikosov-Suhl) resonance.

The limiting curve for U/�0 → ∞, plotted with red dashes
in Fig. 7, is identical for any symmetric AIM with a metallic
host. It comprises two parts, the first being the narrow central
region between the cusps at |ω| � ωm, within which the
line shape mostly carries the Lorentzian signature of Landau
quasiparticles of weight Z = {1 − [∂Re 
(ω)/∂ω]ω=0}−1,
while the second region, outside the cusps, is characterized by
long logarithmically decaying spectral tails.19,48 (The cusps
in the spectrum at |ω| � ωm are artefacts stemming from
the RPA-like structure of the polarization propagator and
can be removed by a more realistic ansatz for the latter,31

producing LMA line shapes which then excellently agree with
corresponding NRG data.19)

The graphs in the first two rows of Fig. 6 show clearly that
such subtle effects are out of reach for the other two methods
studied here: UHF, on the one hand, suppresses for U/�0 →
∞ all spectral intensity close to the Fermi level as a result
of an incipient transition toward an insulating atomic-limit
state; 2PT, on the other hand, correctly captures the persistent
metallic character of the system—manifest in the Friedel sum-
rule pinning of the spectra at the Fermi level—but misses the
exponential narrowing and the non-Lorentzian shape of the
Kondo resonance.

Relatedly, on the high-energy scale |ω| ∼ U , the LMA
correctly predicts sharply peaked Hubbard bands instead of
genuine levels, ensuing from the absorption of the Hubbard
“levels” at |ω| � U

2 + 3J
2 by their former “side bands” at

U
2 � |ω| � U

2 + 2D; again, UHF and 2PT both fail to catch
this many-body broadening effect.

Finally, all methods—UHF, 2PT, LMA, and also Lanczos—
agree in the large spectral gap ranging from the low-energy
continuum of width D to the high-energy Hubbard satellites.
Especially the orbital remnants, which in weak and moderate
coupling are found inside this gap, are now missing. A
more rigorous analysis shows that they in fact still exist,
occurring exponentially close to the band edges |ω| = D,
but are undetectable because their spectral weight vanishes
exponentially.
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V. CONCLUSIONS

In this paper, a symmetric AIM with a narrow metallic host
has been studied with three different theoretical approaches:
UHF, 2PT, and the LMA.

The persistent metallic character of the system—which
renders diagrammatic perturbation expansions (like 2PT)
viable in the first place—entails that its dynamics hinges on
the impurity Coulomb repulsion U and the noninteracting
Green function g(ω). The latter, in turn, depends solely on
the hybridization �(ω), which, for the present case of a
narrow host band, is mainly determined by its width D

and strength at the Fermi level �0. Despite this reduced
set of ultimately three parameters—�0, D, and U—the
single-particle spectra are found to be rich, in particular
in the physically relevant low-energy sector close to the
Fermi surface, indicating the competition of various physical
processes and their associated energy scales. These encompass
Fermi-liquid behavior within the low-energy continuum of
width D, molecular-orbital formation related to the bonding
energy ω0 ∼ √

�0D, antiferromagnetic phenomena driven by
the exchange coupling J = 4ω2

0/U , and finally the Kondo
effect with its magnetic scale ωm � D exp[−πU/8�0].

Up to moderate interaction strengths, U � �0, the low-
energy physics is dominated by the integrated hopping
between host and impurity, ω2

0 = 1
π

∫
dω�I(ω), and the an-

tiferromagnetic exchange J , which are both insensitive to the
details of the hybridization function. The precise form of �(ω)
therefore only determines the essentially unperturbed metallic
band surrounding the Fermi level. In the opposite limit of large
interactions, U � �0, the low-energy physics is governed by
the Kondo effect. This leads to a spectral scaling, in terms of
ω/ωm, which, again, does not depend on any details of the
hybridization function.

The LMA has been shown to produce meaningful results
over the entire range of interaction strengths. For small
interactions, U � ω0, it predicts a vanishing impurity moment
and connects smoothly to 2PT, yielding single-particle spectra
carrying the signature of prevailing orbital physics.

For moderate coupling strengths, ω0 � U � �0 (or
alternatively D � J � ω0), in addition to the high-energy
Hubbard levels and the essentially unrenormalized Fermi-
liquid continuum on the lowest energy scale, the LMA
produces rich spectra on the J scale: here, two pairs of
poles along with several accompanying side bands can be
observed. Similar structures were found in corresponding
Lanczos-determined spectra by Hofstetter and Kehrein.25

Their main contributions can be rationalized as follows: One
pair of poles may be considered as remnants of the molecular
bonding and antibonding orbitals which similarly occur in
UHF and 2PT; the other pair—which misses in the latter
approaches and also in other state-of-the art techniques like,
e.g., slave-boson based methods49—is a somewhat unexpected

feature and arises due to resonant collective spin-flip processes
between the impurity and the UHF orbital remnants. Similar
spectral contributions, in the form of sharp resonances at the
inner band edges of the Hubbard satellites, have been observed
numerically in the metallic phase close to the Mott transition,
which occurs in the infinite-dimensional Hubbard model.27–29

These features have been dubbed antipolarons by Karski
et al. who suspect them, mainly on energetic grounds, to take
their origin in bonding/antibonding phenomena between heavy
quasiparticles and collective spin excitations.28 Although the
same authors admit in a subsequent publication29 that this
“complex composite excitation is not yet understood,” their
original idea is supported by the above interpretation of the
corresponding AIM features. Karski et al.’s results for the
Hubbard model clearly indicate that sharp features will prevail
in the presence of host or bath correlations, although their
aspect may naturally be altered, especially if they coincide
with another band.

In the limit of large interaction strengths, U � �0, of
the three investigated methods only the LMA captures
simultaneously the many-body broadening of the high-energy
Hubbard satellites and the relevant low-energy phenomena
embodied in the exponentially narrowing Abrikosov-Suhl or
Kondo resonance with its distinct logarithmically decaying
wings.19,32 Moreover, the observed Kondo resonance has been
shown to possess the universal shape and scaling properties
characteristic for symmetric AIMs with a metallic host.

The fairly accurate analytic solutions obtained within the
framework of the LMA suggest a classification into two
regimes, which cover almost the entire range of interactions:
The first englobes weak and moderate interactions, U � �0,
and its Fermi-liquid properties are primarily inherited from
the noninteracting system, while its orbital contributions
follow directly from the two-site approximation where the
narrow host is treated as a single site; in marked contrast
to the latter is the second regime, suitable for large inter-
actions, U � �0, where the narrow host band behaves as
infinitely wide in comparison to the exponentially small Kondo
energy.
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