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Coherence scale of coupled Anderson impurities
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For two coupled Anderson impurities, two energy scales are present to characterize the evolution from the
local moment state of the impurities to either the interimpurity singlet or the Kondo singlet ground state.
The high-energy scale is found to deviate from the single-ion Kondo temperature and rather scales as the
Ruderman-Kittel-Kasuya-Yosida interaction when it becomes dominant. We find that the scaling behavior and
the associated physical properties of this scale are consistent with those of a coherence scale defined in heavy
fermion systems.
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I. INTRODUCTION

There has been much recent debate on the nature of a
coherence scale for heavy fermion systems, which character-
izes the evolution of f electrons from the localized magnetic
moments to itinerant quasiparticles.1,2 In experiments, this
scale is manifested as the temperature T ∗ above which the
quasiparticle signatures vanish; for example, the Drude peak
in the optical conductivity disappears, the magnetic entropy
becomes R ln 2, and the resistivity (from magnetic ions)
reaches a maximum value. Traditionally, this is associated with
the single-ion Kondo temperature TK , which characterizes the
Kondo renormalization of f electrons from local moments
to quasiparticles by forming a spin-singlet resonance state
with conduction electrons. It is not known a priori that such
a single-impurity picture is applicable to the lattice, where
magnetic ions are coupled by intersite interactions. This can
be examined, for instance, by tuning the concentration of
magnetic ions in a parent nonmagnetic compound while the
dilute and dense limits provide information on the single-ion
Kondo behavior and the Kondo lattice behavior with coupled
local moments, respectively. One such experimental study is
on CexLa1−xCoIn5, and it is found that T ∗ increases from
the Ce-dilute limit with the increase of the concentration x

and can become one order of magnitude larger in the dense
limit.3 An extensive analysis on a group of heavy fermion
compounds displaying quantum critical properties1 shows that
T ∗ for these materials are indeed bigger than TK . It is further
discovered that T ∗ scales as ρ0J

2
K , where ρ0 is the density

of states of conduction electrons at the Fermi energy and
JK is the on-site Kondo coupling between spins of magnetic
ions and conduction electrons. This is the scaling form for
the intersite spin-exchange interaction, namely the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction I , rather than the
single-ion Kondo temperature TK ∼ (1/ρ0)e−1/(ρ0JK ).

Resolving the discrepancy between T ∗ and TK , therefore,
relies on the understanding of the interplay between the
intersite coupling and the on-site Kondo coupling. While the
associated lattice models for heavy fermion systems are in
general difficult to solve, the two-impurity Anderson model
(or the equivalent two-impurity Kondo model) presents such
a competition effect in an exactly solvable way. With the
assistance of the cluster dynamical mean-field theory (DMFT),
a self-consistently solved two-impurity model also provides a
solution to the Anderson lattice model.4 In the two-impurity

Anderson (or Kondo) model, an antiferromagnetic RKKY
interaction between two local moments favors an interimpurity
spin-singlet state that competes with the Kondo singlet state,
which parallels the same type of competition in heavy fermion
systems.5–15 It is known that for ferromagnetic RKKY inter-
actions and a range of antiferromagnetic RKKY interactions,
the evolution from the (high-energy) local moment state to
the (low-energy) Kondo resonance state or the interimpurity
singlet state is through a two-stage process, characterized
by two energy scales.7,13,14 Previous studies on this model
were focused on the low-energy scale, which characterizes
the quantum phase transition or crossover between the two
types of ground states. The high-energy scale, however, has
received little attention up to now, and it is the focus of
this study. While there are indications that it may be related
to the single-ion Kondo temperature or RKKY interaction
scale, there are no systematic studies on its scaling behavior
and its associated physical properties, especially when the
RKKY interaction is much bigger than the single-ion Kondo
temperature. The reason for carrying out this study is that, as
we find, this high-energy scale shares the same properties as
the coherence scale defined for the heavy fermion systems.
Following the experimental definition, we denote this high-
energy scale as the coherence scale for coupled Anderson
(Kondo) impurities.2

Other than the difference in the focus on the coherence
scale, our study differs from previous ones in the following
aspects. (i) We calculate the T = 0 uniform and staggered
spin susceptibilities in addition to the spectral functions (the
imaginary parts of the single-particle Green’s functions).
We carry out an extended analysis on these dynamical
quantities, for instance a scaling analysis, and employ different
quantities to identify and determine the characteristic energy
scales. Therefore, we provide a detailed account for the
physical properties associated with these energy scales. (ii)
We calculate these dynamical quantities with the recently
developed complete-Fock-space numerical renormalization-
group method.16 This method was developed to overcome
the spectral weight loss in the intermediate- and high-energy
range from a traditional patching scheme in dynamical quantity
calculations,17 which becomes severe in the two-impurity
problem with a larger eigenspace. This approach is essential to
determining the coherence scale that falls in this energy range.
In particular, we show by comparison that the results from the
patching scheme may lead to a misleading understanding of
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the coherence scale. To the best of our knowledge, this is also
the first practice to generalize this method to multi-impurity
models. (iii) We consider a realistic system with interaction
parameters tuned in the same fashion as in heavy fermion
materials, case (ii) in Sec. III. It is also important to determine
the single-ion Kondo temperature TK and the interimpurity
spin-exchange interaction I for a given system, with which
the identified characteristic energy scales can be compared.
We present results for two systems where two impurities are
located far away from each other [case (i)] and at nearest
neighbors [case(ii)] on a three-dimensional cubic lattice.
For two impurities located far away, the RKKY interaction,
which is generated from the virtual exchange of conduction
electrons, is found to vanish. Theoretically, we can add a
direct spin-exchange term to simulate the RKKY interaction
effect.6,7 This system has been studied previously, and we
repeat the calculations on this system because it provides
a reference system for the single-ion Kondo physics where
TK can be determined. We also provide additional results
for I � TK . For two impurities sitting on nearest neighbors,
a finite antiferromagnetic RKKY interaction between two
impurities is found to be generated perturbatively in the order
of ρ0J

2
K , and is antiferromagnetic. As TK and I are tuned in

the same fashion as in realistic heavy fermion systems, this
system provides a direct comparison to the experiments on the
scaling behaviors of the characteristic energy scales. It also
reveals an origin for a parity-splitting term that is inherent to
the heavy fermion systems.

From our numerical studies on the above two systems, we
can identify in general two characteristic energy scales for
two coupled Anderson impurities. While the ground state
is found to be always a Fermi liquid fixed point, either
a Kondo resonance state or the interimpurity singlet state
controlled by the RKKY interaction, the low-energy scale TL

serves as the (local) Fermi liquid scale where Fermi liquid
behaviors emerge. The high-energy scale TH is found to be a
spin-fluctuation scale, where the imaginary parts of the spin
susceptibilities reach their maximum values: the origin can
be the Kondo spin-flip scattering or interimpurity singlet-to-
triplet excitation. In either case, the single-particle (charge)
excitation gains considerable weight. We further find that TH

for both systems has the same scaling behavior: it increases
from TK and then becomes I when I/TK increases. This can
be explained by whether the Kondo renormalization can reach
TK or is already cut off by the interimpurity singlet-to-triplet
excitation gap. Our results indicate that the physical properties
above TH are still determined by the single-ion Kondo physics,
which allows us to make an argument that TH can be
generalized to the lattice system. TH ≈ I and its physical
properties imply that it is consistent with the coherence scale
T ∗ defined for heavy fermion systems. For completeness, we
also show the behavior of TL, which is the characteristic energy
scale for the phase transition or crossover and is consistent
with previous studies. TL has different behaviors in the two
considered systems due to two different origins, the proximity
to a degeneracy point of the two competing grounds states and
a parity-split quasiparticle hopping term.

The rest of the paper is arranged as follows. In Sec. II,
we introduce the two-impurity Anderson model and the
numerical method we adopted. The results for the direct and

generated RKKY interaction cases are shown in Sec. III,
where two energy scales are identified and their properties
are characterized. We focus our discussions on the high-energy
scale in Sec. IV, where we show that the scaling behavior of this
scale and its associated physical properties are consistent with
those of the coherence scale identified in the heavy fermion
systems. Some of the technical details are relegated to the
Appendixes. In Appendix A, we provide some technical details
on how to evaluate TK and the generated RKKY interaction I ,
which involves the mapping from the two-impurity Anderson
model into a two-impurity Kondo model. In Appendix B,
we show how to formulate the two-impurity model in the
parity basis, where two electron baths can be separated and
be discretized by the same numerical renormalization group
(NRG) procedure in the single-impurity problem.

II. MODEL AND METHOD

The Hamiltonian for the two-impurity Anderson model can
be written as

H = Hc + Hc−f + Hf ,

Hc =
∑
kσ

εkc
†
kσ ckσ ,

(1)

Hc−f = 1√
Nc

∑
kσ i

(Vke
ik·ri c

†
kσ fiσ + H.c.),

Hf =
∑
iσ

εf f
†
iσ fiσ +

∑
i

Unf i↑nf i↓ + IS1 · S2 ,

where i sums over two-impurity sites. This describes two
interacting local orbitals fiσ (Anderson impurities) embedded
in a noninteracting conduction electron medium ckσ with the
system size Nc and in hybridization with ckσ with the strength
Vk at each impurity site ri . εf is the local orbital energy level
and U is the on-site Coulomb interaction for the impurities. I is
a direct spin-exchange interaction between two impurity spins.
In reality, such a term, known as the RKKY interaction, is
perturbatively generated through a virtual process exchanging
conduction electrons. In the single occupancy limit of each
orbital, this model can be mapped into a two-impurity Kondo
model (some details are presented in Appendix A).

By taking the even- or odd-parity combinations of the local
orbitals fp=(e,o),σ = (f1σ ± f2σ )/

√
2, the fluctuations due to

conduction electrons can be represented by two separate baths
with the hybridization functions

�e,o(ω) = − 1

2Nc

Im

[∑
k

V 2
k |eik·r1 ± eik·r2 |2
ω − εk + i0+

]
. (2)

In our calculation, we assume Vk = V and a three-dimensional
tight-binding dispersion εk = −(D/3)

∑3
i=1 cos kia for con-

duction electrons, where D is the half-bandwidth and a is the
lattice constant.

We solve the above impurity problem as described by
Eq. (1) by employing the NRG method,17 which prescribes
a nonperturbative procedure to capture the low-energy prop-
erties. It discretizes the hybridization function into a chain
of electron orbitals with the energy decreasing in logarithmic
scale. In the two-impurity problem, as protected by the parity
symmetry, �e and �o can be discretized separately (see
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Appendix B for more details). While only the head site of
each chain couples to the impurities, we can solve the original
model by an iterative diagonalization to incorporate gradually
more low-energy sites. In practice, as the eigenspace increases
with more sites included in each iteration, only a certain
number of low-energy states are kept for the next iteration.
From these NRG eigenstates, we can calculate dynamical
quantities, �AB(ω) = −i

∫ ∞
0 dteiωt 〈[A(t),B(0)]±〉, in partic-

ular the Green’s function Gfpσ with A = B† = fpσ , and the
uniform (χu) and staggered (χa) impurity spin susceptibilities,
with A = B = (S1z + S2z)/

√
2 and (S1z − S2z)/

√
2, respec-

tively. Traditionally, these quantities are calculated from the
kept states from all iterations. However, kept states from
different iterations are not necessarily orthogonal to each
other. A patching scheme is adopted to avoid the overlap
contributions, for instance, in Ref. 7. This is to choose a
weight function for the overlap spectrum between different
iterations. The arbitrariness of the weight function leads to
the inaccuracy of these dynamical quantities. The recently
developed complete-Fock-space (CFS) method,16 which we
adopt in our calculation, overcomes this problem. It calculates
instead dynamical quantities from all the discarded states
(including all states from the final iteration), which are found
to form an orthogonal Fock space conserving the total spectral
density. Although the calculation time almost doubles with an
additional backward iteration to determine the reduced density
matrix, we find that the improvement in dynamical quantities is
significant, especially in the energy range near and above TK ,
which is of interest to our study. We will show a comparison
for these methods in Fig. 6. While we typically choose a
discretization parameter 	 = 2 and keep 4000 lowest-energy
states in each iteration, we find that by choosing a smaller 	

or keeping more states, the dynamical quantities have little
change in the high-energy range.

For the purpose of this paper, we focus on two cases.
For case (i), two impurities are located infinitely far away,
that is, |r1 − r2| = ∞. For case (ii), the two impurities are
sitting at nearest-neighbor lattice sites, where |r1 − r2| = a.
�e,o(ω) for these two cases can therefore be determined
from Eq. (2). We take U = 2D and εf = −U/2 in both
cases. The Kondo coupling constant is found to be ρ0JK =
8�0/(πU ). Subsequently, we can determine the generated
RKKY interaction I while the calculation details are presented
in Appendix A. For case (i), the hybridization functions take
the forms �e,o(ω) = �0, where �0 = πρ0V

2. In this case, there
is no RKKY interaction generated through the conduction
electrons, indicating that each impurity is described by a
single-ion Kondo problem, from which we can determine
TK . As such, we add a direct spin-exchange term IS1 · S2

to simulate the RKKY interaction, as shown by the last term in
Eq. (1). This enables us to study the competition between the
Kondo exchange and the RKKY-type exchange interactions in
a controlled manner. For case (ii), the hybridization functions
take the form �e,o(ω) = �0(1 ∓ ω). In this case, an antifer-
romagnetic RKKY interaction is perturbatively generated via
exchange of conduction electrons, which is determined to be
I ≈ 0.20ρ0J

2
K (see Appendix A). Therefore, we switch off the

direct spin-exchange term to avoid the double counting. The
ratio I/TK can be tuned by varying the Kondo coupling since I

and TK have different dependencies on JK . In our calculation,
this is achieved by varying V with U fixed, as JK ∼ V 2/U .

III. EMERGENCE OF TWO ENERGY SCALES

A. Case (i): Two impurities located far away from each other
with a direct spin-exchange interaction

We first consider case (i), two impurities located far
away from each other, which can be represented by �e(ω) =
�o(ω) = �0. Although this case has been studied previously,7

we reexamine it here for two considerations. First, as shown
below, it provides a reference system to the single-ion Kondo
physics when the direct spin-exchange term is not added. TK

can be determined. Secondly, it is a rare system exhibiting
a quantum critical point with the added direct spin-exchange
term, with or without particle-hole symmetry (this is related
to the disappearance of the parity-splitting potential scattering
term).

The results of the spectral function Af (ω) =
−ImGf (ω)/π , imaginary parts of the uniform (χ ′′

u ) and
staggered (χ ′′

a ) spin susceptibilities, are shown in Fig. 1. We
choose a particle-hole symmetric case εf = −U/2 = −D,
and �e,o = 0.045πD for |ω| � D. Here D = 1 serves as the
energy unit. The unit for spin susceptibilities (gμB)2 is also
set to 1, where g and μB are the Landé factor and the Bohr
magneton, respectively.

In this case, without the direct spin-exchange interaction I ,
we find that χu(ω) = χa(ω), i.e., there is no spin correlation
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FIG. 1. (Color online) Spectral functions (a) and imaginary parts
of the spin susceptibilities (b) as functions of energy for various values
of I in case (i), two impurities located far away but coupled with a
direct spin-exchange interaction I . χ ′′

u and χ ′′
a in (b) are represented by

dotted and solid lines, respectively. Here �e = �o = 0.045πD. While
only the ω > 0 range is shown, it is found that Af (−ω) = Af (ω) and
χ ′′(−ω) = −χ ′′(ω). Af is also symmetric for different parities and
spins in this case. Two energy scales TH and TL (see definitions in
the text) are illustrated for I/D = 0.002 and 0.01.
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between two impurities 〈S1zS2z〉 = 0. Therefore, the spin
dynamics, which controls the low-energy properties, is the
same as in the single-impurity Anderson model. For a finite
U , the Anderson model differs from its Kondo counterpart
in additional features in high energies, i.e., the incoherent
peaks of Af (ω) at ω ≈ εf and εf + U corresponding to the
free-orbital fixed point. In general, there exists an additional
energy scale characterizing the evolution from the free-orbital
fixed point to (or close to) the local moment fixed point, where
charge fluctuations freeze and Af (ω) is small. In the Kondo
limit, U → ∞, these two fixed points can be thought of as
being pushed to the infinite energy. The low-energy physics
is controlled by the Kondo renormalization from the local
moment fixed point to the strongly coupling Kondo fixed
point, and can be characterized by a single energy scale,
the single-ion Kondo temperature TK . Below TK , Af has
a resonance peak centered at the Fermi energy. [Af (0) =
1/(π�0) by Friedel’s sum rule. Af (0) in our calculation in
general has a few percent deviation from this value, which is
due to the truncation of eigenspace in NRG. In practice, we
find that the improvement for this low-energy sum rule can
be achieved by keeping more states in NRG iterations and/or
adopting a two-particle Green’s function method.18] TK is also
a spin-fluctuation scale, indicating that the spin fluctuations,
originating from the Kondo spin-flip scatterings, reach the
maximal strength. As the ω = 0 Kondo fixed point is a Fermi
liquid fixed point with scattering phase shift δe,o = π/2, (local)
Fermi liquid behaviors, such as Af (ω) − Af (0) ∼ −ω2 and
χ ′′

u,a(ω) ∼ ω, emerge when |ω| < TF (TF is smaller than TK

but is not an independent scale as it is proportional to TK ). We
determine TK from the real part of the spin susceptibilities,
χ ′

u,a(ω = 0) ≡ 1/(4TK ), which can be determined from the
imaginary parts with the Kramers-Kronig relation or the Ko-
rringa relation:19 limω→0[χ ′′

u,a(ω)/ω] = Cu,a = 2π [χ ′
u,a(0)]2.

We find that χ ′
u,a(0) = 2.5 × 102 and 2.7 × 102 by these two

relations, and we determine ρ0TK ≈ 1.0 × 10−3.
Upon adding an antiferromagnetic spin-exchange interac-

tion I , the low-energy properties have changed: the spectral
function is reduced from an energy scale around TK , and then
either increases again to the full weight 1/(π�0) or decreases
to 0 [a pseudogap state with Af (ω) ∼ ω2, verified by a log-log
plot] at a lower-energy scale. The abrupt spectral weight
change at the Fermi energy is a signature of the two-impurity
quantum phase transition:6,7 the ground state changes from a
Kondo resonance state with two-impurity spins forming Kondo
singlets with the conduction electrons, to an interimpurity
spin-singlet states with two-impurity spins forming singlets
by themselves and being decoupled from the conduction
electrons. The critical value is found to be Ic ≈ 2.3TK , which
is also consistent with previous studies.6,7

Apparently, the single-ion Kondo picture with a single scale
TK no longer applies and two energy scales are needed to
explain the dynamical quantities. On both sides of the critical
point, Fermi liquid behaviors persist at low energies, such
as χ ′′

u,a(ω) = Cu,aω. We therefore associate the low-energy
scale TL as the Fermi liquid temperature. But we need to be
aware that TL alone cannot differentiate between the Kondo
resonance state and the interimpurity singlet state, both of
which are Fermi liquid fixed points but have different spectral

weights or the scattering phase shift at the Fermi energy. The
high-energy scale TH is associated with a spin-fluctuation
scale, where χ ′′

u,a(ω) reaches the maximal strength. For I

close to Ic, where χ ′′
a (ω) develops a flattened peak, TH is the

high-energy edge. According to this observation, we define
TH as the peak position of χ ′′

u (ω) and TL as the onset energy
when χ ′′

u,a(ω) becomes linear in ω. The former can be easily
determined from the numerical data. The errors come only
from systematic ones such as the numerical discretization
and the numerical representation of the δ function in terms
of a broadened log-Gaussian function. The latter, however,
has arbitrariness because the crossover to the Fermi liquid
behaviors spans a wide energy range. Therefore, we also
provide characterizations from 1/[4χ ′

u,a(0)] and Cu,a . In the
single-ion case, 1/[4χ ′

u,a(0)] = TK while Cu,a = C0 ∼ 1/T 2
K .

When I is close to Ic, we find that the constant piece in
χ ′′

a (ω) remains relatively unchanged, implying CaTL = C0TK .
In this region, TKC0/Ca provides a more reliable method to
determine TL. We plot the energy scales determined from these
methods in Fig. 2

From Fig. 2, we learn that TL and TKC0/Ca have similar
behaviors (the magnitude difference is similar to the difference
between TF and TK in the single-ion case). As TKC0/Ca

is determined directly from numerical data, it shows better
scaling behaviors. Near Ic, we find that it can be fitted as
(I − Ic)2. This indicates a uniformly vanishing energy scale,
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FIG. 2. (Color online) (a) Characteristic energy scales as func-
tions of I/TK . The energy scales determined from 1/χ ′

u,a(0) and
Cu,a = limω→0 χ ′′

u,a(ω)/ω are also shown. (b) shows the low-energy
scale as a function of (I − Ic)/Ic. Two dotted lines are fitting
lines T/TK = 2.0(I/Ic − 1)2 and T/TK = 4.0(I/Ic − 1)8/3. Part (c)
shows the amplified region of the high-energy scale. Two dotted lines
are the guide line T = I (black) and a fitting line T/TK = 0.8(I/TK )4

for 1/Cu.
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FIG. 3. (Color online) Scaling analysis on the staggered spin
susceptibility. χ ′′

a (ω) as functions of ω are shown for different I ’s, as
in Fig. 1(b). Here ω is scaled with TKC0/Ca to the scaling behavior.

which characterizes the continuous quantum phase transition.
The exponent 2 is also consistent with previous studies.6,7

But away from Ic, the exponent is smaller or bigger than 2
for I → 0 and I � Ic respectively. In the latter case, it is
rather fitted as (I − Ic)8/3 within a range of I − Ic > 0.2Ic.
This fractional exponent may not be universal, as we can
also fit 1/Ca ∼ 1/Cu ∼ I 4 for I � Ic. Another check for the
low-energy scale is from a scaling analysis, by rescaling the
energy with respect to 1/Ca . We carry out such an analysis for
χ ′′

a (ω), which is shown in Fig. 3. Once the energy is rescaled
with TKC0/Ca , the low-energy part of χ ′′

a (ω) falls in the same
universal curve within |δI/Ic| < 0.2, which is associated with
the universality of the two-impurity quantum critical point.
Indeed, TKC0/Ca provides a faithful representation of the
low-energy scale TL. On the other hand, the Korringa relation
is violated for finite I ’s. While 1/χ ′

a(0) has the same trend as
TL, it rather vanishes logarithmically ∼ 1/ ln |I − Ic|.

TH and 1/[4χ ′
u(0)] have similar behaviors: they increase

uniformly when I increases. TKC0/Cu follows the same trend,
but increases more rapidly when I > Ic. Clearly, TH increases
from TK and becomes the RKKY scale I when I � TK .

B. Case (ii): Two impurities sitting on nearest-neighboring sites
with the generated RKKY interaction

We proceed to study case (ii), two impurities sitting on
nearest neighbors, which can be represented by �e,o(ω) =
�0(1 ∓ ω). The results are shown in Fig. 4. We observe similar
behaviors, where small (large) V cases can be compared
with large (small) I/TK cases in case (i). The differences
are Af for even and odd parities split due to different
�e,o(ω), and Af (0) smoothly varies rather than a jump. We
can also identify two similar energy scales in Af and χ ′′

u,a

and plot them as functions of V in Fig. 4(c). As learned
from case (i), both TH and TL deviate from TK when
the RKKY interaction is finite; it is not possible to determine
TK from the dynamical quantities in this case. Instead,
we calculate TK from the corresponding single-impurity case
with �e,o(ω) = πρ0V

2 as in case (i) with the same V . We
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FIG. 4. (Color online) Spectral functions (a) and imaginary
parts of the spin susceptibilities (b) as functions of energy
for various values of hybridization constant V in case (ii),
two impurities sitting on nearest neighbors with the generated
RKKY interaction. The solid (dashed) lines represent the the
even (odd) channels for Af , and χ ′′

a (χ ′′
u ) for spin suscepti-

bilities. With �e(−ω) = �o(ω), Ae,o(ω) = Ao,e(−ω) is satisfied.
Part (c) shows different energy scales as functions of V (in unit
of D). TK is determined from calculations by assuming �e,o = �0,
and is fitted (blue dashed line) by ρ0TK = 0.5 exp[−(1/ρ0JK ) +
(1/2) ln(ρ0JK ) + 1.58(ρ0JK )2]. The black dashed line is the RKKY
scale I = 0.20ρ0J

2
K .

find that it can be fitted by the standard expression ρ0TK =
0.5 exp[−(1/ρ0JK ) + (1/2) ln(ρ0JK ) + 1.58(ρ0JK )2], where
ρ0JK = 8ρ0V

2/U . The RKKY interaction is determined to
be antiferromagnetic, I ≈ 0.20ρ0J

2
K (see Appendix A). As V

increases, both I and TK increase monotonically, but their ratio
decreases. This provides a direct simulation to realistic heavy
fermion materials; both follow Doniach’s phase diagram [cf.
Fig. 4(c)].20

Since TK and �0 are varying as functions of V in this case,
it is helpful to replot our results in scaled forms. For instance,
we can rescale the energy with TK and Af with 1/(π�0) for
each value of V . This allows a direct comparison to case (i)
where TK is fixed. The rescaled spectral functions and energy
scales are plotted in Fig. 5. For the spectral functions, it is
interesting to observe that the high-energy parts follow the
universal Kondo curve, i.e., neglecting the incoherent peaks,
this curve describes the Kondo renormalization from a local
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FIG. 5. (Color online) The rescaled spectral functions (a) and
energy scales (b) in case (ii), impurities sitting on nearest neighbors
with the generated RKKY interaction. These are the same plots as
in Figs. 4(a) and 4(c). After a rescaling, they can be compared with
Figs. 1(a) and 2.

moment state at infinite energy to the low-energy Kondo
fixed point. However, this curve is rather associated with
a particle-hole asymmetric model, or with a finite potential
scattering term. The potential scattering terms for the even
and odd parities have the same magnitude and are opposite in
sign. The potential scattering term in the single-ion model is
known not to change the universality of the Kondo fixed point:
it simply shifts the resonance peak position and contributes an
additional phase shift π/2 + δp. Therefore, Af (0) is reduced
from 1/(π�0). The V = 0.4D case with I � TK presents such
an example. When V decreases, I/TK increases, and the low-
energy physics begins to be affected by the RKKY interaction.
Similar to the particle-hole asymmetric two-impurity model
studied before,7,13,15 the system shows a crossover from the
Kondo resonance state to the interimpurity spin-singlet state,
rather than a continuous transition. TL remains finite near
I ≈ 2.2TK (at V/D ≈ 0.35). The divergence in χ ′

a(0) is also
absent. Nevertheless, we find that TH has the same behavior
as in case (i): it uniformly increases from TK to I when I/TK

increases.

C. Origin of two energy scales

The emergence of two energy scales indicates the effect
of a finite RKKY interaction on the Kondo renormalization.
While the triplet configuration of the two-impurity spins, as
an S = 1 impurity, can undergo the spin-flip scattering to
itself in favor of Kondo resonance, the singlet configuration
only couples to the conduction electron by being first excited
to the triplet configuration, through (S1 − S2) · (c†eσ �τσσ ′coσ +
c
†
oσ �τσσ ′ceσ ), where cpσ ∼ ∑

k ckσ (eik·r1 ± eik·r2 ). The RKKY
interaction creates an excitation gap between the singlet
and triplet configurations of the two-impurity spins, causing
these two configurations to renormalize differently. This
can be evidenced from the difference in the uniform and
staggered spin susceptibilities. When the RKKY interaction is
antiferromagnetic21 but small, though the singlet configuration
is favored, the Kondo scattering between the singlet and
triplet configurations, on the energy scale of TK , is able to
overcome the singlet-to-triplet gap and the Kondo resonance
state persists at low energies. When the RKKY interaction
is much larger than TK , the Kondo resonance is suppressed
at low energies, leading to a state with gapped quasiparticle
excitations, denoted as the interimpurity singlet state.

Before proceeding to discuss the high-energy scale, we
show that the behaviors of TL are consistent with previous
understandings on this scale. While both the Kondo resonance
state and the interimpurity singlet state belong to the Fermi
liquid fixed points, TL characterizes the energy difference
between these two states. Above TL, the system evolves into
an intermediate state where the interimpurity singlet-to-triplet
excitation and the Kondo scattering are on equal footing
and the physical properties deviate from FL behaviors. This
intermediate state is also the quantum critical state in case
(i) when TL vanishes at I = Ic. From our results, we learn
that the spectral weight for the quantum critical state is
exactly half of that for the Kondo resonance state, and the
staggered spin susceptibility diverges logarithmically. We
find that these properties are consistent with the Majorana
fermion picture proposed by the bosonization approach.10,12

This picture dictates that the quantum critical state is a partially
screened Kondo state with only half of the impurity degrees of
freedom as a Majorana fermion forming a resonance model
with the extended electron degrees of freedom. This can
also be evidenced from the thermodynamics calculated from
NRG (Ref. 14) that the entropy (per impurity) for this state
is (ln 2)/2. While TL ∼ (I − Ic)2/TK in case (i) indicates
the proximity to the degeneracy point between the Kondo
resonance state and the interimpurity singlet state, the finite
TL in case (ii) is due to another effect. In case (ii), the
particle-hole symmetry is actually broken in each channel
due to the presence of a parity-splitting potential scattering
term V−(c†eσ ceσ − c

†
oσ coσ ). It is shown9,12 that such a term will

generate a coupling between the other half of the impurity
degrees of freedom (the other flavor of Majorana fermion) and
the extended degrees of freedom. Therefore, there is always a
finite quasiparticle spectral weight at the Fermi energy. The FL
temperature is also finite, TL ∼ TK (ρ0V−)2.9,12,22 We notice
that such a parity-splitting term can also be generated by
other forms of particle-hole asymmetry, such as a hybridization
(hopping) term tf (f †

1σ f2σ + H.c.),7 the asymmetry in energy
dependence of Kondo coupling,13 or a regular potential
scattering term.15 Compared with these studies, case (ii)
studied here points out an origin for the parity-splitting term
that is inherent to the heavy fermion systems, and cannot be
tuned out.

IV. THE RELATION BETWEEN TH AND THE
COHERENCE SCALE

We focus our discussions on scaling behavior and the
properties of TH , which has received little attention.

As shown in Figs. 1(c) and 5(b), TH has the same scaling
behavior in the two cases studied above: TH ≈ TK (or I ) for
I � TK (or � TK ) and a value in-between when I and TK

are comparable. When I � TK , the Kondo effect dominates.
A small RKKY interaction in this limit only enhances
slightly the staggered spin fluctuations and affects the physical
properties in the energy range (TK − I,TK ) while the Kondo
renormalization above TK remains unaffected. Therefore,
TH ≈ TK in this limit. TK lies in the crossover region between
the local moment and the strong-coupling fixed points in
the single-ion Kondo renormalization. Correspondingly, the
imaginary parts of the spin susceptibilities change behaviors
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at TK from ∼ 1/ω to ∼ ω, i.e., the spin fluctuations reach
the maximum strength associated with the spin-flip Kondo
scattering. The quasiparticle spectral weight also increases
rapidly at TK . Indeed, TH (being TK ) serves as the onset scale
for the formation of coherent quasiparticles. We notice that
quasiparticles at this energy scale do not necessarily exhibit
Fermi liquid behaviors, which rather develop at a lower energy
scale. When I � TK , the RKKY interaction suppresses the
Kondo scattering from the Fermi energy up to the scale I .
The Kondo renormalization is cut off by I before reaching
TK . The imaginary parts of the uniform and staggered spin
susceptibilities reach the maximum values at I , but have a
hump structure instead of the smooth crossover between the
local moment to FL behaviors as in the Kondo resonance
state. While this hump is due to the singlet-to-triplet spin
fluctuations between two impurity spins, it is broadened by the
Kondo scattering. In other words, impurities are still weakly
coupled to the conduction electrons to form quasiparticles,
i.e., the coupling is JK rather than JK,eff → ∞ at the Kondo
fixed point. As JK is finite, the Kondo screening is partial
such that the quasiparticles here are not traditional Landau
quasiparticles with Fermi liquid behaviors: they rather share
some similarity with Majorana fermions in the quantum critical
regime. The spectral weight for this type of single-particle
excitation is still finite and reaches the maximum value at I ,
although it is small. In this sense, we can still refer to I (as
TH ) as the coherence scale, as the single-particle excitations
change behaviors here. TH being determined by I in this
limit can be understood as a low-energy cutoff on the Kondo
renormalization. When I is comparable with TK , the Kondo
scattering and interimpurity singlet-to-triplet excitation have
comparable strengths. TH as the location for the maximum spin
fluctuations lies in between TK and I and increases when I/TK

increases. In all these cases, we find that TH serves as the scale
where the physical properties begin to be strongly influenced
by the formation of quasiparticles. Therefore, we can associate
TH to the coherence scale for two coupled impurities.

We notice that the properties of TH are in agreement with
those of the coherence T ∗ in heavy fermion systems. For
instance, the changes in optical conductivities, the tunneling
spectroscopy, and the Hall effect are related to the change of
the quasiparticle spectral weight, while the magnetic responses
and the scattering rate are affected by the strong spin fluctua-
tions at this scale. As observed from the two-impurity model,
the single-ion Kondo temperature TK loses its manifestation
in physical properties when I > TK . This is also true for
heavy fermion systems. In experiments, TK is determined
by the dilute magnetic ions limit, as in Ref. 3. Indeed, it is
in general one order of magnitude smaller than T ∗.1 This
implies that most heavy fermion compounds fall in the I > TK

regime with magnetic orders developing at low temperatures.
In this case, we find that TH is indeed determined by the
RKKY interaction, which is consistent with the experimental
analysis.1 In this case, we notice that the quasiparticles at the
scale I are different from Landau quasiparticles displaying
Fermi liquid behaviors. On the other hand, the dynamical
measurements determining the coherence scale indeed are not
necessarily in the Fermi liquid regime. Besides, Fermi liquid
behaviors develop at a lower-energy scale. We find that the
Fermi liquid parameters, such as Cu,a = limω→0[χ ′′

u,a(ω)/ω],

are also determined by I for I � TK . In this sense, the
coherence scale indeed appears in the Landau parameters,
which are also manifested in static property measurements.
This provides an explicit explanation to the scaling behavior of
T ∗ as the RKKY interaction rather than the single-ion Kondo
temperature, and it can be interpreted as a coherence scale.

Then the question is whether TH , the coherence scale for
two Anderson impurities, can be generalized to the heavy
fermion lattice systems. This relies on an explicit calculation
on the lattice models, for instance, solving the periodic
Anderson lattice model through a self-consistent two-impurity
Anderson model with the cluster DMFT.4 In this approach, one
chooses the neighboring two sites of the lattice as a cluster and
treats the lattice as the repetitions of this cluster. The even-
and odd-parity states, therefore, correspond to the degrees of
freedom at momentum (0,0,0) and (π,π,π ), respectively, for
a three-dimensional lattice. Once self-consistently solved, the
two impurities have the same properties as the two sites in the
lattice incorporating two-site correlations. Although the self-
consistency procedure has not been done explicitly, we argue
that the generalization of the coherence scale can be valid.
The most important result from our calculations is that the
high-energy properties above TH are governed by the single-
impurity physics, i.e., the intersite coupling only modifies the
low-energy properties and has no traces in the high-energy
part. This can be observed from the spectral functions [cf.
Figs. 1(a) and 3(a)], which follow the universal single-ion
Kondo curve at high energies, but their low-energy weights are
suppressed systematically from the scale TH , i.e., TH , being an
RKKY interaction, is a cutoff scale on the single-ion Kondo
renormalization. This statement, however, cannot be made
from the patching scheme calculations. In Fig. 6, we show the
spectral functions obtained from both the CFS-NRG method
and the patching scheme. While these methods may give the
same positions for the characteristic energy scales, as the NRG
iteration part is the same, the spectral function obtained by the
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FIG. 6. (Color online) Comparisons between the spectral func-
tions obtained by the CFS-NRG method (solid lines) and the patching
scheme (dotted lines) (please refer to Sec. II for details of these two
methods). The parameters taken are the same as in case (i), or Fig. 1.
For both methods, the NRG iteration part is the same. A weight
function w(x) = x is commonly chosen for the patching scheme.
The spectral functions obtained by the CFS-NRG method have high
weights in the whole energy range. We explicitly verify the sum rule∫

dωAf (ω) = 1, and find that the deviation in practice is less than
0.1%.
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patching scheme may lead to a different understanding on TH

for I � TK . We observe enhanced quasiparticle excitations at
ω ≈ I compared with the single-ion case. This is due to the
choice of the weight function between the overlapping energy
range, which, commonly, favors the states in later iterations
(lower energies) and exaggerates its weight. However, this may
indicate that, due to RKKY interaction I , considerable spectral
weight transfers from the incoherent part to the scale I to form
coherent excitations, rather than the cutoff effect indicated by
the CFS-NRG result. It is from the spectral functions that we
determine the new Weiss fields to recalculate the two-impurity
problem. As learned from our results, the high-energy part
above TH is solely determined by the single-ion Kondo
physics. Moreover, the spectral weight of the low-energy
part only consists of a negligible portion of the total spectral
weight, for instance, valid for Ce compounds, which is unlikely
to affect the high-energy physics in the self-consistency
procedure. This implies that the high-energy part would
be the same as solving a single impurity self-consistently.
The low-energy part, however, is expected to be modified in
the self-consistency procedure from the scale I . Therefore, we
expect that I remains as the high-energy scale for the lattice.
We notice that this argument may not hold for cases in which
the weight transfer between the incoherent part and coherent
part is significant, for instance for the Hubbard model.

V. CONCLUSION

In summary, we have studied the two-impurity An-
derson model with the complete-Fock-space numerical
renormalization-group method. We find that due to the com-
petition between the Kondo effect and the RKKY interaction,
which is the spin-exchange interaction between two impurities,
there are in general two energy scales present. The high-energy
scale characterizes the quasiparticle formations and the low-
energy scale specifies when these quasiparticles develop Fermi
liquid behaviors. In between, there exists an intermediate
state with non-Fermi-liquid behaviors where both the Kondo
scattering and the excitations between the singlet and triplet
configurations of the two impurity spins play equally important
roles.

The focus of our study is on the high-energy scale, which we
associate with the coherence scale in heavy fermion systems.
In the two-impurity model, it marks the scale with maximum
spin fluctuations. While the spin fluctuations can be due to
the Kondo scattering with conduction electrons or the singlet-
to-triplet excitations between the impurity spins, their relative
strength is tuned by the ratio between the RKKY interaction
and the Kondo temperature. When the Kondo effect wins, the
high-energy scale is determined by the Kondo temperature,
where quasiparticles begin to gain considerable weight. When
the RKKY interaction dominates, the high-energy scale is
determined by the RKKY interaction, which can be understood
as a cutoff on the Kondo renormalization by a spin excitation
gap. The quasiparticle spectral weight, therefore, reaches the
maximum value at this scale. In both cases, the high-energy
scale characterizes when the quasiparticles gain considerable
weight to influence the physical properties. This is consistent
with the definition of the coherence scale in heavy fermion
systems. The most important result is that the physical

properties above the high-energy scale are determined by
the single-ion Kondo physics and are expected to remain
unchanged in a cluster DMFT procedure. This implies that
we may associate the high-energy scale with the coherence
scale of heavy fermion systems. Besides sharing the same
physical properties, they also have the same scaling behavior.
When the RKKY interaction is much bigger than the single-ion
Kondo temperature, the coherence scale is determined by the
RKKY interaction, which is consistent with the experimental
analysis.1 This provides an explicit theoretical description for
such an energy scale.

The low-energy scale, as the Fermi liquid temperature for
quasiparticles, is expected to change in the cluster DMFT
self-consistent procedure. This prevents a direct connection
between the two-impurity quantum phase transition to the
magnetic quantum phase transition in heavy fermion systems.
However, we expect both origins for the low-energy scale in the
two-impurity model will play important roles in determining
the low-energy scale(s) in a lattice model. The degeneracy
point between magnetic excitations and Kondo scattering also
exists in a lattice, for which Doniach’s criterion remains
the same, i.e., Ic/TK is of order unity. If the two-impurity
critical dynamics drives a magnetic transition for the lattice,
it will be interesting to check the existence of a Majorana
fermion: many of its properties are in accordance with the
local quantum critical behavior.23 On the other hand, the
two-impurity quantum critical point is unstable against certain
forms of particle-hole asymmetry. For instance, the parity-
splitting potential scattering term is always finite in case (ii) of
our study, which is inherent to the heavy fermion lattices. In
a lattice, this can be related to asymmetry between degrees of
freedom at momentum (0,0,0) and (π,π,π ). We have shown
that it not only generates a finite Fermi liquid temperature,
but it also generates a finite spectral weight at the chemical
potential [cf. Fig. 4(a)]. The parity-splitting term also relates
to a finite Re12(ω = 0), which corresponds to a kinetic
energy term for f electrons.15 This might help to stabilize
a finite effective Kondo scale. Incidentally, as the potential
scattering term scales as the Kondo coupling, the associated
(low-) energy scale also has the same scaling relation as the
RKKY interaction.

We expect that the two-impurity Kondo physics will also be
helpful to understand the Mott transition and unconventional
superconductivity in other strongly correlated systems. The
Kondo physics has provided an elegant explanation to the Mott
transition in the single-site DMFT approach to the Hubbard
model.24 However, the intersite spin-exchange interaction,
similar to the RKKY interaction, is absent in the single-site
approach. We learn from the two-impurity model that such an
intersite interaction competes with the local Kondo dynamics
to modify the low-energy properties. Indeed, a multisite cluster
DMFT calculation shows different properties of the metallic
and insulating phases near the transition point.25
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APPENDIX A:DETERMINATION OF THE
HYBRIDIZATION FUNCTIONS

AND THE INTERACTION PARAMETERS

We explain some of the calculation details for the hybridiza-
tion functions and the interaction parameters such as the Kondo
coupling JK and RKKY interaction I .

The hybridization functions can be calculated from
Eq. (2) by the given hybridization constant Vk, the con-
duction electron dispersion εk, and the impurity locations.
We choose Vk = V , εk = −(D/3)

∑3
i=1 cos kia. For two

impurities located far away from each other and sitting on
nearest neighbors, we determine �e,o(ω) numerically, and
the results are shown in Fig. 7. In Fig. 7(a), we find that
�e(ω) = �o(ω) = πV 2ρ(ω), where ρ(ω) is the density-of-
states function for the dispersion εk. Near the Fermi energy,
�e,o(ω) are constants. In Fig. 7(b), we find that �e,o(ω) ∼
1 ∓ ω near the Fermi energy. For simplicity, we take their low-
energy forms to the whole band. The difference is above the
Van-Hove singularity at |ω| ≈ 0.3D, which does not affect the
low-energy physics.

The Kondo coupling constant JK can be obtained from
a canonical transformation from the Anderson model to the
Kondo model. In the two-impurity Kondo model, as the Kondo
scattering can involve electrons from the same or different
parity channels, there are different types of Kondo exchange
interaction,

Jpp′ (ω,ω′)/D = 1

π
[�p(ω)�p′(ω′)]1/2C(ω,ω′) , (A1)

where (p,p′) = e,o and

C(ω,ω′) = 1

ω − εf

− 1

ω − εf − Uf

+ 1

ω′ − εf

− 1

ω′ − εf − Uf

. (A2)
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FIG. 7. (Color online) The hybridization functions for the even-
and odd-parity channels for two Anderson impurities in a three-
dimensional cubic lattice. (a) is for two impurities located far away
from each other (here r1 − r2 = 40ax̂) and (b) is for two impurities
sitting on nearest-neighbor sites (r1 − r2 = ax̂). Here V = 0.3D.

In comparison to the notations in Ref. 15, Je = Jee, Jo =
Joo, and Jm = (Jeo + Joe)/2. With ε = −U/2 and |ω|,|ω′| �
U , C(ω,ω′) ≈ 8/U . The Kondo coupling is taken as the
value at the Fermi energy, JK = (J 2

e + J 2
0 + 2J 2

m)1/2/
√

2 =
8�0/(πρ0U ). However, the energy dependence of the Kondo
coupling is crucial to determine the generated RKKY interac-
tion, which is

I = ρ0

2

∫ 1

0
dω

∫ 0

−1
dω′ J

2
e (ω,ω′) + J 2

o (ω,ω′) − 2J 2
m(ω,ω′)

ω′ − ω
.

(A3)

If we take the hybridization functions to be constants, we find
that I = −2 ln 2ρ0(Je − Jo)2. It is then always ferromagnetic
except when Je = Jo, i.e., the two impurities located far away.
When �e,o(ω) = �0(1 ∓ ω), we evaluate I ≈ 0.20ρ0J

2
K , i.e.,

antiferromagnetic as expected.

APPENDIX B: THE HAMILTONIAN IN THE PARITY BASIS

In this appendix, we show how to rewrite the original
Hamiltonian in the site basis [cf. Eq. (1)] to a Hamiltonian
in the even- and odd-parity basis.

We set the locations of the two impurities at r1 and r2, and
introduce two fields

c±,Eσ = (1/
√

Nc)
∑

k

δ(E − εk)Vke
ik·r1(2)ckσ , (B1)

which couple to the localized f electrons. To avoid the
overlap between these two modes (and subsequent modes
between chains), we further introduce even (e) and odd (o)
combinations of the two fields,

c(e,o)Eσ = 1

Ne,o(E)
(c+Eσ ± c−Eσ ), (B2)

to satisfy the anticommutation relation [p,p′ = (e,o)]

[cpEσ ,c
†
p′E′σ ′]+ = δpp′δE,E′δσ,σ ′ , (B3)

where the normalization factors Ne,o(E) are chosen as

N2
e,o(E) = 1

2Nc

∑
k

δ(E − εk)V 2
k |eik·r1 ± eik·r2 |2. (B4)

Compared with Eq. (2), N2
e,o(E) = �e,o(E)/π . In the new basis

c(e,o)Eσ together with fe,o = (f1 ± f2)/
√

2, we can rewrite the
hybridization term in Eq. (1) as

Hc−f =
∑

σ

∫
dE[

√
�e(E)/πf †

eσ ceEσ

+
√

�o(E)/πf †
oσ coEσ + H.c.]. (B5)

For the conduction electron part Hc, it is easy to verify that
[c(e,o)Eσ ,Hc] ∼ c(e,o)Eσ , i.e., other conduction electron modes
are decoupled. We therefore only keep these two orbitals and
write Hc as

Hc =
∑

(p=e,o)σ

∫
Ec

†
pEσ cpEσ dE. (B6)

Therefore, we have obtained the Hamiltonian in the even- and
odd-parity basis. Protected by the parity symmetry, the bath
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electrons cpEσ of different parities cannot hop to each other.
This leads to two separate electron baths. Of course, the on-site
Coulomb repulsion Uni↑ni↓ has a more complex structure in
the parity basis.

For each electron bath, we can follow the standard NRG
procedure to map it into a semidefinite chain for NRG iterative
solutions. A detailed procedure is documented in Sec. II A-C
of Ref. 17. For the notations g(ε) and h(ε) in their Eq. (4), we
identify them as ε, and

√
�(ε)/π in our case, respectively.

We notice that in case (i), where �e(ω) = �o(ω) = �0 for
two impurities sitting far away from each other, we can choose
c(1,2)Eσ = (ceEσ ± coEσ )/

√
2 [notice that c(1,2) for conduction

electrons are different from the Wannier orbitals c(r1) and
c(r2)], and rewrite the Hamiltonian as

Hc =
∑

(i=1,2)σ

∫
Ec

†
iEσ ciEσ dE,

Hc−f =
∑

(i=1,2)σ

∫
E

√
�0/π (f †

iσ ciEσ + H.c.). (B7)

If we neglect the direct RKKY term IS1 · S2, which is to be
introduced explicitly, we will solve the two-impurity problem
in terms of two separate single-impurity problems. Indeed,
there should be no generated RKKY interaction in this case.
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