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Degenerate versus semidegenerate transport in a correlated two-dimensional hole system
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It has been puzzling that the resistivity of high-mobility two-dimensional (2D) carrier systems in
semiconductors with low carrier density often exhibits a large increase followed by a decrease when the
temperature T is raised above a characteristic temperature comparable with the Fermi temperature TF . We
find that the metallic 2D hole system in a GaAs quantum well has a linear density- (p-) dependent conductivity
σ ≈ eμ∗(p − p0) in both the degenerate (T � TF ) and semidegenerate (T ∼ TF ) regimes. The T dependence
of σ (p) suggests that the metallic conduction dσ/dT < 0 at low T is associated with the increase in μ∗, the
effective mobility of itinerant carriers. However, the resistivity decrease in the semidegenerate regime T > TF

originates from the reduced p0, the density of immobile carriers in a two-phase picture.
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Electron transport in two-dimensional (2D) electron sys-
tems has been the focus of research for a long time.1 A
pioneering work on the one-parameter scaling theory of
localization2 concluded that all noninteracting disordered 2D
electronic systems have to be localized in a zero magnetic
field (B = 0). The application of the celebrated scaling
theory of localization and the Fermi-liquid model in strongly
interacting 2D systems, however, was questioned by a number
of experimental observations of an apparent metallic state and a
metal-insulator transition (MIT) in various 2D electron or hole
systems with low density and high mobility.3 Although a low
carrier density implies a large value of rs (the ratio between
the Coulomb potential energy and kinetic energy) or strong
correlation effects, different opinions exist on how the strong
correlations affect the carrier transport in dilute 2D systems
and what mechanism causes the metallic transport.4–12

After extensive experimental studies of transport in various
dilute 2D carrier systems in semiconductors, one salient
feature stands out in the 2D metallic transport phenomena.
For densities above the critical density pc, the temperature-
dependent resistivity ρ(T ) is often nonmonotonic: ρ first
increases and then decreases as the temperature is raised above
a characteristic temperature T ∗ ∼ TF . Such nonmonotonic
behavior in ρ(T ) when a low-density 2D system becomes
semidegenerate has been observed in all three of the most
widely studied systems: n-Si,13,14 p-GaAs,15–17 and n-GaAs.18

This sign change in dρ/dT at T ∗ is generic for the 2D metallic
state if the phonon-scattering contribution to resistivity does
not overwhelm the impurity-scattering induced ρ in the
semidegenerate regime.16,19 The existence of a nonmonotonic
ρ(T ) is essential in many leading theoretical explanations for
the 2D metallic state.7–9,12 Therefore, to further distinguish the
mechanisms of the 2D metallic state, it would be desirable to
address experimentally the transport and scattering processes
as the system crosses over from the degenerate (T � TF ) to
the semidegenerate (T ∼ TF ) regime. In addition, transport of
2D electron fluids with rs � 1 in the semidegenerate regime
is interesting in its own right. In this seldom-studied regime,
non-Boltzmann-type transport such as hydrodynamics may
play an important role.9,20

Here we compare the density dependence of conductivity in
the degenerate and semidegenerate regimes for a low-density

2D hole system (2DHS) with strong interactions (rs > 18 for
the densities covered in this experiment21). In the metallic
state, our 2DHS in 10-nm-wide GaAs quantum wells (QWs)
exhibits a pronounced nonmonotonic ρ(T ) associated with
the degenerate to semidegenerate crossover and a strong
low-T metallicity17,22 due to the stronger confinement and
smaller phonon-scattering contribution to the resistivity in
narrow QWs.16,17,19 The particular focus of this paper is
on understanding the nonmonotonic ρ(T ) of the correlated
2DHS from the temperature dependence of σ (p) in the
high-conductivity regime (σ � e2/h). In such a metallic
regime away from the critical point of the MIT, we find that
the conductivity has a Drude-like linear density dependence,
σ (p) ≈ eμ∗(p − p0), consistent with a two-phase mixture
picture where the total conductivity is dominated by mobile
carriers with mobility μ∗ and density p − p0. The σ (p) data
at different T further suggest that the resistivity changes on
the two sides of the nonmonotonic ρ(T ) of low-density 2D
systems have distinct origins: One comes from μ∗(T ) and the
other is a result of p0(T ). The low-T metallic conduction in
the degenerate regime is accompanied by a sharply increasing
μ∗(T ) as T decreases. In contrast, the resistivity change of the
2DHS in the nondegenerate regime is dominated by a p0 that
decreases rapidly as T increases.

Transport measurements were performed on 2DHSs in
two 10-nm-wide GaAs QW samples similar to the ones
used in our previous studies.19,22,23 The samples were grown
on a (311)A GaAs wafer using Al0.1Ga0.9As barriers and
symmetrically placed Si δ-doping layers. The metal backgate
used to tune the hole density was about 0.15 mm away from
the QW such that the Coulomb interaction between holes
was unscreened by the gate and remained long range. The
samples were prepared in the form of a Hall bar, of approx-
imately 2× 9 mm2 in dimension, with diffused In(1%Zn)
contacts. The measurement current was applied along the
high-mobility [2̄33] direction and kept low such that the power
delivered on the sample was less than 3 fW/cm2 to avoid
overheating.19

Before we go into the details of the density-dependent
conductivity data and analysis, we use Fig. 1 to establish
some basic transport and magnetotransport behavior of the
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FIG. 1. (Color online) (a) Nonmonotonic ρ(T ) for the 2DHS with
densities p = 1.90,1.71,1.51,1.32, and 1.13 in the 10-nm-wide GaAs
QW sample 1. The crossover temperature T ∗ of the nonmonotonic
ρ(T ) with different p is connected by a dashed line to guide the
eye. (b) ρ vs T for p = 1.73 and 2.12 in sample 2, showing that
the nonmonotonic ρ(T ) exists even in the highly conductive regime
with ρ as low as ∼ 0.01h/e2. (c) Resistivity ρxx vs the perpendicular
magnetic field B at different temperatures for p = 1.13 in sample 1.
For T > T ∗, the ρxx(B) curves still exhibit a SdH dip at ν = 1 whose
position does not change with T .

low-density 2DHS. Figure 1(a) presents the temperature-
dependent resistivity ρ(T ) at B = 0 for several densities
(p = 1.90,1.71,1.51,1.32, and 1.13) in sample 1 (the unit
for p is 1010 cm−2 throughout this paper). For this sample, the
MIT happens around pc ≈ 0.8 when the density is changed
by the backgate voltage Vg .23 It can be seen in Fig. 1(a) that
ρ(T ) changes from metallic (dρ/dT > 0) to insulatinglike
(dρ/dT < 0) above a characteristic temperature T ∗, which
becomes larger when p increases, is consistent with previous
findings in the literature.15–18 Because of the suppressed
phonon scattering in our narrow QWs compared to wider QWs
or heterostructures,16 here we are able to directly observe such

nonmonotonic ρ(T ) in a much lower resistivity regime (ρ ∼
0.01 ×h/e2) than found in the literature, as shown in Fig. 1(b)
for p = 2.12 in sample 2.

The 2D hole density is determined by the positions of the
Shubnikov–de Haas (SdH) oscillations as p = νBνe/h, where
ν is the Landau filling factor and Bν is the perpendicular
magnetic field at the corresponding ν. Figure 1(c) plots the
longitudinal magnetoresistivity ρxx(B) for p = 1.13 of sample
1 at various temperatures (T = 0.018–0.81 K). Throughout
this whole temperature range covering both T < T ∗ and
T > T ∗, the SdH oscillation is well established at ν = 1
and Bν=1 does not change with temperature, indicating a
constant p. In addition, we note that the ν = 1 SdH oscillation
persists up to at least 0.81 K, a temperature comparable to
TF [=1.0 K using effective hole mass m∗ = 0.3me (Ref. 21)]
or the cyclotron energy �c at ν = 1. This is surprising since
the SdH oscillation amplitude should decay strongly above
kBT ∼ 0.1 �c according to the Lifshitz-Kosevich formula24

δρxx ∝ 2π2kBT /�c

sinh(2π2kBT /�c) . The fact that the SdH observation is ob-
served at T > T ∗ points to the nonclassical nature of the dilute
2DHS with large rs at these semidegenerate temperatures.

While a decreasing ρ with T in the regime of T > T ∗
is expected in several models, due either to interaction or
correlation effects7–9 or to classical scattering,12 it has been
difficult to identify the exact mechanism.14 We studied the
density dependence of the conductivity σ to gain more
insight into the transport mechanism of the metallic 2DHS
when the temperature coefficient dρ/dT changes sign at
T ∗. Figures 2(a) and 2(b) present σ (p) for samples 1 and 2
from 0.035 K (T � TF ) up to 4 K (T > TF ) over the density
range 0.7 < p < 2. A few features in σ (p) are salient when
the 2DHS crosses over from the low-T degenerate regime
(open symbols) to the high-T semidegenerate regime (solid
symbols). First, similar to a previous report,25 at low T , σ (p)
turns up sharply around the MIT (p = pc) and then follows
a straight line with large slope at p > pc. As T increases, the
slope of the linear dependence becomes smaller and at the
same time the sharp upturn at p ∼ pc straightens. Eventually,
at high temperatures, σ (p) becomes a linear function over
the whole range of p. Yet the slope and intercept of the σ (p)
data at high T are much smaller than the low-T curves. A
linear σ (p) dependence is expected in the Drude model with

FIG. 2. (Color online) (a) 2D hole conductivity σ plotted as a function of density p at different temperatures for samples (a) 1 and (b) 2. A
linear Drude-type function can be used to approximate the conductivity as σ = eμ∗(p − p0), as denoted by the dashed lines. Fitting parameters
(c) p0 and (d) μ∗ plotted against temperature.
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the slope corresponding to the mobility of carriers. Therefore,
the dramatic slope change in σ (p) in our data suggests a
dramatically enhanced mobility of free carriers at low T .
In the Drude model, the finite intercept p0 of σ (p) would
correspond to the density of localized carriers, which appears
to change with T , as indicated by data in Figs. 2(a) and 2(b).

Previously, the low-T behavior of σ (p) near the critical
regime (p ∼ pc) was analyzed in terms of the percolation
model as σ = A(p − pc)δ , with δ ≈ 4/3, where the MIT is
driven by the percolation of itinerant carriers with density
p − pc through localized carriers with density pc.14,26–28 A
linear relation (δ = 1) between σ and p − pc at high σ would
reconcile the percolation model with the Drude formula when
the overall conductivity is dominated by itinerant carriers
(i.e., when σ � e2/h). In that case, the coefficient A in
the percolation equation yields the effective mobility μ∗ of
itinerant carriers. Here we focus on the linear Drude part of
σ (p) in the high-conductivity limit (σ � e2/h) to examine
how the system evolves over a broad range of T . This analysis
not only gives a physically meaningful parameter μ∗, but also
works in the high-temperature (semidegenerate) regime where
the percolation fit is not applicable. We fit the data in Figs. 2(a)
and 2(b) with σ > 5e2/h to σ = eμ∗(p − p0) with μ∗ and p0

as the fitting parameters.29 The fitted μ∗ and p0 are plotted as
functions of T in Figs. 2(c) and 2(d) for both samples. First
of all, reflecting the metallic transport and rapidly increasing
slope of σ (p) at low T , μ∗ exhibits a sharp upturn at T

lower than ∼0.5 K, in contrast to its nearly T -independent
behavior at high T . In contrast, p0 shows only a minor drop at
T < 0.5 K but decreases greatly at high T [a factor of 3 (2) for
sample 1 (2)]. These effects, which are revealed through the
density-dependent conductivity analysis, lead to an important
insight into the nonmonotonic ρ(T ) or σ (T ) for the metallic
2DHS with a fixed density: While the metallic conduction
in the degenerate regime could be attributed to an enhanced
mobility of itinerant carriers, the increasing conductivity in
the semidegenerate regime (i.e., T > T ∗ in Fig. 1) is a
consequence of decreased p0, or the density of localized
carriers, but not a mobility effect. This can actually be inferred
directly from the raw data in Fig. 2(a): As T is lowered from 3
to 0.75 K, the σ (p) curves stay parallel to each other and shift
toward a higher intercept p0. Within this analysis, one obtains
the following picture for the nonmonotonic ρ(T ) peak around
T ∗ in low-density 2D systems: The resistivity drop at T < T ∗
is due to reduced scattering but the high-T (T > T ∗) resistivity
drop comes from a different mechanism where some localized
carriers become itinerant and contribute more and more to the
overall conductivity when the temperature is increased.

To explain the nonmonotonic ρ(T ) of low-density 2D
carrier systems, a few theories involving different mechanisms
were proposed.8,9,12 While it is natural that these theories
have focused on the effect of temperature on the scattering,
diffusion, or viscosity of the 2D carriers, our data supply
two useful insights that are not contained specifically in the
existing theories. First, in the high-T semidegenerate regime,
the effective mobility μ∗ of itinerant carriers (essentially
the slope of dσ/dp) is roughly T independent and much
smaller than the degenerate regime. This emphasizes a distinct
transport property of the 2DHS between T < T ∗ and T > T ∗:
Although the 2DHS can have the same resistivity value in the

degenerate or the semidegenerate regime [Fig. 1(a)], carriers
added to the system experience much stronger scatterings or
collisions at T > T ∗ than at T < T ∗. Second, the decreasing
ρ in the T > T ∗ regime is likely tied to the temperature
dependence of p0, the density of localized carriers, instead
of a simple scattering rate effect. These features should be
included in future theoretical considerations.

We studied the transverse magnetoresistance or Hall re-
sistance Rxy in the perpendicular magnetic field to obtain
additional information on the nature of the two species of
carriers inferred from the σ (p) data. Figure 3(a) shows Rxy

vs B for p = 1.33 of sample 2 over a broad temperature
range (T = 0.1–4 K). The data have been symmetrized using
both positive and negative field measurements to remove the
slight mixing from longitudinal resistance. A dashed line is
included to show the classical linear Hall resistance B/ep

according to the hole density p. It is interesting to see that the
experimentally measured Rxy is always smaller than B/ep,
except in the fully developed ν = 1 QH state. This significant
difference between the measured Rxy and B/ep is quantified
in Figs. 3(b) and 3(c). Figure 3(b) shows that 1/eRH is
significantly (40%–60%) higher than p. Here RH is the Hall
coefficient obtained by fitting the slope of Rxy(B) at low
field (|B| < 500 G). It is tempting to relate the temperature
dependence of 1/eRH in Fig. 3(b) to a T -dependent carrier
density effect similar to what we infer from σ (p) data.
However, two caveats are worth pointing out. First, the increase
of 1/eRH at T < 1 K reproduces previous results on the
T -dependent RH in a similar 2DHS (Ref. 23) whose origin
is not fully understood since multiple mechanisms can lead
to temperature-dependent corrections to RH .30–32 The second
caution or puzzle one needs to consider is the significant
difference between 1/eRH and p: It is as large as 40% even at
the lowest temperature studied (80 mK). Figure 3(c) presents
the B dependence of the Hall slope dRxy/dB up to 0.8 T. It
shows that although dRxy/dB exhibits some increase in B, it
is still lower than 1/ep, which is anticipated from the density.
In the two-band transport model, the low-field Hall slope
dRxy/dB is related to both the density and mobility of the two
carrier species as 1/(edRxy/dB) = (p1μ1 + p2μ2)2/(p1μ

2
1 +

p2μ
2
2), while 1/edRxydB at high fields (μB � 1) is equal to

the total carrier density p1 + p2. Thus a smaller Hall slope at
high field is always expected for the standard two-band model.
We see that the opposite trend is exhibited in our 2DHS as
dRxy/dB becomes larger at higher B in Fig. 3(c). We speculate

FIG. 3. (Color online) (a) Hall resistance Rxy as a function of
the perpendicular magnetic field B for p = 1.33 in sample 2 at T =
0.1–4 K. (b) 1/eRH vs T for p = 1.33 with RH as the low-field Hall
coefficient. (c) Hall slope dRxy/dB vs the magnetic field at T = 1,
1.5, 2, and 4 K. At high T when the ν = 1 QH state weakens, the
Hall slope shows a clear enhancement as B increases.
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that the increase in the Hall slope at high B is caused by the
localization or Wigner crystallization of carriers.33 Because the
two carrier species we consider can have both a temperature-
and a magnetic-field-dependent density and mobility, we do
not have a reliable model to fit Rxy(B) data to compare with
the zero-field conductivity analysis in Fig. 2. One possible
implication of the small Hall slope in our experiments is that
there exist carriers that contribute to the current but not the Hall
voltage. Obviously, further study is required to understand the
anomalous Hall slope and the nature of the two carrier species
in the 2DHS with large rs .

It is worth pointing out that our results may in fact
be compatible with several theories that emphasize the
coexistence of a conducting metallic phase and an insulating
localized phase near the MIT.6,9,12 A two-component and
temperature dependent carrier freeze-out model for the 2D
MIT was suggested by Das Sarma and Hwang in 1999.12 In
the more recently proposed microemulsion scenario of the 2D
MIT, the 2D metallic phase consists of mobile Fermi liquids
percolating through bubbles of Wigner crystals that have
much lower conductivity.9 The original microemulsion model
suggested the 1/T -dependent viscosity of the correlated
electron fluid as the explanation for the decreasing ρ in the
high-T regime of T ∼ TF . Our σ (p) data suggest that the
continuous melting of the Wigner crystal is perhaps more
important in the experimentally accessed temperature range
here since only p0 has a strong temperature dependence at T >

T ∗. Thus theoretical calculations on the density-dependent
conductivity and the Hall effect of microemulsion would
be desirable to compare further with experiment. In other
classical percolation models of the 2D MIT,26–28 the nature
and the high-temperature fate of the localized carriers have
not been addressed theoretically so far. In those theories, more
detailed calculations need be done to see if thermal activation
of localized carriers can produce the effects reported here.

In summary, we have studied the density-dependent con-
ductivity of a 2DHS in a GaAs QW as T is raised from the low-
T degenerate regime (T � TF ) to the high-T semidegenerate
regime (T > TF ). In both regimes, the system’s conductivity
can be described by a Drude-like formula σ (p) ≈ eμ∗(p − p0)
in the high-conductivity limit. The temperature dependence
of σ (p) reveals that the metallic transport at T < TF is
associated with the dramatically enhanced μ∗ at low T , while
the system’s resistivity decrease at T ∼ TF is likely a result
of some localized carriers becoming conductive. However,
the temperature and magnetic-field dependence of the Hall
resistance requires further understanding.
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